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Abstract This article investigates an adaptive output
feedback control problem for a non-holonomic sys-
tem with integral input-to-state stable inverse dynam-
ics and output constraints. A tan-type barrier Lya-
punov function is utilized to handle asymmetric time-
varying output constraints, and the full-order observer
is constructed to estimate the unmeasurable state. The
dynamic uncertainty is eliminated by changing the sup-
ply rate of the integral input-to-state stability. It is
demonstrated that the closed-loop system is asymp-
totically stable, and the output does not violate the
asymmetric time-varying constraints under this control
scheme. A simulation example validates the effective-
ness of the proposed controller.

Keywords Non-holonomic systems · Output con-
straints · Integral input-to-state stable · Stabilization
control

1 Introduction

Cascaded systems are a class of nonlinear systems com-
posed of two or more subsystems. Many mechanical

F. Zou · Y. Wu (B)
School of Engineering,QufuNormalUniversity, Rizhao 276826,
China
e-mail: wyq@qfnu.edu.cn

K. Wu
School of Internet of Things Engineering, Jiangnan University,
Wuxi 214122, China

systems can be described as cascaded systems, such as
robot systems, multi-agent systems, and trailer systems
[1–3]. The stability analysis of cascaded systems has
attracted extensive attention in recent decades [4–6].
Generally, the stability characteristics of subsystems
cannot determine the stability of cascaded systems [7].
To alleviate this difficulty, various control methods for
nonlinear cascaded systems have been developed. An
intuitive way to address this problem is to design a full-
state feedback controller that fully uses the state infor-
mation of the whole cascaded system [8–10]. Another
essential idea is to utilize partial-state feedback con-
trol to stabilize the cascaded system [11–13]. In [14],
a stepwise constructive partial-state feedback control
strategy based on input-to-state stability was proposed.
In addition, a smooth controller for a class of nonlinear
cascaded systems was designed in [15] by combining
the feedback control scheme and variable separation
technology. Unlike previous research, we propose a
control approach based on integral input-to-state sta-
bility, which ensures the stability of the nonlinear cas-
caded system.

The input-to-state stable (ISS) concept introduced
by [16] has been proven to be a valid instrument for
studying the robust stability of nonlinear cascaded
systems. Its various properties have been thoroughly
investigated [17–19]. Compared with the ISS concept,
the integral input-to-state stable (iISS) concept [20]
is strictly weaker and can contain a broader class of
nonlinear systems with practical significance. Jiang et
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al. [21] solved the problem of output feedback robust
regulation and proposed a unified framework for a type
of nonlinear cascaded systems with inverse dynamics.
In [22], a small gain theoremwas obtained for intercon-
nected nonlinear systems using state-dependent char-
acterization. The results in [23] removed the technical
conditions and covered more common situations than
earlier studies.Yu et al. [24] further considered the tech-
nology for changing the supply rate and discussed the
necessity of the given conditions for the case in which
the attenuation rate involves an oscillation function. In
this paper, we analyze the iISS subsystem and address
a decay rate that includes an oscillation function.

Owing to physical factors, safety requirements, and
performance indicators, almost all mechanical equip-
ment operates under output or state constraints. Con-
sequently, it is of great value to investigate the out-
put and state constraints of a system in control the-
ory and practical applications.Various approaches have
been adopted to handle state and output constraints
[25,26]. In the past few years, the utilization of the
barrier Lyapunov function (BLF) has become increas-
ingly common to prevent constraint violations in non-
linear systems [27–29]. In addition, many types of BLF
are investigated in [30–32], such as the log-type BLF,
the integral-type BLF, and the tan-type BLF. The tan-
type BLF has the benefit of integrating constraint anal-
ysis into a general method, and it can utilize the sys-
tem’s structural characteristics. However, few results
have been obtained regarding the controller design and
stability analysis of nonlinear cascaded systems with
output constraints and iISS inverse dynamics.

This paper considers the stability of nonlinear cas-
caded systems with iISS inverse dynamics and asym-
metric time-varying output constraints. The proposed
control strategy ensures the stability of nonlinear cas-
caded systems.Moreover, the output satisfies asymmet-
ric time-varying constraints at all times. A BLF-based
controller for a nonlinear cascaded system is designed
based on backstepping. Dynamic uncertainty is elimi-
nated by changing the iISS supply rate. A tan-type BLF
handles asymmetric time-varying output constraints,
and a full-order observer estimates the unmeasurable
state. Finally, we can guarantee that the system output
does not violate the constraints and that all signals in
the closed-loop system are bounded. Simulation results
show that the method is effective.

Notations The set of natural numbers is denoted by
N , and i-dimensional Euclidean space by Ri . The set

of all positive real numbers is R+. A continuous func-
tion ζ : R+ → R+ is said to be of class P and writ-
ten as ζ ∈ P if ζ(s) > 0 for all s ∈ R+\{0} and
ζ(0) = 0. A class P function is said to be of class
K if it is strictly increasing. It is of class K∞ if, in
addition, lims→∞ ζ(s) = ∞ is satisfied. x(t) repre-
sents an appropriate time-varying vector, and ||x(t)|| is
defined as the Euclidean norm of x at time t . ||x ||∞ =
supt≥0|x(t)|, and if ||x ||∞ is real, state x ∈ L∞. For
an n-dimensional vector x = (x1, . . . , xn)T ∈ Rn , we
write x[i] = (x1, . . . , xi )T when i = 2, . . . , n − 1.

2 Problem description

Consider the following class of uncertain chained non-
holonomic cascaded systems with output constraints:

η̇ = q(η, x)

ẋ0 = u0 + x0ϕ0(x0)

ẋi = xi+1u0 + φd
i (u0, x0, x, η), 1 ≤ i ≤ n − 1

ẋn = u + φd
n (u0, x0, x, η)

y = (x0, x1)
T , (1)

where (x0, xT )T = (x0, x1, x2, . . . , xn)T and (u0, u1)
stand for system states and control inputs, respectively;
y ∈ R2 is the measurable output of the system; η ∈ Rr

represents unmeasured dynamic uncertainty; ϕ0(x0)
denotes a well-known smooth, nonnegative function
related to x0; and φd

i (·) ∈ R(i = 1, . . . , n) is a kind of
unknown nonlinear function.

The following are asymmetric time-varying con-
straints on the output y:

Ωxi = {−ki1(t) < xi (t) < ki2(t)}, i = 0, 1, (2)

where ki1(t) > 0 and ki2(t) > 0 are preassigned func-
tions.

Assumption 1 [33] There is a positive definite smooth
iISS-Lyapunov function U0(η) for the η-subsystem,
such that

αη(||η||) ≤ U0(η) ≤ αη(||η||) (3)

∂U0

∂η
q(η, x) ≤ −α0(||η||) + γ0(|x1|), (4)

where αη(·), αη(·), γ0(·) ∈ K∞, α0 ∈ P , and γ0(·)
satisfies γ0(s) = O(s2) as s → 0+.
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Assumption 2 [34] There exist known nonnegative
smooth functions ϕi (u0, x0, x1) and unknown nonneg-
ative smooth functionsψi (η) for every 1 ≤ i ≤ n, such
that

|φd
i (u0, x0, x, η)| ≤ |x1|(ϕi (u0, x0, x1) + ψi (η)),

(5)

where ψ2
i (s) = O(α0(s)), s → 0+ holds when

lim infs→∞ α0(s) = ∞, and ψ2
i (s) = O(α0(s)), s →

0+, s → ∞ holds when lim infs→∞ α0(s) < ∞.

Remark 1 Assumption1 is typical in papers related
to input-to-state stability. The concept of the iISS-
Lyapunov function in Assumption1 is mainly used to
describe the dynamic uncertainty of the system under
study [34] and has become a core tool for the analy-
sis of nonlinear cascaded systems. Assumption2 states
that the unmeasurable dynamic uncertainty can be sep-
arated from the nonlinear drift term using a separation
Lemma [35] and treated separately, which is a more
general assumption than [36]. In addition, to overcome
the influence of the nonlinear drift term ψi (η), it is
necessary to impose a local small gain condition.

Lemma 1 [37] For any τ ∈ [0, 1), the following
inequality is established

tan
(πτ

2

)
≤

(πτ

2

)
sec

(πτ

2

)
≤

(πτ

2

)
sec2

(πτ

2

)
.

(6)

3 Design of output feedback controller

We construct output feedback controllers to asymp-
totically stabilize a cascaded system with output con-
straints.

3.1 Discontinuous input state scaling transformation

We first consider the case that x0 �= 0 and choose the
following form of control rate:

u0 = −λ0x0 − x0ϕ0(x0), (7)

where λ0 is a positive design parameter. Using the
Gronwall–Bellman inequality, we can obtain that for
any initial instant t0 ≥ 0 and any initial condition
x0(t0) ∈ R, the corresponding solution x0(t) �= 0 for
each t ≥ t0 [6]. Therefore, u0 �= 0 at any time t ≥ t0.

When u0 �= 0, the state scaling is defined as

zi = xi

un−i
0

, i = 1, . . . , n. (8)

Accordingly, the following systems are obtained:

żi = zi+1 − (n − i)
u̇0
u0

zi + φ̄d
i (u0, x0, x, η),

1 ≤ i ≤ n − 1

żn = u + φ̄d
n (u0, x0, x, η), (9)

where φ̄d
i (u0, x0, x, η) = φd

i (u0,x0,x,η)

un−i
0

, i = 1, . . . , n,

and z1(0) ∈ Ωz1 , Ωz1 = {z1 ∈ R : −b11(t) <

z1(t) < b12(t)}, with pre-allocated functions b11(t) >

0, b12(t) > 0.

Assumption 3 The time-varying constraints ki j (t)(i =
0, 1, j = 1, 2) on the output y and the time-varying
constraints b1 j (t)( j = 1, 2) on z1 are continu-
ous and bounded, and there are positive constants
ki1, ki2, b11, b12, ki1, ki2, b11, and b12 such that ki1 ≤
ki1(t), |k̇i1(t)| ≤ ki1, ki2 ≤ ki2(t), |k̇i2(t)| ≤ ki2,
b11 ≤ b11(t), |ḃ11(t)| ≤ b11, b12 ≤ b12(t), |ḃ12(t)| ≤
b12.

Remark 2 Assumption3 slightly relaxes the corre-
sponding assumptions imposed on the constrained non-
linear system in [38] by removing the upper bound of
the constraint. These constraints are commonly used
in practice to ensure that the conditions are bounded
when the output has restrictions [37].

Because u0 = −λ0x0 − x0ϕ0(x0) and ẋ0 = −λ0x0,
it is easy to see that

u̇0
u0

= λ20x0 + λ0x0ϕ0(x0) − x0ϕ̇0(x0)

−λ0x0 − x0ϕ0(x0)

= −λ0 + ϕ̇0(x0)

λ0 + ϕ0(x0)
:= ω + ϕ̄0(x0), (10)

where ϕ̄0(x0) is a known smooth continuous function,
and ω is a known constant.

From Assumption2, for each φ̄d
i (u0, x0, x, η) (i =

1, . . . , n),

φ̄d
i (u0, x0, x, η) ≤ |ui−1

0 ||z1|(ϕi (u0, x0, x1) + ψi (η)).

(11)

3.2 Constructing a full-order observer

For convenience of discussion, we write (9) as

ż = (E − u̇0
u0

F)z + bu + φ̄d(u0, x0, x, η), (12)
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where E =
[
0 In−1

0 0

]
, φ̄d(u0, x0, x, η) =

⎡
⎢⎣

φ̄d
1 (·)
...

φ̄d
n (·)

⎤
⎥⎦,

b =
⎡
⎢⎣
0
...

1

⎤
⎥⎦, and F = diag{n − 1, . . . , 1, 0}.

The controller is designed by using the full-order
observer

˙̂z =
(
E − u̇0

u0
F

)
ẑ + bu − GCCT ẑ, (13)

where CT = [1, 0, . . . , 0] and the gain matrix G =
(gi j )n×n , with gi j = g ji (i, j = 1, . . . , n) derived from
⎧
⎪⎨
⎪⎩
Ġ=G

(
E− u̇0

u0
F

)T +
(
E− u̇0

u0
F

)
G−GCCT G+In

G(0) = G0 > 0

(14)

The following Lemma guarantees that (13) and (14)
make sense.

Lemma 4 [39] There exist two strictly positive real
numbers, gmin and gmax , so that the solution G(t)
of the following equation satisfies gmin In ≤ G(t) ≤
gmax In, t ≥ 0, for any continuous function μ0(t):
⎧
⎨
⎩
Ġ = G(E − μ0F)T + (E − μ0F)G − GCCT G + In

G(0) = G0 > 0
(15)

Define the error ε = z − ẑ. From (12) and (13), it
follows that

ε̇ =
(
E − u̇0

u0
F

)
ε + φ̄d(u0, x0, x, η) + GCCT ẑ

= (E − u̇0
u0

F − GCCT )ε + z1GC

+φ̄d(u0, x0, x, η). (16)

Lemma 5 Select Vε(ε,G) = εT G−1(t)ε to respond to
the error system. Then the time derivative of Vε along
(14) is

V̇ε(ε,G) ≤ −1

2
εT G−2(t)ε + z21ϕz1(x0, x1)

+2Σn
i=1ψ

4
i (η), (17)

where ϕz1(x0, x1) is given in the following proof.

Proof Based on
˙︷ ︸︸ ︷

G−1(t) = −G−1(t)Ġ(t)G−1(t), the
time derivative of Vε(ε,G) satisfies

V̇ε = ε̇T G−1(t)ε + εT G−1(t)ε̇ + εT
˙︷ ︸︸ ︷

G−1(t)ε

=
[(

E − u̇0
u0

F − GCCT
)

ε + z1GC

+ φ̄d(u0, x0, x, η)
]T

G−1(t)ε + εT
˙︷ ︸︸ ︷

G−1(t)ε

+ εT G−1(t)

[(
E− u̇0

u0
F−GCCT

)
ε+z1GC

+ φ̄d (u0, x0, x, η)
]

= εT

[(
E − u̇0

u0
F

)T

G−1(t)

+G−1(t)

(
E − u̇0

u0
F

)
− 2CCT

]
ε

+ 2z1C
T ε + 2εT G−1(t)φ̄d(u0, x0, x, η)

+ εT
˙︷ ︸︸ ︷

G−1(t)ε

= εT G−1(t)[−G(t)CCTG(t)− In]G−1(t)ε+2z1ε1

+ 2εT G−1(t)φ̄d(u0, x0, x, η)

= − εTCCT ε − εT G−2(t)ε

+ 2z1ε1 + 2εT G−1(t)φ̄d(u0, x0, x, η)

= − εT G−2(t)ε + 2z1ε1

− ε21 + 2εT G−1(t)φ̄d(u0, x0, x, η). (18)

Applying Young’s inequality,

2z1ε1 ≤ ε21 + z21 (19)

2εT G−1(t)φ̄d(u0, x0, x, η)

≤ 2||φ̄d(u0, x0, x, η)||2 + 1

2
εT G−2(t)ε. (20)

From (11), it follows that

||φ̄d(·)||2 = φ̄d
1 (·)2 + φ̄d

2 (·)2 + · · · + φ̄d
n (·)2

≤ [z1(ϕ1(·) + ψ1(·))]2
+[u0z1(ϕ2(·) + ψ2(·))]2
+ · · · + [un−1

0 z1(ϕn(·) + ψn(·))]2
≤ 2Σn

i=1z
2
1u

2i−2
0 ϕ2

i (·)
+Σn

i=1z
4
1u

4i−4
0 + Σn

i=1ψ
4
i (·). (21)

After analysis, it holds that

V̇ε(ε,G) ≤ −1

2
εT G−2(t)ε + z21(1 + 4Σn

i=1u
2i−2
0 ϕ2

i (·)
+ 2Σn

i=1z
2
1u

4i−4
0 ) + 2Σn

i=1ψ
4
i (·)

≤ −1

2
εT G−2(t)ε+z21ϕz1(x0, x1)+2Σn

i=1ψ
4
i (η),

(22)
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where ϕz1(x0, x1) = 1+4Σn
i=1u

2i−2
0 ϕ2

i (·)+2Σn
i=1z

2
1

u4i−4
0 . The proof is completed. �	

3.3 Stability design of x0 subsystem

For the control design, we construct a tan-type BLF

V0(x0) = k2b0
π

tan

(
πx20
2k2b0

)
, (23)

where kb0 = k02 if x0 > 0, and otherwise kb0 = k01.

Remark 3 The analysis form of traditional BLFs [38]

has the shape V0(x0) = 1
2 log

k2b0
k2b0−x20

, which is not

suitable for integrating the constraint analysis into a
general approach. Compared with the traditional log-
type BLF, the tan-type BLF can make full use of the
structural characteristics of system (1) and has more
attractive characteristics.When there are no constraints
on x0 (i.e., constraint kb0 is infinite), we can obtain

limkb0→∞
k2b0
π

tan(
πx20
2k2b0

) = 1
2 x

2
0 . Therefore, the pro-

posed tan-type BLF can handle the stability problem
with or without constraints.

Taking the derivation of V0(x0) yields

V̇0(x0) = sec2
(

πx20
2k2b0

)
x0 ẋ0 + 2kb0

π
tan

(
πx20
2k2b0

)
k̇b0

− x20
kb0

sec2
(

πx20
2k2b0

)
k̇b0. (24)

For convenience of calculation, we define

φb0(x0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φk02(x0) = sec2
(

πx20
2k202

)
, x0 > 0

φk01(x0) = sec2
(

πx20
2k201

)
, x0 ≤ 0.

(25)

By the definition of φb0(x0) and (23),

V̇0(x0) ≤ φb0(x0)x0(u0 + x0ϕ0(x0))

− x20
kb0

φb0(x0)k̇b0 + x20
kb0

φb0(x0)|k̇b0|
≤ φb0(x0)x0(u0 + x0ϕ0(x0))

+ 2

kb0
φb0(x0)x

2
0 |k̇b0|. (26)

Substituting (7) into (26) yields

V̇0(x0) ≤ −φb0(x0)λ0x
2
0 + 2

kb0
φb0(x0)x

2
0 |k̇b0|

≤ −(λ0 − ν1)x
2
0φb0(x0)

≤ −(λ0 − ν1)x
2
0V0

≤ 0, (27)

where λ0 > ν1 ≥ 2k̄b0
kb0

, k̄b0 = max{k̄01, k̄02}, kb0 =
min{k01, k02}. Because V̇0(x0) ≤ −(λ0 − ν1)x20V0 ≤
0, x0(t) exponentially converges to zero.

Next, we prove that x0 satisfies time-varying con-
straints.

V0(x0) = k2b0
π

tan

(
πx20
2k2b0

)
≤ V0(x0(0)) (28)

πx20
2k2b0

≤ arctan

(
V0(x0(0))π

k2b0

)
<

π

2
, (29)

and correspondingly,

x20 < kb0,−k01(t) < x0(t) < k02(t). (30)

3.4 Backstepping design

The controller is devised by applying the backstepping
method. Consider the system

ż1 = ẑ2 + ε2 − (n − 1)
u̇0
u0

z1 + φ̄d
1 (u0, x0, x, η)

˙̂zi = ẑi+1 − (n − i)
u̇0
u0

ẑi−CT
i GCCT ẑ, 2≤i≤n−1

˙̂zn = u − CT
n GCCT ẑ, (31)

where C2 = [0, 1, . . . , 0]T , . . . ,Cn = [0, 0, . . . , 1]T .
Suppose z(0) ∈ {z(t) ∈ Rn| − b11(t) < z1(t) <

b12(t)} and define the Lyapunov function

Vkb1(z1) = k2b1
π

tan

(
π z21
2k2b1

)
, (32)

where kb1 = b12 if x0 > 0, and otherwise kb1 = b11.
Alternatively, as shown previously, we may calcu-

late the derivative of Vkb1 to obtain

V̇kb1(z1) = sec2
(

π z21
2k2b1

)
z1 ż1 + 2kb1

π
tan

(
π z21
2k2b1

)
k̇b1

− z21
kb1

sec2
(

π z21
2k2b1

)
k̇b1, (33)
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and

φb1(z1) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φb12(z1) = sec2
(

π z21
2b212

)
, z1 > 0

φb11(z1) = sec2
(

π z21
2b211

)
, z1 ≤ 0.

(34)

Applying the inequality of Lemma1, it follows that

V̇kb1(z1) ≤ φb1(z1)z1 ż1 + ν2z
2
1φb1(z1), (35)

where ν2 ≥ 2k̄b1
kb1

, k̄b1 = max{b̄11, b̄12}, and kb1 =
min{b11, b12}. We next explore the design of the back-
stepping method.

Step 1 Let ξ1 = z1 and ξ2 = ẑ2 − α1, where α1 is
the virtual control law, and ξ2 is the error variable. We
choose the candidate BLF as

V1 = Vε + Vkb1(ξ1). (36)

Then, from Lemma5 and (35),

V̇1 = V̇ε + V̇kb1(ξ)

≤ −1

2
εT G−2(t)ε + ξ21ϕz1(x0, x1)

+ 2Σn
i=1ψ

4
i (η) + φb1(ξ1)ξ1[ẑ2 + ε2

− (n − 1)
u̇0
u0

ξ1 + φ̄d
1 (u0, x0, x, η)]

+ ν2ξ
2
1φb1(ξ1), (37)

and from (11)

φb1(ξ1)ξ1ε2 ≤ δεT G−2ε + 1

4δ
g2maxξ

2
1φ2

b1(ξ1)

(38)

φb1(ξ1)ξ1φ̄
d
1 (u0, x0, x, η) ≤ φb1(ξ1)ξ

2
1ϕ1(u0, x0, x1)

+ 1

4
ξ41φ2

b1(ξ1) + ψ2
1 (η). (39)

Substituting (38) and (39) into (37), V̇1 satisfies

V̇1 ≤ −
(
1

2
− δ

)
εT G−2(t)ε + ξ21ϕz1(x0, x1)

+ 2Σn
i=1ψ

4
i (η) + ψ2

1 (η) + φb1(ξ1)ξ1ξ2

+φb1(ξ1)ξ1[α1 + 1

4δ
g2maxξ1φb1(ξ1)

+ ξ1ϕ1(u0, x0, x1)

− (n − 1)
u̇0
u0

ξ1 + 1

4
ξ31φb1(ξ1) + ν2ξ1]. (40)

Because ξ1 = z1, α1 is selected as

α1(x0, z1, kb1) = −ι1(x0, ξ1)ξ1 − 1

4δ
g2maxξ1φb1(ξ1)

− ξ1ϕ1(u0, x0, x1) + (n − 1)
u̇0
u0

ξ1

− 1

4
ξ31φb1(ξ1) − ν2ξ1, (41)

where ι1(x0, ξ1) is a smooth, positive function depen-
dent on (x0, ξ1), which we give below. Taking (41) into
(40), we get

V̇1 ≤ −
(
1

2
− δ

)
εT G−2(t)ε + ξ21ϕz1(x0, x1)

+ 2Σn
i=1ψ

4
i (η) + ψ2

1 (η) + φb1(ξ1)ξ1ξ2

− ι1(x0, ξ1)ξ
2
1φb1(ξ1). (42)

Step i (2 ≤ i ≤ n): Suppose a few virtual control
rates α j (x0, ξ1, ẑ[ j],G, kb1) with ξ j = ẑ j − α j−1(2 ≤
j ≤ i), and some Lyapunov functions Vi−1 have been
structured in step i − 1,

Vi−1 = Vε + Vkb1(ξ) + 1

2
�i−1

j=2ξ
2
j (43)

The derivative of Vi−1 satisfies

V̇i−1 ≤ −
(
1

2
− (i − 1)δ

)
εT G−2(t)ε + ξ21 ϕz1(x0, x1)

+ 2Σn
i=1ψ

4
i (η) + (i − 1)ψ2

1 (η) + (i − 2)ξ21

+ ξi−1ξi−ι1(x0, ξ1)ξ
2
1φb1(ξ1)−�i−1

j=2ι j ξ
2
j ,

(44)

where the design parameter satisfy ι j > 0.
We plan to establish a similar property at step i .

Suppose ξi+1 = ẑi+1 − αi , and we select Vi as

Vi = Vi−1 + 1

2
ξ2i . (45)

We first take the derivative of ξi to facilitate the calcu-
lation and obtain that

ξ̇i = ˙̂zi − α̇i−1

= ξi+1 + αi − (n − i)
u̇0
u0

ẑi − CT
i GCẑ1 − ∂αi−1

∂x0
ẋ0

− ∂αi−1

∂kb1
k̇b1 − ∂αi−1

∂z1
ẑ2 + (n − 1)

∂αi−1

∂z1

u̇0
u0

z1

− ∂αi−1

∂z1
φ̄d
1 (u0, x0, x, η) − ∂αi−1

∂z1
ε2

−Σn
k,l=1

∂αi−1

∂gkl
ġkl − Σ i−1

j=2
∂αi−1

∂ ẑ j
˙̂z j . (46)

From (11), one obtains

−ξi
∂αi−1

∂z1
ε2≤δεT G−2ε+ 1

4δ
g2maxξ

2
i

(
∂αi−1

∂z1

)2

(47)
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−ξi
∂αi−1

∂z1
φ̄d
1 (u0, x0, x, η) ≤ 1

4
ξ2i

(
∂αi−1

∂z1

)2

ϕ2
1(u0, x0, x1)

+ ξ21 + 1

4
ξ2i

(
∂αi−1

∂z1

)2

ξ21 + ψ2
1 (η). (48)

Relations (46)–(48) yield

V̇i = V̇i−1 + ξi ξ̇i

≤ −
(
1

2
− iδ

)
εT G−2(t)ε + ξ21ϕz1(x0, x1)

+ 2Σn
i=1ψ

4
i (η) + iψ2

1 (η) − ι1(x0, ξ1)ξ
2
1φb1(ξ1)

+ (i − 1)ξ21 + ξiξi+1 − Σ i−1
j=2ι jξ

2
j + ξi [αi

+ ξi−1 − (n − i)
u̇0
u0

ẑi − ∂αi−1

∂z1
ẑ2 − CT

i GCẑ1

−Σn
k,l=1

∂αi−1

∂gkl
ġkl − Σ i−1

j=2
∂αi−1

∂ ẑ j
˙̂z j − ∂αi−1

∂x0
ẋ0

− ∂αi−1

∂kb1
k̇b1 + (n − 1)

∂αi−1

∂z1

u̇0
u0

z1

+ 1

4
ξi

(
∂αi−1

∂z1

)2

ξ21 + 1

4δ
g2maxξi

(
∂αi−1

∂z1

)2

+ 1

4
ξi

(
∂αi−1

∂z1

)2

ϕ2
1(u0, x0, x1)], (49)

form which a virtual control rate is designed as

αi (x0, ξ1, ẑ[i],G, kb1) = −ιi ξi − ξi−1

+ (n − i)
u̇0
u0

ẑi + CT
i GCẑ1 + ∂αi−1

∂x0
ẋ0 + ∂αi−1

∂kb1
k̇b1

+ Σn
k,l=1

∂αi−1

∂gkl
ġkl + Σ i−1

j=2
∂αi−1

∂ ẑ j
˙̂z j + ∂αi−1

∂z1
ẑ2

− (n − 1)
∂αi−1

∂z1

u̇0
u0

z1 − 1

4δ
g2max ξi

(
∂αi−1

∂z1

)2

− 1

4
ξi

(
∂αi−1

∂z1

)2
ϕ2
1(u0, x0, x1) − 1

4
ξi

(
∂αi−1

∂z1

)2
ξ21 .

(50)

Then (49) can be rewritten as

V̇i ≤ −
(
1

2
− iδ

)
εT G−2(t)ε + ξ21ϕz1(x0, x1)

+ 2Σn
i=1ψ

4
i (η) + iψ2

1 (η) + (i − 1)ξ21
+ ξiξi+1 − ι1(x0, ξ1)ξ

2
1φb1(ξ1)

−Σ i
j=2ι jξ

2
j . (51)

In particular, when i = n, the control law u(t) is chosen
as

u = αn(x0, ξ1, ẑ[i],G) = −ιnξn − ξn−1

+CT
n GCẑ1 + ∂αn−1

∂x0
ẋ0 + ∂αn−1

∂kb1
k̇b1

+Σn
k,l=1

∂αn−1

∂gkl
ġkl + Σn−1

j=2
∂αn−1

∂ ẑ j
ż j + ∂αn−1

∂z1
ẑ2

− (n − 1)
∂αn−1

∂z1

u̇0
u0

z1 − 1

4δ
g2maxξn

(
∂αn−1

∂z1

)2

− 1

4
ξn

(
∂αn−1

∂z1

)2

ϕ2
1(u0, x0, x1)

− 1

4
ξn

(
∂αn−1

∂z1

)2

ξ21 , (52)

which guarantees the Lyapunov function

Vn = Vε + Vkb1 + 1

2
Σn

i=2ξ
2
i , (53)

satisfying

V̇n ≤ −
(
1

2
− nδ

)
εT G−2(t)ε + ξ21 ϕz1(x0, x1) + nψ2

1 (η)

+ 2Σn
i=1ψ

4
i (η) − ι1(x0, ξ1)ξ

2
1φb1(ξ1)

+ (n − 1)ξ21 − Σn
j=2ι j ξ

2
j . (54)

Next, we will use the technology of changing
the supply rate to eliminate the dynamic uncertainty.
Therefore, we construct another form iISS-Lyapunov
function,

U 0 =
∫ U0(η)

0
ρ(s)ds, (55)

where ρ(s) is a continuously nondecreasing positive
function to be selected.

Since η satisfies the iISS condition in Assumption1,
it holds that

U̇ 0(η) ≤ −1

2
α0(||η||)ρ ◦ αη(||η||)

+ ρ ◦ αη ◦ α−1
0 ◦ 2γ0(|x1|)γ0(|x1|). (56)

(i) In the case that lim infs→∞ α0(s) = ∞, it can
be known that there exists a K∞ function α̂ satisfying
α̂(s) ≤ α0(s) for any s ≥ 0. Because α̂(s) ≤ α0(s) and
ψ2
i (s) = O(α0(s)), s → 0+, i = 1, . . . , n, it can be

obtained that there exists a continuous nondecreasing
positive function q(s) satisfying ψ2

i (s) ≤ q(s)α0(s),
s ≥ 0. Considering the condition of Assumption2
and continuity, α0 has a maximum at [0, s1], which
is α̃(s̃)(0 ≤ s̃ ≤ s1). Consequently, the following
inequality holds:

ψ4
i (s) = ψ2

i (s) · ψ2
i (s) ≤ q(s)2α̃(s̃)α0(s) = q1(s)α0(s).

(57)
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We can similarly obtain that ψ4
i (s) = O(α0(s)), s →

0+, and ψ4
i (s) ≤ q1(s)α0(s), s ≥ 0, i = 1, . . . , n.

Therefore, there exists an appropriate function ρ(·) that
satisfies
1

8
α0(||η||)ρ ◦ αη(||η||) ≥ max{2Σn

i=1ψ
4
i (η), nψ2

1 (η)};
(58)

(ii) If lim infs→∞ α0(s) < ∞, given that ψ2
i (s) =

O(α0(s)), s → 0+, s → ∞, i = 1, . . . , n, there exists
a constant c1 such that, for any s > 0,ψ2

i (s) < c1α0(s).
Since α0 ∈ P and lim infs→∞ α0(s) < ∞, α0 has a
maximumvalue of α̃(s̃) on [0,∞). Thus, we can obtain
that

ψ4
i (s) = ψ2

i (s) · ψ2
i (s) ≤ c21α̃(s̃)α0(s) = cα0. (59)

Accordingly, (58) still holds.

Remark 4 In previous studies of nonlinear control sys-
tems with iISS inverse dynamics, the decay rate α0(s)
is a K function or a non-oscillatory function [32].
We consider the case of a general oscillation func-
tion and deal with unpredictable dynamic uncertainty
in two cases. From the above analysis, we can see
that, for a general oscillation function, the condition
ψ2
i (s) = O(α0(s)), s → ∞, i = 1, . . . , n is neces-

sary, i.e., if lim infs→∞ α0(s) < ∞, then (i) is not
valid for some iISS systems.

We take into account candidate V for the total Lya-
punov function in the stability study,

V = Vε + Vkb1 + 1

2
Σn

i=2ξ
2
i +U 0(η). (60)

Then

V̇ ≤ −
(
1

2
− nδ

)
εT G−2(t)ε + ξ21ϕz1(x0, x1)

− 1

4
α0(||η||)ρ ◦ αη(||η||) − ι1(x0, ξ1)ξ

2
1φb1(ξ1)

+ (n − 1)ξ21 − Σn
j=2ι jξ

2
j

+ ρ ◦ αη ◦ α−1
0 ◦ 2γ0(|x1|)γ0(|x1|). (61)

For the small gain condition γ0(s) = O(s2), s → 0+
and state scaling (8), there exists a smooth positive and
nondecreasing function γ̂0(s) satisfying

γ0(|x1|) = γ0(|un−1
0 ξ1|) ≤ ξ21 γ̂0(x0, ξ1). (62)

Therefore,

ρ ◦ αη ◦ α−1
0 ◦ 2γ0(|x1|)γ0(|x1|)

≤ ρ ◦ αη ◦ α−1
0 ◦ 2γ0(|x1|)γ̂0(x0, ξ1)ξ21 . (63)

Furthermore, it holds that

V̇ ≤ −
(
1

2
− nδ

)
εT G−2(t)ε

−1

4
α0(||η||)ρ ◦ αη(||η||)

−Σn
j=2ι jξ

2
j − [ι1(x0, ξ1)φb1(ξ1) − (n − 1)

− ρ ◦ αη ◦ α−1
0 ◦ 2γ0(|x1|)γ̂0(x0, ξ1)

−ϕz1(x0, x1)]ξ21 . (64)

Taking the constants 0 < δ ≤ 1
4n , ι j ≥ 1( j =

2, . . . , n), and the smooth function

ι1(x0, ξ1)φb1(ξ1) ≥ ρ ◦ αη ◦ α−1
0 ◦ 2γ0(|x1|)γ̂0(x0, ξ1)

+ n + ϕz1(x0, x1), (65)

we examine the term

V̇ ≤ −1

4
εT G−2(t)ε − Σn

i=1ξ
2
i

− 1

4
α0(||η||)ρ ◦ αη(||η||). (66)

The above results can be summarized as the follow-
ing theorem.

Theorem 1 Assume that the nonlinear cascaded sys-
tem meets Assumptions1–4, and the control rates are
given by (7) and (52). If the output meets constraints
(2), then the subsequent properties are established:

(i) The signals (x(t), ε(t), η(t), ξ(t)) of the nonlinear
cascaded system are bounded;

(ii) The system states and control inputs asymptotically
converge to 0, i.e.,

lim
t→∞(||η(t)|| + ||x(t)|| + ||x0(t)||) = 0; (67)

(iii) The symmetric time-varying output constraints are
not violated, i.e.,

− ki1(t) < xi (t) < ki2(t), i = 0, 1. (68)

Proof (i) According to the definition of V , and
because V̇ ≤ 0, the signals (x0(t), ε(t), η(t), ξ(t))
in nonlinear cascaded systems are bounded in the
whole control process. Then, because ε1 ∈ L∞,
z1 = ξ1 ∈ L∞, and ε1 = z1 − ẑ1, we can obtain
that ẑ1 ∈ L∞. Furthermore, we conclude that α1

is limited due to (41). Because ξ2 = ẑ2 − α1 and
ξ2 ∈ L∞, we can say that ẑ2 ∈ L∞. Hence, it
is concluded that ẑi (i = 1, . . . , n) are bounded.
Because ε = z − ẑ and ẑ ∈ L∞, we can obtain
that z ∈ L∞. Furthermore, xi are bounded by
xi = zi u

n−i
0 . Therefore, the solution exists and

is unique on [0,∞).
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(ii) LaSalle’s Invariant Theorem states that when t
approaches infinity, (ε(t), η(t), ξ(t)) converge to
0. Therefore, because ξ1 = z1, limt→∞ ξ1(t) = 0
then limt→∞ z1(t) = 0, and limt→∞ ẑ1(t) = 0.
When t goes to infinity, α1 = 0 according to its
definition, meaning limt→∞ ẑ2(t) = 0, and we
obtain similar results for limt→∞ ẑi (t) = 0 (i =
3, . . . , n). We can determine limt→∞ zi (t) =
0 (i = 1, . . . , n) from the definition of ε = z − ẑ.
We can use the definition of xi to obtain that

lim
t→∞ xi (t) = 0, i = 1, . . . , n; (69)

(iii) Similar to x0, we can proved that z1 also sat-
isfies time-varying constraints

Vkb1(z1) = k2b1
π

tan

(
π z21
2k2b1

)
≤ V (t) ≤ V (0) (70)

π z21
2k2b1

≤ arctan

(
πV (0)

k2b1

)
<

π

2
, (71)

and

z21 < kb1,−b11(t) < z1(t) < b12(t). (72)

Neither x0 nor z1 violates the time-varying require-
ments. From (7), we know that u0 is a function
related to x0. Therefore, we can obtain from (30) that
−k01(t)ϕ0(x0) < ϕ0(x0)x0(t) < k02(t)ϕ0(x0) and
−λ0k02(t) < −λ0x0(t) < λ0k01(t) can be obtained.
Thus, the following inequality holds:

−(k01(t)ϕ0(x0) + λ0k02(t)) < u0(t) < k02(t)ϕ0(x0)
+λ0k01(t).

(73)

Let u0 = k02(t)ϕ0(x0) + λ0k01(t) and u0 = k01(t)
ϕ0(x0) + λ0k02(t). Then −u0 < u0(t) < u0, and we
can obtain that−un−1

0 < un−1
0 (t) < max{un−1

0 , un−1
0 }.

Let ũ0 = max{un−1
0 , un−1

0 }. Then
−max{b11(t)ũ0, b12(t)un−1

0 } < z1u
n−1
0

< max{b12(t)ũ0, b11(t)un−1
0 }.

(74)

After the above calculation, we choose k11(t) =
max{b11(t)ũ0, b12(t)un−1

0 } and k12(t) = max{b12(t)ũ0,
b11(t)u

n−1
0 }. By nonlinear scaling, the constraint range

of x1 is −k11(t) < x1(t) < k12(t). According to (30),
the output y satisfies the asymmetric time-varying con-
straints. This completes the proof. �	

3.5 Stabilization of x-subsystem for x0(t0) = 0

If x0(t0) = 0, u0 is designed as

u0 = c, c > 0. (75)

This controlled rate keeps x0 away from 0. Then

ẋ0(t0) = c + x0ϕ0(x0(t0)) = c. (76)

The initial time t0 satisfies x0ϕ0(x0(t0)) = 0 < c.
Due to the nonnegativity and smoothness of ϕ0(x0),
there is a small neighborhood of x0(t0) = 0, so that

x0ϕ0(x0) < c. (77)

In the period satisfying x0ϕ0(x0) < c, we designed an
output feedback control u0 form (75) and u form (52).
Since u0 = c > 0 and ϕ0(x0) is a smooth nonnegative
function, x0 starts at 0 and grows until x0ϕ0(x0) = c.
At this time, we let x0 = x∗

0 , and when x0ϕ0(x0) = c,
the control input u0 is switched to (7).

The following theorem discusses the case where the
initial state is zero.

Theorem 2 According to Assumptions1–4, the system
will reach a steady state and satisfy the constraint crite-
ria in a finite time if the following switch-based output
feedback control schemeapplies the appropriate design
parameters to system (1) with time-varying constraints
(2):

u0 =
{
c, x0(t) < x∗

0−λ0x0 − x0ϕ0(x0), x0(t) ≥ x∗
0

(78)

u = − ιnξn − ξn−1 + CT
n GCẑ1 + ∂αn−1

∂x0
ẋ0 + ∂αn−1

∂kb1
k̇b1

+ Σn
k,l=1

∂αn−1

∂gkl
ġkl + Σn−1

j=2
∂αn−1

∂ ẑ j
ż j + ∂αn−1

∂z1
ẑ2

− 1

4
ξn

(
∂αn−1

∂z1

)2

ϕ2
1(u0, x0, x1) − 1

4
ξn

(
∂αn−1

∂z1

)2

ξ21

−(n − 1)
∂αn−1

∂z1

u̇0
u0

z1 − 1

4δ
g2maxξn

(
∂αn−1

∂z1

)2

.

(79)

Proof The proof process is given in the above
analysis. �	
Remark 5 Themainwork of this article is to add asym-
metric time-varying output constraints based on [34]
and relax ISS dynamic uncertainty to iISS dynamic
uncertainty. The proposed control scheme ensures that
the cascaded system is stable and that the asymmetric
time-varying output constraints are always satisfied.
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Fig. 1 Value of parameter
estimation, error and gain
matrix

We expand the scope of the constraints from previ-
ous work [37]. Since many practical systems are not
always ISS, the cascaded systems studied in this paper
with iISS dynamic uncertainty can include more gen-
eral systems.

4 Simulation examples

Consider an uncertain nonlinear cascaded system,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η̇ = − η

1+η2
+ ηx21

ẋ0 = u0 + x0
ẋ1 = u0x2 − x1 + ηx1

1+η2

ẋ2 = u
y = (x0, x1)T ,

(80)

where the η-subsystem η̇ = − η

1+η2
+ηx21 is iISS, with

an iISS-Lyapunov function V (η) = ln(1 + η2) and

α0(|η|) = 2η2

(1+η2)2
, γ0(|x1|) = 2x21 . From (80), we can

obtain that ϕ0(x0) = 1, φd
1 (u0, x0, x, η) = −x1 +

ηx1
1+η2

and φd
2 (u0, x0, x, η) = 0. Under the condition

of Assumption2, ϕ1(u0, x0, x1) = 1, ψ1(η) = η

1+η2
,

ϕ2(u0, x0, x1) = 0, and ψ2(η) = 0. Therefore, we

can concluded that
ψ2
1 (s)

α0(s)
= 1

2 and
ψ2
2 (s)

α0(s)
= 0. Since

lim infs→∞ α0(s) < ∞, the condition inAssumption2
is satisfied.

Assuming that z1 = x1
u0
, z2 = x2, then (80) takes the

form{
ż1 = z2 − u̇0

u0
z1 − z1 + ηz1

1+η2

ż2 = u.
(81)

According to the above research, the state estimation
and full-order observer are written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 − u̇0
u0
ẑ1 − g11 ẑ1

˙̂z2 = u − g12 ẑ1
ġ11 = −2 u̇0

u0
g11 + 2g12 − g211 + 1

ġ12 = − u̇0
u0
g12 + g22 − g11g12

ġ22 = 1 − g222.

(82)

From the definition of ε, we can obtain that
{

ε̇1 = −
(
u̇0
u0

+ g11
)

ε1 + ε2 + g11z1 − z1 + ηz1
1+η2

ε̇2 = −g12ε1 + g12z1.

(83)

The control law is based on the backstepping technique.
The controlled system can be rewritten as
{
ż1 = ẑ2 + ε2 − u̇0

u0
z1 − z1 + ηz1

1+η2˙̂z2 = u − g12 ẑ1.
(84)

The subsequent dynamic output feedback control
tactics come from the proposed design scheme:
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Fig. 2 a Value track of x0
with time-varying
constraints; b value track of
x1 awith time-varying
constraints; c value track of
x2; d value track of η

Fig. 3 a Value track of
input u0; b value track of
input u
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u = −ι2ξ2 − φb1(ξ1)ξ1 + CT
2 GCCT ẑ + ∂α1

∂u0
u̇0

+ ∂α1

∂kb1
k̇b1 + ∂α1

∂ξ1
ẑ2 − ∂α1

∂ξ1

u̇0
u0

ξ1 − 1

4
ξ2

(
∂α1

∂ξ1

)2

− 1

4δ
g2maxξ2

(
∂α1

∂ξ1

)2

− 1

4
ξ21 ξ2

(
∂α1

∂ξ1

)2

, (85)

where α1 = −ι1(x0, ξ1)ξ1 − 1
4δ g

2
maxξ1φb1(ξ1) − ξ1 −

1
4ξ

3φb1(ξ1) + u̇0
u0

ξ1 − ν2ξ1, CT = [1 0], and CT
2 =

[0 1].
Then the simulation consequences are used to prove

the availability of the projected controller design. We
consider the case that x0(t0) �= 0, and choose u0 =

−λ0x0−x0. The systemparameters are selected as ι1 =
ι2 = 1, δ = 1

6 , λ0 = 1, and ν2 = 30. We take k01 =
b11 = 0.7+0.3 cos(3t), k02 = b12 = 0.7+0.3 cos(3t),
and k11 = 0.98 + 0.84 cos(3t) + 0.18 cos2(3t), k12 =
0.98+ 0.84 cos(3t) + 0.18 cos2(3t). The initial values
are selected as η(0) = 1, x0(0) = 1, x1(0) = −0.55,
g11(0) = 1, g12(0) = 0, g22(0) = 1, ξ1(0) = −0.5,
ξ2(0) = 0, ẑ1(0) = 1, ẑ2(0) = 1, ε1(0) = 3, ε2(0) =
0.

Figures1, 2 and 3 display the simulation effects, in
which the system state and control law reach zero in
a limited time. As shown in Fig. 2, the system state
and unmeasurable dynamics achieve a steady state in a
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Fig. 4 Trajectories of
system output: a trail of x0;
b trail of x1; c trail of x2; d
trail of η
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limited time. The trajectories of x0 and x1 are always
within the specified range without violating the output
constraints. Figure1 shows that the system’s parameter
estimation and error quickly converge to 0. z1 is always
within the specified range. The asymmetric output is
not violated. The parameter estimation, error, and gain

are limited in the control process and become stable in
approximately 8 s. Furthermore, it can be seen that the
proposed robust control scheme can effectively handle
the output feedback control of non-holonomic systems
with output constraints and iISS dynamic uncertainties.

Fig. 5 Parameter
estimation, error and gain
matrix without constraints
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Fig. 6 Control input of the
closed loop system: a value
track of input u0; b value
track of input u
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We select system (80) for comparison. Choosing
identical parameters and initial values can reflect the
advantages of the controller. Unlike before, asymmet-
ric output constraints are not considered. Therefore, the
control law design [34] is

u = −ι2ξ2 − ξ1 + g12 ẑ1 + ∂α1

∂ξ1
ẑ2 − ∂α1

∂ξ1

u̇0
u0

z1 + ∂α1

∂u0
u̇0

− 1

4u
g2maxξ2

(
∂α1

∂ξ1

)2

− 1

4
ξ2

(
∂α1

∂ξ1

)2

−1

4
ξ2

(
∂α1

∂ξ1

)2

z21

α1 = − 1

4u
g2maxξ1 + u̇0

u0
z1 − 1

4
ξ31 − 6ξ1

−2ξ31 − 2ξ31 u
4
0 − ι1ξ1

ξ̇1 = ξ2 + α1 + ε2 − u̇0
u0

z1 − z1 + z1
η

1 + η2

ξ̇2 = −ι2ξ2 − ξ1 − ∂α1

∂ξ1
ε2 + ∂α1

∂ξ1
z1 − ∂α1

∂ξ1
z1

η

1 + η2

− 1

4u
g2maxξ2

(
∂α1

∂ξ1

)2

− 1

4
ξ2

(
∂α1

∂ξ1

)2

−1

4
ξ2

(
∂α1

∂ξ1

)2

z21. (86)

The outcomes are shown in Figs. 4, 5 and 6. The sys-
tem responses to the trajectory in Fig. 4 do not consider
asymmetric time-varying output limitations; it is evi-
dent that x1 exceeds the constraint range by about 1 s,
reflecting the control rate in this paper. Although Figs. 4
and 5 ensure the stability of the nonlinear cascaded sys-
tem, it breaks the time-varying output restrictions and
exhibits wider response fluctuations. It is clear from

comparing the figures mentioned above that the over-
all control method operates effectively.

5 Conclusion

We explored a group of nonlinear cascaded systems
with output constraints and iISS inverse dynamics. To
overcome the difficulty that non-holonomic systems
are not stabilized by continuous feedback control, we
designed a discontinuous time-invariant control law
using input-state scaling transformation technology.
The unmeasurable state was estimated by construct-
ing a full-order observer with a gain derived from the
Riccati matrix differential equation. A tan-type barrier
Lyapunov function was introduced to handle asym-
metric time-varying output constraints. Future work
includes extending our results to cascaded systemswith
non-vanishing disturbances and output constraints, as
well as achieving the stability of the cascaded system
within the specified time.
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