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Abstract While the Internet has made great progress
in facilitating modern life, the importance of protect-
ing information security becomes increasingly promi-
nent. In this research, a novel image encryption method
depending on the five-dimensional (5D) Hamiltonian
conservative hyperchaotic system has been put for-
ward. And the hyperchaotic system is constructed
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based on the theoretical foundation of Euler equation
and energy analysis. Unlike dissipative chaotic sys-
tems, conservative chaotic systems have better ergod-
icity because there is no attractor. Moreover, there
are two or greater Lyapunov exponents above zero in
hyperchaotic systems, which leads to higher complex-
ity. Therefore, the new 5D Hamiltonian conservative
hyperchaotic system has stronger randomness, and it
has more advantages in image encryption. In addition,
we designed a new bit-plane segmentation method that
combines bit diffusion to strengthen the diffusion effect
and encryption reliability. Encryption experiments and
the performance analyses illustrate that this proposed
encryption method is provided with strong security and
practicability.

Keywords Information security - Image encryption -
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1 Introduction

Along with the rapid development of 5G network trans-
mission technology, digital images have become the
major carrier of information in the network. However,
while Internet technology has facilitated communica-
tion, it has also brought security risks that cannot be
ignored. Therefore, how to ensure the secure transmis-
sion of image information in the network has become
a hot research direction of scholars.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08866-0&domain=pdf
http://orcid.org/0000-0002-6246-5116

20426

X. Ning et al.

Encrypting images through encryption algorithms
is one of the effective methods to safeguard the image
security. However, because of the features of digital
images, for instance, large amount of information, high
correlation and data redundancy, classical encryption
algorithms DES, AES, IDEA, etc., fail to satisfy the
requirements of digital image encryption commend-
ably [1]. For this reason, the exploration of new encryp-
tion methods to encrypt image data is absolutely nec-
essary. So far, scholars have designed many different
types of image encryption methods, which are mostly
on the basis of chaos [2,3], DNA encoding [4,5], com-
pressed sensing [6—8] and other theories [9—12]. In
the above schemes, chaotic systems have strong initial
value sensitivity, ergodicity and unpredictability, which
make chaotic systems naturally related to encryption
in cryptography [13]. Therefore, encryption algorithms
combined with chaotic systems have become an impor-
tant research topic.

Friedrich [14] utilized the chaotic system to image
encryption firstly and proposed the general structure of
image encryption, “permutation and diffusion.” With
the deepening of research, a variety of image encryption
methods based on chaos have been proposed. To reduce
the computational complexity of the algorithm calcu-
lations and elevate the effectiveness of the permutation
process, Wang et al. [15] constructed an encryption
method for colorful images through applying piece-
wise linear chaotic map to perform random permutation
on heterogeneous planes. Li et al. [16] improved the
tent map to make its initial conditions and parameters
very sensitive to subtle changes, enhancing the encryp-
tion safety. Wang et al. [17] devised a novel encryp-
tion scheme by combining DNA coding rules and the
improved logistic map, while the fact that this scheme
increases the key space, its efficiency of encryption
is reduced. Zheng et al. [18] invented a modified 2D
logistic sine map and proposed a unique encryption
algorithm that combined with dynamic DNA sequence,
which increases the complexity and security of this
encryption scheme. Based on 3D chaotic maps, Qian
et al. [19] designed an efficient color image encryption
scheme, but this encryption scheme has certain require-
ments on the magnitude of original images.

The encryption schemes mentioned above are all
proposed based on low-dimensional chaotic systems.
Although they can achieve the purpose of image
encryption, with the advancement of chaos research,
disadvantages of low-dimensional chaotic systems
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have been gradually exposed [20]. Because the state
space of the low-dimensional chaotic system is small,
its system behavior is simpler and easier to analyze than
the high-dimensional chaotic system, which leads to
the poor security of image encryption algorithm based
on low-dimensional chaos. Therefore, the research
hotspot now gradually shifts to the study of new image
encryption methods based on high-dimensional chaotic
systems. Currently, there have been some encryption
algorithms proposed based on high-dimensional dissi-
pative chaotic systems [21-23]. However, dissipative
chaotic systems are also not very secure when applied
to encryption. Since dissipative systems have attrac-
tors, its trajectory cannot reach most of the space near
the attractors; the ergodicity is poor. And the risk of
the attacker cracking the encryption scheme by recon-
structing the attractors is greatly increased.

In contrast to dissipative chaotic systems, for con-
servative chaotic systems, there are no attractors and
no risk of being attacked by reconstructed attractors,
and its trajectory can almost traverse the entire phase
space. Especially for the Hamiltonian conservative
chaotic system, in addition to phase space conserva-
tion, its Hamiltonian energy is always conserved, so
that Hamiltonian conservative chaotic systems have
stronger ergodicity than dissipative systems. In addi-
tion, hyperchaotic systems have at least two LEs greater
than 0, which exhibit higher randomness compared to
other systems. Therefore, we design a novel 5D Hamil-
tonian conservative hyperchaotic system by construct-
ing the Euler rotation equation, and the energy analysis
of the system proves that chaos can be generated. With
this as a framework, we construct a novel image encryp-
tion scheme, which can realize the secure encryption of
any gray and color images. Moreover, we also propose
a new bit-plane segmentation method and a bit-plane
diffusion operation to enhance the effect of image dif-
fusion. Simulation results and security analysis show
that our algorithm is more secure than other algorithms.

The subsequent parts of this paper are constituted as
described in the following. In Sect. 2, the design and
construction of a novel 5D Hamiltonian conservative
hyperchaotic system is recommended, and its Hamil-
tonian energy and Casimir energy are analyzed. Sec-
tion 3 explores the fundamental features of this new sys-
tem. Section 4 designs a new image encryption method
using this novel chaotic system. Section 5 simulates the
devised encryption method and compares the safety and
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reliability analysis results with other encryption meth-
ods. Finally, Sect. 6 summarizes this paper.

2 System design and model construction
2.1 Prerequisites

Maschke et al. [24] constructed a generalized Hamilto-

nian system to study the stability of forced Hamiltonian

system with dissipation. It can be described as

{XZ [J(x) = RX)]VH(X) + g(X)u )
y =g ®MVHX)

where x is the state variable vector, and x = [xq,
o xn)l J(x) is a symplectic matrix and satisfies
J(x) = —JT(x), which represents the conservative
part of the system; R(x) is a positive semi-definite
matrix, which satisfies R(x) = R (x), represents the
energy dissipation part of the system. H (X) represents
the Hamiltonian energy function of the system; g(x)
and u represent the input gain vector and the input of
the generalized force received by the system, respec-
tively; and y is the output of the system.

The variation of the Hamiltonian energy H (x) is
related to the internal dissipation and the external
energy exchange of the system, which can be expressed
as

dH T T

e —VH (X)) RX)VH(X) +u"y 2
When the external input and the energy dissipation

term in Eq. (2) are 0, the Hamiltonian energy of the

system is conserved. In this case, the system is called

the generalized Hamiltonian conservative system, and

its differential equation can be described as:

x = J(X)VH(X) 3)

2.2 Construct the 5D Euler equation

The Euler rotation equation is often used to describe
the motion of rotating rigid bodies and incompressible
fluids [25], which has great value in the field of clas-
sical mechanics. According on the theory of [26-28],
Euler rotation equation can be used to describe dissi-
pative chaotic systems, its corresponding Hamiltonian

vector field conforms to the generalized Hamiltonian
system shown in Eq. (1). And the generalized Hamilto-
nian conservative system can be derived by construct-
ing the Euler equation of rigid body without external
force. Then, by adding external constants to break the
Casimir energy conservation, it is possible to create a
Hamiltonian conservative chaotic system [27-30]. Fur-
thermore, the dynamic specifics of this chaotic system
can be validated through analyzing the Casimir energy
and Hamiltonian energy.

According to the above theory, a 5D Euler rotation
equation describing the motion of a rigid body without
external force is designed, which is denoted as sys-
tem X5, and its Hamiltonian vector field satisfies the
generalized Hamiltonian conservative system shown in
Eq. (3).

And the Hamiltonian energy function H (x) of sys-
tem X5 can be obtained as

5
H(x) = %anz 4)
i=1

where x; expresses the rotational angular momentum,
i = 1,2,3,4,5. T; = I;', and I; is the principal
moment of inertia. In addition, the gradient function of
H(x)is VH(x) = [I1x1, [Toxy, [T3x3, [Taxg, Msxs]7.

Moreover, J(x) is a symplectic matrix, which is
defined as

0 x4 0 —x» O
—x4 0 —x5 x1 X3
J(x) = 0 x5 0 0 —x 5
X2 —X1 0 0 0
0 —x3 x» 0 O

The variation of Hamiltonian energy for system X5
can be denoted as the differential of the Hamiltonian
energy with time. Since J(x) of system X5 is a sym-
plectic matrix, J(x) = —J (x), and H (x) can be cal-
culated from Eq. (6).

H(x)=VHX)!JX)VHX) =0 (6)

Within the rigid body dynamic realm, Casimir
energy function C plays a significant role, and is a
powerful means of describing dynamic systems and
analyzing their stability conditions. According to ref-
erence [27-30], it is found that Casimir energy has
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an important relationship with whether the system can
produce chaos. Chaos cannot occur in a system when
both its Hamiltonian energy and Casimir energy are
conservative. Analyzing the Casimir energy of system
35, the function of Casimir energy changing with time
is known as the Casimir power C , which is defined as

C={(C,H =vCcxT % (7

And the Casimir energy gradient function is VC (x)
= [x1, x2, X3, X4, x5]7 ; thus, the Casimir power can be
obtained as

C=vcxTJIX)VH() =0 (8)

According to Egs. (6) and (8), both the Hamiltonian
energy and Casimir energy remain conservative for
system X5, so the system X5 cannot generate chaotic
behavior. However, it can be regarded as the basic
framework for constructing Hamiltonian conservative
chaotic system.

2.3 Modeling the SD Hamiltonian conservative
hyperchaotic system

From reference [30], it can be concluded that breaking
the conservation of Casimir energy is a crucial element
in the formation of chaotic behavior within the system.
In order to construct a 5D Hamiltonian conservative
chaotic system, we need to break the Casimir energy
conservation within system Xs5. By adding an external
nonzero parameter ¢ to J(X) can obtain System 2? .
And J¢(x) can be obtained as

0 x4 0 —x O
—x4 0 —x5 x1 X3
Jo(x) = 0 x5 0 0 —xp ©)]
x —x3 0 0 —c
0 —x3 x ¢ O

System ESH is denoted as

X = Je(X)VH(X) (10)
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For system X2, its mathematical model is expressed
by

X1 = (I — Ig)x2x4

X2 = (TTg — Mx1xg4 + (TTs — TI3)x3x5

x3 = (I — I5)x2x5 (11)
X4 = (ITy — M2)x1x2 — cIlsxs

X5 = (I3 — I2)x2x3 + cTlgxq

By analyzing the Hamiltonian energy of new sys-
tem Ef , the result can be obtained that H x) =
VH(x)'Jc(x)VH(x) = 0; hence, its Hamiltonian
energy is conservative. However, for system £ its
Casmir power can be calculated as

C =vCTx)Jc(x)VH(X)

(12)
= c(ITy — I5)x4x5

As can be seen from Eq. (12), when c(Ily —
[15)x4x5 # 0, thatis, ¢ # 0 and 14 # I1s, the Casimir
energy is not conservative, and system X ;’ can produce
chaotic behavior.

Furthermore, the above results can also be confirmed
through simulation experiments. Set the system control
parameters as (I1y, [1», I3, [14, I15) = (9,7, 5, 4, 8),
the initial values (xi9, x20, X30, X40, Xx50) = (1,1, 1,
1, 1.5). And choose MATLAB ode45 as the solver, the
time step is 7 = 0.01. When the parameter c is set to
0, it is equivalent to system X5, and when ¢ = 1, it
represents to system ESH . The energy analysis results
of system X5 and system E;’ are shown in Fig. la.
And the black line indicates the Hamiltonian energy of
the two systems, indicating that under this parameter,
the Hamiltonian energy is always 21.54, which is con-
served. Red represents the Casimir power trajectory of
system X5, which is always zero, indicating the conser-
vation of Casimir energy. Blue represents the Casimir
power trajectory of system Ef . It can be seen that the
trajectory presents irregular oscillation, indicating that
its Casimir energy is not conservative. And the phase
trajectories of both systems are depicted in Fig. 1b,
where the red represents system X5 and the blue repre-
sents system ESH . As Fig. 1b shows, system X5 shows
periodic motion, while the trajectory of system ESH is
unstable aperiodic orbits.

The above analysis results demonstrate that the sys-
tem Eéf with Hamiltonian energy conservation can
generate chaos.
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3 System analysis

Unless otherwise noted, the default parameters and ini-
tial values for this section are (I1y, Iy, I3, Iy, I15, ¢)
= (9,7,5,4,8,1) and (x10, X20, X30, X40, X50) =
(1,1, 1, 1, 1.5), respectively.

3.1 Dynamics analysis
3.1.1 Conservative analysis

For the vector field F, its phase space volume change
rate can be expressed by divergence V- F [31]. Accord-
ing to the magnitude of the divergence V - F, whether
the chaotic system is conservative or dissipative can
be distinguished. In the case of V - F being negative,

the system is dissipative, and the trajectories gradually
gather near the attractor. When V - F equals zero, the
system is conservative and has a constant phase volume.
For system Esﬁ , its divergence V - F' can be obtained
as

IFy | 0Fy | 0Fy | 0F, | 0F,
axi 9x) 0x3 0x4 9xs
=0

V.F=

13)

It can be confirmed from the above equation that system
Y f is conservative.

3.1.2 LEs and bifurcation diagram analysis

Sensitivity to control parameters and initial values is
one of the most basic characteristics of chaotic sys-
tems. This is usually analyzed by Lyapunov exponents
diagram and bifurcation diagram. And in this section,
Fig. 2 illustrates the LEs diagram and bifurcation dia-
gram varying with initial value x;g.

From Fig. 2a, it can be found that the sum of LEs is
always 0, and there are always two positive LEs greater
than 0 within a wide initial value range, indicating that
system ESH has high stability and complexity. More-
over, Fig. 2b manifests that as the initial values increase,
the phase space traversal range expands. Furthermore,
the unpredictability of sequences produced by system
Zf is also stronger.

Specifically, when x;9 = 1, the LEs of system Eg
are calculated to be (0.6030, 0.0037, 0.0001, —0.0050,
—0.6018), the sum of all LEs is 0, and there are two
positive LEs LE] = 0.6030 and L E> = 0.0037, which
satisfy the characteristics of conservative hyperchaotic
systems. And the Lyapunov dimension of system ESH
can also be given by the Kaplan—Yorke form:

0.6030 + 0.0037 + 0.0001 — 0.0050
0.6018 (14)

D=4+
=5
As Eq. (14) shows, the Lyapunov dimension of sys-

tem Ef is an integer dimension, which conforms to
the characteristics of conservative systems.

@ Springer
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Fig. 2 System EsH . a LEs with initial value x2¢; b bifurcation
diagram with initial value x7q

3.1.3 Phase diagram and Poincaré section diagram
analysis

Phase diagram is a relatively intuitive method to
observe the movement trajectory of chaotic system.
Figure 3 displays the partial phase diagrams of system
2!, The motion trajectory of system X fills almost
the entire phase space, which proves that system Egl
has strong ergodicity and high complexity.

Poincaré section diagram is a common method to
analyze the motion state of the system. Figure 4 shows
the Poincaré section diagrams of a partial plane for
system Ef . The Poincaré section of system ng covers
almost the entire trajectory and has no stable line or
closed loop, which proves the chaos of the system.
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3.1.4 Initial value sensitivity analysis

The system parameters sensitivity and initial values
sensitivity to chaotic systems are two crucial proper-
ties that ensures the safety of encryption applications.
To observe the effect of various initial values on system
Ef , we selected different initial values and obtained
the corresponding chaotic sequences within the time
t € [0, 100], and the sampling time is 0.5. The results
are shown in Fig. 5.

As depicted in Fig. 5, minor differences in the ini-
tial values lead to significant variations in the resulting
chaotic sequences, highlighting the extreme sensitivity
to initial conditions of system Eg’ .

3.2 Pseudo-randomness analysis

The safety of chaotic encryption applications is directly
associated with the randomness of chaotic sequences.
In an effort to confirm the randomness of system %27,
we apply the United States National Institute of Stan-
dards and Technology (NIST) SP80022 standard [32]
to appraise the test data, which is the chaotic sequence
produced by system Eg’ . NIST offers 15 statistical
tests to appraise the stochasticity of random sequences
or pseudo-random number generators. Each statistical
test is given a P value, and by judging the P values,
it is determined whether the sequence is random. For a
pseudo-random sequence, its NIST test results should
satisfy three conditions:

(1) Select the default significance level @ = 0.01, and
for each test item, the P value cannot be less than
o

(2) Select the test sequence data length as / million
bits, and divide the data into s groups equally, and
the confidence interval can be calculated by p +
3/ p(1 —p)/s, where p = 1 —a. Setl = 100,
s = 100, the proportion of P values that are greater
than or equal to « should be within the confidence
interval [0.9602, 1] [33];

(3) P values distribution obeys uniformity.

Set the parameters as (I, 1o, I3, 14, [1s,¢) =
9,7,5,4,8, 1), and the initial values as (x1¢, X290, X30,
x40, x50) = (1,1,1,1,1.5). Select the time interval
t € [0, 200] and the sample time 7 = 107 to generate
chaotic sequences xp, x2, X3, X4, x5. Then, the chaotic
sequence X with a length of 100 million bits can be
obtained, and X = [x1, x2, X3, X4, X5].
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Fig. 3 Results of phase diagram. a Plane x; — x2; b Plane x; — x4; ¢ Plane x, — x5; d Plane x3 — x5

Further, as shown in Eq. (15), convert the chaotic
sequence X into test data composed of 0 and 1, and
divide it into 100 groups for NIST testing.

X = mod(floor(X x 10"),2) (15)

where mod() is the modulus operation, and floor()
represents rounding down operation.

Table 1 explicates the outcomes of the test; for items
with multiple sub-tests, the average value is selected as
result.

In accordance with Table 1, the test sequence passes
all test items, and all pass rates are greater than or equal
to 0.9602, which satisfies conditions (1) and (2). In

addition, the uniformity of P values distribution can
be verified by a histogram. By dividing the range from
0 to 1 into 10 equidistant sub-ranges, the quantities
of P values are illustrated in each sub-range of the
histogram. Histogram analysis is performed with the
non-overlapping test item, and the result is drawn in
Fig. 6. The P values are evenly distributed, satisfying
condition (3).

As the above results indicate, the test sequence pro-
duced by system ng meets all the test standards, and
the chaotic test sequence has good pseudo-randomness.
Therefore, system E? has the capability to be a secure
pseudo-random number generator.

@ Springer
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Fig. 4 Results of Poincare section diagram. a Plane x| — x;; b Plane x| — x4; ¢ Plane xo — x5; d Plane x3 — x5

4 Design of the image encryption algorithm

A novel diffusion method based on the bit-plane seg-
mentation is designed in this part. And on this basis, an
image encryption scheme based on the 5D Hamiltonian
conservative hyperchaotic system is proposed. Figure 7
shows the encryption process. The scheme can encrypt
both gray and color images of any size, which con-
sists of two parts, namely, key production and plaintext
image encryption.

@ Springer

4.1 Initial key production

The initial key is constructed of two segments, namely
the SHA-256 sequence H K of the original image,
where HK is a hexadecimal sequence with a length
of 64, and the initial values of the chaotic system
(x0, Y0, 20, 40, Vo). In addition, the encryption key K
can be generated by the following process.

Step 1 Convert the hash code H K into a string;

HK = num2str(HK) (16)
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Fig. 5 Results of initial
value sensitivity analysis
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:?z’;zt;mNEIE?’T test results No. Statistical test P values Pass rate
1 Rank 0.3505 1
2 Runs 0.4750 1
3 FFT 0.5544 1
4 Frequency 0.8514 1
5 Cumulative sums 0.4677 0.99
6 Block frequency 0.3041 0.99
7 Longest run 0.2493 0.99
8 Universal 0.8831 0.99
9 Non-overlapping template 0.5014 0.99
10 Random excursions variant 0.4475 0.99
11 Random excursions 0.5533 0.99
12 Serial 0.3528 0.98
13 Linear complexity 0.3505 0.98
14 Approximate entropy 0.4750 0.97
15 Overlapping template 0.1816 0.97
1600 T T T T T T T T

1400

1200

1000

800

600

400

Non-Overlapping Template

200

0
0 01 02 03 04 05 06 07 08 09 1

P values

Fig. 6 The non-overlapping template P value histogram

where num?2str() is the number-to-string function.
Step 2 Divide H K into six parts and calculate to obtain
hko, hky, hko, hks, hks, hks;

hko = sum(HK)

hky = sum(HK (1 :12))/ hkg
hky = sum(HK (13 : 24))/ hko
hky = sum(HK (25 : 36))/ hko
hkqy = sum(HK (37 : 48))/ hko
hks = sum(H K (49 : 60))/ hko

a7

@ Springer

where sum () represents the summation operation.
Step 3 Add the processed hash values to the initial val-
ues to obtain the encryption key K.

K = (xo+hky, yo+hka, zo+hk3, ug+hks, vo+hks)
(18)

4.2 Encryption algorithm description

To enhance the effect of high-dimensional chaotic sys-
tems on encryption algorithms and improve the dif-
fusion effect, a new bit-plane segmentation operation
is designed. The encryption algorithm includes one
scrambling and two times diffusion operations, which
improve the encryption strength.

4.2.1 Bit-plane segmentation

Figure 8 shows the bit-plane segmentation operation
process. The original image is converted into an 8-bit
binary array; next, the image array is divided into four
groups according to the pattern of two-bit binary num-
bers. Further processing can produce four sub-images
with pixels ranging from O to 3. Subsequently, the
pseudo-random sequences generated by chaotic sys-
tem X ? are used for bit-level diffusion, which make
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Fig. 7 Encryption
algorithm flowchart
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Fig. 8 The bit-plane segmentation process

the diffusion more sufficient and improve the security
of the encryption algorithm.

4.2.2 Encryption process

Encrypt the original image P with size M x N x A,
and A represents the quantity of channels of the image,
RGB color images correspond to A = 3, gray images
correspond to A = 1. And the following is the detailed
encryption process.

Step 1 Take the encryption key K into the 5D conser-
vative hyperchaotic system as initial values to produce
chaotic sequences X0, Y0, Z0, UO and VO with the
length of M x N x A +len, where len is the discarded
length to prevent the implication of transient data, and it
is set to 1000. Then, X1, X2, Y1, Z1, U1 and V1 with

asize of M x N x A can be calculated by processing
as follows:

[~, X1] = sort(X0)

X2 = mod (round(X0 x 10'9), 256)
Y1 = mod (round(Y0 x 101), 4)
Z1 = mod(round(Z0 x 10), 4)
U1l = mod(round(U0 x 10), 4)
V1 = mod (round(V0 x 101), 4)

19)

where sort () is the function for sorting, and round ()
denotes the rounding function.

Step 2 Transform image P into an array with one
dimension. Then, perform a permutation operation on
P and the index sequence X1 to acquire P1;

P =reshape(P,M x N x A, 1) (20)
Pl(k) = P(X1(k)) 21)

where reshape() is the function to reshape the array,
k=1,2,...,.M x N x A.

Step 3 Implement the bit-plane segmentation opera-
tion on P 1. Firstly, convert P 1 into 8-bit binary matrix
S, and S is divided into four subsequences s 1, 52, 53, s4
by bit-plane segmentation.

S(,:) =dec2bin(P1,8) (22)
s1 =bin2dec(s(:, 1:2))
s2 = bin2dec(s(:,3 : 4))
s3 = bin2dec(s(:,5:6))
s4 = bin2dec(s(:,7 : 8))

(23)

where dec2bin() is the decimal to binary conversion
function and bin2dec() is the binary-to-decimal func-
tion.
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Step 4 Perform XOR processing on subsequences
s1,s2, 53, s4 and pseudo-random sequences Y1, Z1,
U1, V1, respectively. And the processed results are
transformed into binary form to obtain sequence
dl,d2,d3, d4;

dl =dec2bin(bitxor(sl, Y1), 2)
d2 = dec2bin(bitxor(s2,Z1),2)
d3 = dec2bin(bitxor(s3,U1),2)
d4 = dec2bin(bitxor(s4,V1),2)

(24)

where bitxor () is a bitwise XOR function.

Step 5 Merge the sequences d1, d2, d3 and d4, to
get the 8-bit binary sequence D. And by converting
D into decimal, the preliminary diffusion result P2 is
obtained;

{D: [d1d2 d3 d4]

P2 = dec2bin(D) (25)

Step 6 Perform XOR processing on P2 and sequence
X2 to complete secondary diffusion to obtain P3, and
finally restore P3 to the M x N x A array to get the
encrypted result E.

(26)

P3 = bitxor(P2, X2)
E =reshape(P3, M, N, A)

4.3 Decryption algorithm description

The decryption algorithm is the inverse operation of
the encryption algorithm, and the decryption steps of
ciphertext image C with the size of M x N x A are
briefly introduced as follows:

Step 1 Calculate the decryption key based on the
hash sequence and initial values in the initial key. The
decryption key generation process is shown in Sect. 4.1.

Step 2 Take the decryption key into the 5D con-
servative hyperchaotic system as initial values to pro-
duce chaotic sequences, and further processing to get
the index sequence and pseudo-random sequences. The
detailed process is shown in step 1 of Sect. 4.2.

Step3 Decrypt the ciphertext image C according to
the reverse process of the encryption process from step
2 to step 6 in Sect. 4.2, and get the plaintext image P.

@ Springer

5 Simulation results and security analysis

For the purpose of validating the security of our pro-
posed image encrypting method, we choose grayscale
images sized 256 x 256, such as Cameraman and Lena,
and several images in the image dataset USC-SIPI with
varying sizes, including color images and gray images,
for testing the constructed image encryption algorithm.
And the security efficacy of the encryption method is
assessed by the factors such as information entropy,
correlation, and anti-attack. We use MATLAB R2020a
to carry out simulation experiments under Windows 10
system. The computer hardware is set to Intel Core i5-
1135G7 CPU (2.40 GHz), 16.0 GB RAM memory. The
computer precision is set to 15, and the initial values
arexo=1,yo=1,z0=15up=1,v9 = 1.

5.1 Simulation results

The color image House (4.1.05) and the gray image
alarm Clock (5.1.12) with a size of 256 x 256 and the
gray image Bridge (5.2.10) with a size of 512 x 512
are encrypted with the proposed encryption method.
Figure 9 exhibits the results of simulation.

5.2 Safety performance analysis
5.2.1 Key sensitivity analysis

The reliability of encryption algorithms is largely
affected by the sensitivity of the key, any minor alter-
ation to the key must generate entirely distinct encryp-
tion and decryption results. To confirm the sensitivity of
our encryption method to the key, we perform encryp-
tion and decryption to the plaintext Lena with the cor-
rect key, then change only one initial value of the key
from xq to xo + 10713, and the rest is unchanged, the
modified key is applied for decryption. Figure 10 shows
the outcome of decryption.

As Fig. 10 illustrates, changing the key results in the
inability to decrypt the plaintext from the ciphertext,
which explicates that our proposed encryption scheme
possesses strong key sensitive.

5.2.2 Analysis of key space

Encryption methods that possess a larger key space
are more resistant to violent attacks, and Alvarez et
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-

(8)

Fig. 9 Results of simulation experiments. a—¢ Source images; d—f ciphertext; g—i decrypted results

al. [34] suggested that minimum size of the key space
must be no smaller than 2'% for secure encryption
algorithms. For our proposed encryption method, the
key consists the SHA-256 sequence and initial values
(x0, Yo, z0, 4o, vo). When calculation precision of the
operating environment is 10™13, the key space can be
calculated as 2250 x 1015 x 1013 x 1015 x 1015 x 1013 ~
2595 And the result of comparing the key space in

our encryption scheme with that in other schemes is
expressed in Table 2; bold represents the best results.

As determined in Table 2, our method owns a wider
key space; it has a greater capacity to withstand violent
attacks.
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Fig. 10 Results of key sensitivity analysis. a Ciphertext; b decrypted outcome by the initial key; ¢ decrypted outcome by the changed

key

Table 2 Key space comparison

Schemes Key space
Ours 2505

[35] 9399

[36] 9465

[37] 9312

[38] 1.677 x 2341
[39] 0.4 x 21897

Bold indicates the results with better performance in the com-
parison schemes

5.2.3 Analysis of histogram

The pixel distribution of images can be accurately dis-
played on the histogram. And the more even distribu-
tion of the histogram indicates that the safety of the
encryption scheme is greater. For the grayscale image
Lena, Fig. 11 reveals its plaintext histogram and corre-
sponding ciphertext histogram.

It is evident that the pixel values of the encrypted
image are uniformly distributed, which makes it hard
for attackers to extract valuable information from the
histogram of the encrypted image. To further vali-
date the evenness of pixel distribution in ciphertext
images, we perform the Chi-square test to appraise
encrypted images. And the Chi-square test result x>
can be derived as

255 Y
Xzzz(Pk p) 27)

k=0 p

@ Springer

where k is the pixel value, py is the quantity of pixel
k, and p denotes the expected quantity of pixel k, p =
(M x N x A)/256.

Set the confidence level is 95%), i.e., the significance
level @ = 0.05, the x 2 value satisfying the test criteria
should be less than 293.24783. Moreover, the results of
Chi-square test for source images and their ciphertexts
are manifested in Table 3. All encryption results of test
images are far below 293, indicating that the ciphertext
pixels are uniformly distributed, and it proves that our
encryption method exhibits good resistance to statisti-
cal attacks.

5.2.4 Information entropy analysis

As a conventional index to judge the effectiveness of
image encryption methods, information entropy can
reflect the disorder and randomness of image informa-
tion. Information entropy can be obtained as

2N

E(x)=— Y P(x)log,P(x;) (28)
i=0

where x; is the pixel value, N represents the bits quan-
tity of x;, and P (x;) denotes the probability of pixel x;.
And for the 256 grayscale ciphertext image, which N
equals 8, its information entropy theory value is 8.
We have compared the information entropy of the
ciphertexts between our scheme and other algorithms,
and the results are presented in Table 4; bold indicates
the optimal value. It demonstrates that our encryp-
tion algorithm produces ciphertext with information
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Fig. 11 Results of histogram analysis. a Plaintext; b ciphertext
Table 3 Results of Chi-square test
Images Lena Cameraman White Black Average
Plaintext 39868.7266 110973.3047 16711680 16711680 -
Ciphertext 274.7344 255.4063 266.8438 231.7344 258.6775
entropy that are closer to 8, and it signifies the designed __cov(p,q) 32
i COITyy = (32)

method possesses a greater level of security. VvV (P)VV(g)

5.2.5 Correlation analysis

Adjacent pixels in meaningful images display a notice-
able correlation, and encryption algorithms should
minimize the adjacent pixels correlation in order to
provide better protection for the security of encrypted
images. The evaluation of correlation analysis ordinar-
ily involves the analyses of horizontal correlation, ver-
tical correlation and diagonal correlation. And correla-
tion coefficient can be derived by Eq. (32).

Q
1
E(p)=— > pi (29)
Q i=1
1 0
vip =5 > (xp — E(p))? (30)
i=1

1

0
o > ((pi — E(p)(gi — E(q)) (31)

i=1

cov(p,q) =

where (p, q) is a set of adjacent pixels, V(p) and
E(p) represent the variance and expectation of pixel
p, respectively, and Q denotes the quantity of adjacent
pixel pairs selected.

We select 10,000 sets of adjacent pixels randomly,
and correlation coefficients in three various aspects
are calculated. Figure 12 shows the analysis results
of source images and their corresponding ciphertexts.
And the source images have a significant correlation.
However, the ciphertexts have a low correlation, close
to 0. Moreover, Figs. 13 and 14 specifically display
the correlation analysis results of grayscale and color
images separately.

In addition, Table 5 illustrates the correlation analy-
sis comparison results between our encryption scheme
and other schemes, where bold represents the optimal
value. And the correlation coefficients of ciphertext are
significantly smaller than original images, which signi-
fies that our encryption method exhibits a strong capa-
bility to prevent statistical attacks.
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Table 4 Informatica entropy of ciphertext images

Images Plaintext Ciphertext
Ours [40] [41] [42]

5.1.09 (256 x 256) 6.7093 7.9977 7.9971 7.9972 7.9966
5.1.10 (256 x 256) 7.3118 7.9974 7.9974 7.9971 7.9971
5.1.11 (256 x 256) 6.4523 7.9970 7.9969 7.9970 7.9972
5.1.12 (256 x 256) 6.7057 7.9974 7.9972 7.9973 7.9974
5.2.09 (512 x 512) 6.9940 7.9992 7.9993 7.9993 7.9992
5.2.10 (512 x 512) 5.7056 7.9994 7.9993 7.9992 7.9991
5.3.01 (1024 x 1024) 7.5237 7.9998 7.9998 7.9998 7.9998
5.3.02 (1024 x 1024) 6.8303 7.9998 7.9998 7.9998 7.9996
7.1.01 (512 x 512) 6.0274 7.9993 7.9991 7.9992 7.9990
7.1.02 (512 x 512) 4.0045 7.9993 7.9992 7.9992 7.9991
7.2.01 (1024 x 1024) 5.6115 7.9998 7.9998 7.9999 7.9996
Mean of 256 x 256 - 7.9974 7.9972 7.9972 7.9971
Mean of 512 x 512 - 7.9993 7.9992 7.9992 7.9991
Mean of 1024 x 1024 - 7.9998 7.9998 7.9998 7.9997

Bold indicates the results with better performance in the comparison schemes

Fig. 12 Analysis results of 1 T ] = T T T T 1 | 1 1
correlation coefficients
3
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Q . .
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5.2.6 Differential attack resistance analysis

Resistance to differential attack is also a crucial metric
for evaluating the effectiveness of encryption schemes.
Differential attack, also known as plaintext sensitivity
analysis, refers to the attacker changing specific pix-
els of the source image, analyzing discrepancies in the
ciphertext, then using obtained data to crack ciphertext.
Therefore, a secure image encryption scheme must be
sensitive to the plaintext information, even if there is
a tiny difference in the plaintext, the encryption result
should be significantly different from that before, so

@ Springer

as to resist differential attack. And the number of pix-
els change rate (NPCR) and unified averaged changed
intensity (UACI) are performed to represent the capa-
bility of encryption schemes to oppose differential
attack, which can be obtained by Egs. (33) and (34).

D(m, n)

M=
M=

NPCR = — % 100% (33)
M x N
m=1 n=1
M N
|E1(m,n) — Ex(m, n)|
ACI = 1
UACL= ) ) Mx N x255 < 100%
m=1n=1
34
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Fig. 13 Analysis of correlation for Lena. a—c Plaintext; d—f ciphertext
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Fig. 14 Analysis of correlation for House. a—¢ Red, green and blue channels of the source image; d—f Red, Green and Blue channels
of the ciphertext. (Color figure online)
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Table S Correlation analysis results under different encryption
schemes

Schemes Horizontal Vertical Diagonal
Plaintext Lena 0.9285 0.9609 0.9133
Ours 0.0056 —0.0054 —0.0058
[43] 0.0085 0.0054 0.0049
[44] —0.0230 0.0019 —0.0034
[45] —0.0081 0.0035 —0.0368
[18] 0.0241 —0.0222 0.0169

Table 6 Theoretical values of NPCR (%) and UACI (%) with
various image sizes

Image sizes NPCR UACI

UACI™ UACIT
256 x 256 99.5693 33.2824 33.6447
512 x 512 99.5893 33.3730 33.5541
1024 x 1024 99.5994 33.4183 33.5088

where E and E; are two encrypted images sized M x
N, and their source images are only a difference of one
pixel. D(i, j) is the quantity of pixel values that differ
between ciphertexts £ and E>.

1 for Ei(i, ) # Ea(i, j)

0 otherwise (35)

D@, j) = {

Set the default significance level « = 0.05, and
Table 6 reveals the NPCR and UACI theoretical val-
ues of multiple image sizes [46].

Table 7 shows the differential attack analysis results
of several test images encrypted with our proposed
encryption method and other encryption schemes,
respectively. The conclusion can be drawn that the
resistance capability of the designed encryption algo-
rithm against differential attacks is strong.

5.2.7 Analysis of robustness

The secure image encryption schemes are considered
to have strong robustness, especially for data loss and
noise that may occur during network transmission of
images. The effect of varieties in ciphertext images on
the decryption results should be minimized. For the
purpose of assessing the robustness of the designed
encryption solution, we analyze the capacity of encryp-
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tion algorithms to defend against cropping and noise
attacks, and the peak signal-to-noise ratio (PSNR) is
performed to express the robustness strength, which
can be obtained by Eq. (37).

M N 2
| P(m,n)— D(m,n)|
MSE = Z Z TR (36)

255 x 255
MSE

m=1n=1

PSNR = 10 x log; < (37)
where P represents the source image sized M x N and
D represents the decrypted result, and MSE is the mean
square error of images P and D.

Figure 15 shows the ciphertext images and decryp-
tion results of Lena (256 x 256) under different clipping
intensities. And the PSNR results under different clip-
ping attack degrees is shown in Table 8, where bold rep-
resents the optimal value. All the results demonstrate
that our encryption method possesses good resistance
to cropping attacks.

Moreover, for the purpose of appraising the capa-
bility of this designed encryption method to with-
stand noise attacks, we apply various intensities of
noise to the ciphertext Lena. And Fig. 16 manifests
the decryption images of encrypted images with noise.
Furthermore, Table 9 explicates the PSNR of deci-
phered images under different noise intensities and
compares it with some existing encryption schemes.
From the results obtained through the analyses, our
image encryption algorithm also exhibits strong resis-
tance to noise attacks.

The analyses presented above illustrate that our
encryption method is capable of effectively defend-
ing against cropping attacks and noise attacks and pos-
sesses strong robustness.

6 Conclusion

In this work, we construct a novel 5D Hamiltonian
conservative hyperchaotic system based on Euler rigid
body equation and energy analysis. Compared with
other chaotic systems, the 5D conservative hyper-
chaotic system has more complicated dynamic behav-
ior and chaotic sequences generated by it have stronger
pseudo-randomness. Depending on this novel hyper-
chaotic system and the new designed bit-plane segmen-
tation method, we construct a secure image encryp-
tion method. Simulation experiments and performance



Construction of new 5D Hamiltonian conservative hyperchaotic system 20443
Table 7 Results of resistance to differential attack
Images NPCR (%) UACI (%)

Ours [47] [48] Ours [47] [48]
5.1.09 (256 x 256) 99.5834 99.6064 99.603 33.5605 33.4456 33.552
5.1.10 (256 x 256) 99.6078 99.6154 99.636 33.4193 33.4946 33.453
5.1.11 (256 x 256) 99.6201 99.6244 99.942 33.3567 33.5541 33.586
5.1.12 (256 x 256) 99.6124 99.5703 99.792 33.5581 33.4302 33.453
5.2.08 (512 x 512) 99.6189 99.5870 99.960 33.4461 33.4008 33.692
5.2.09 (512 x 512) 99.5979 99.6260 99.876 33.3965 33.4804 33.548
5.2.10 (1024 x 1024) 99.6067 99.6124 99.654 33.4334 33.4563 33.454
5.3.01 (1024 x 1024) 99.6045 99.5931 99.950 33.5004 33.4585 33.508
5.3.02 (1024 x 1024) 99.6039 99.6128 99.982 33.4696 33.4605 33.514
7.1.01 (512 x 512) 99.6140 99.5992 99.957 33.5162 33.5037 33.648
7.1.02 (512 x 512) 99.6140 99.6075 99.918 33.4925 33.4480 33.465
7.2.01 (1024 x 1024) 99.6107 99.6156 99.980 33.4659 33.4556 33.487
Mean 99.6055 99.6058 99.8542 33.4679 33.4637 33.5300
Std 0.0114 0.0154 0.1385 0.0593 0.0389 0.0756
Pass/All 12/12 10/12 12/12 12/12 12/12 9/12

Bold indicates values that do not meet the test criteria

Fig. 15 Analysis of robustness against cropping attack. a 1/8 trimming; b 1/4 trimming; ¢ 1/2 trimming; d—f decrypted images of a—c
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CT::)‘;';gg Zgﬂf under Cropping size 118 1/4 112

Ours 17.96 15.15 12.19

[49] 16.45 12.29 8.13

[50] 8.80 8.50 8.10

Fig. 16 Analysis of robustness against salt and pepper noise attacks. a—c¢ Decrypted images under different noise level

Table 9 PSNR under noise

attack Noise level 0.01 0.05 0.10
Ours 29.52 22.24 19.21
[49] 27.12 20.57 17.50
[51] 27.80 21.20 18.03

analysis results illustrate that our encryption scheme
possesses strong key sensitivity, wide key space,
high plaintext sensitivity and robustness. Moreover,
the ciphertext image has low correlation and uni-
form histogram distribution. All analyses indicate that
our designed image encryption algorithm effectively
ensures security and meets the needs of practical appli-
cations. In future, we intend to deeply study the secure
transmission of encryption algorithm keys, so as to fur-
ther protect the security of image information.
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