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Abstract To enhance the precision and efficiency of

result prediction, we proposed a parallel hard-con-

straint physics-informed neural networks (phPINN)

by combining the parallel fully-connected neural

network structure and the residual-based adaptive

refinement method. We discussed the forward and

inverse problems of the nonlinear Schrödinger–

Maxwell–Bloch equation via the phPINN. In the

forward problem, we predict five forms of soliton

solutions and rogue wave dynamics under correspond-

ing initial and boundary conditions; In the inverse

problem, we predict the equation parameter using the

training data with different noise intensities, initial

values, and solution forms. The predicted parameters

achieve a relative error of less than 1%. These results

validate the effectiveness of the phPINN algorithm in

solving forward and inverse problems of three-com-

ponent coupled equations.

Keywords Soliton � Nonlinear Schrödinger–
Maxwell–Bloch equation � phPINN � Neural network

1 Introduction

Deep learning has made significant advancements in

various fields, including computer vision, natural

language processing, speech recognition, and recom-

mendation systems. It has achieved or even surpassed

human-level performance in tasks such as image

classification, object detection, machine translation,

and speech recognition, garnering extensive attention

and research interest. In the domains of science and

engineering, solving partial differential equations

(PDEs) becomes the core of many important prob-

lems. The physics-informed neural networks (PINN)

approach was introduced by Raissi et al. [1], leverag-

ing the universal approximation theorem of neural

network architecture and the widespread use of

automatic differentiation technology. The PINN offers

an innovative method for solving PDEs by embedding

physical constraints into the training process of neural

networks to approximate unknown solution functions

and extract system behavior information from data.

This approach not only circumvents the expensive
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discretization process but also handles complex

boundary conditions and geometric shapes, which

makes the PINN highly promising for solving PDEs

[2–4].

In recent years, researchers have employed the

PINN to solve problems in nonlinear optics by

modifying network architecture, loss function expres-

sions, and configuration point sampling methods

[5–8]. Jiang et al. demonstrated the strong character-

ization ability of PINN in simulating pulse evolution

under various physical effects [9]. Chen et al. applied

PINN to solve different inverse scattering electro-

magnetic problems in nano-optics and metamaterial

technology [10]. Lin et al. proposed a two-stage PINN

method based on conserved quantities to improve

prediction accuracy and generalization ability [11].

Fang et al. successfully predicted the dynamic behav-

ior of solitons from detuned steady-state to

stable locked mode [12–15].

In erbium-doped fibers, the propagation properties

of optical pulses can be described by the coupled

nonlinear Schrödinger–Maxwell–Bloch (NLS–MB)

equation [16]

Ez ¼ ia1Ett � ia2 Ej j2E þ 2p

pt ¼ 2ix0pþ 2Eg

gt ¼ � Ep� þ E�pð Þ
ð1Þ

where z and t respectively represent the normalized

propagation distance and time, while complex envel-

ope E is the slowly changing electric field, p is a

measure of polarization of resonant medium, g
represents the degree of particle number inversion,

and symbol * represents the complex conjugation. a1
and a2 are the group velocity dispersion parameter and

Kerr nonlinearity parameters respectively, x0 denotes

the offset of the measured resonance frequency. The

NLS–MB systemwas first proposed byMaimistov and

Manykin [16] to describe the propagation of extremely

short pulses in Kerr nonlinear media. This system also

plays a crucial role in addressing the limited trans-

mission distance caused by the fiber loss. This Eq. (1)

possesses the mixed and coexisting state of self-

induced-transparency (SIT) solitons and NLS solitons,

known as SIT-NLS solitons, which has been exten-

sively studied in fiber optic communication [17, 18].

The objective of this work is to predict soliton and

rogue wave solutions under different initial and

boundary conditions of the NLS–MB equation and

unknown equation parameters. However, the tradi-

tional PINN encounters challenges when dealing with

the coupled NLS–MB equation due to multiple

coupling and nonlinear terms. The inaccurate predic-

tion may arise from difficulties in simultaneously

handling these terms and accurately modeling the

interaction relationships between them. It is essential

to ensure that the network accurately satisfies the

initial and boundary conditions while designing suit-

able network structures to address coupling and

nonlinear terms.

To address these challenges, we incorporate the

initial condition as the hard constraint into the network

structure in the forward problem. We also propose

effective improvement strategies for the phPINN,

including resampling training points during the train-

ing process and utilizing the residual-based adaptive

refinement(RAR) method to enhance the distribution

of residual training points. Specifically, for the rogue

wave problem, we adjust the weights of the boundary

conditions due to the sensitivity of rogue wave initial

values [19]. By applying the phPINN to inverse

problems, we can identify unknown equation param-

eters using data that is difficult or impossible to obtain.

Our work demonstrates the application of phPINN in

predicting unknown parameters based on various

types of soliton solutions and initial parameter values

for the NLS–MB equation, which proves the good

applicability of the inverse problem framework of

phPINN in different noise instances. The estimated

parameters exhibit a relative error within 1% when

compared with the true values in all test cases. The

excellent prediction accuracy in our work provides

more accurate numerical solutions for understanding

and applying coupled NLS–MB equations, offering a

promising framework for nonlinear system identifica-

tion. This study helps the exploration of soliton

generation, propagation, and interaction characteris-

tics to optimize the stability and reliability of soliton

transmission in the frame of the NLS–MB equation in

fiber optic communication.

This article is structured as follows. Section 2

provides a concise discussion on the phPINN algorithm

with a parallel fully-connected neural network(PFNN)

structure and RAR residual point sampling strategy for

the NLS–MB equation, including considerations on

training data, loss function, optimization method, and

training environment. Additionally, the algorithm

flowchart and stepwise procedure of the enhanced
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phPINN model are presented in detail. Section 3

employs the phPINN to demonstrate the forward

problem by predicting soliton solutions and rogue wave

dynamics of the NLS–MB equation. Section 4 presents

the inverse problem, where the phPINN is applied to

predict unknown equation parameters in a set of test

instances. Finally, the last section concludes all results

and provides further discussion.

2 phPINN algorithm with PFNN structure

and RAR residual point sampling strategy

The classical PINN algorithm has been widely utilized

as a versatile and efficient deep learning framework

for addressing both forward and inverse problems

associated with nonlinear PDEs. However, when

applying this algorithm to complicated nonlinear

systems that involve intricate solitons and rogue wave

solutions, several challenges may arise, including slow

training speed, non-convergence of the loss function,

and unsatisfactory prediction performance. To over-

come these limitations, we propose the phPINN

method to solve the forward and inverse problems of

the NLS–MB system, and provide detailed informa-

tion about the neural network structure, loss function

and the specific technical considerations of the RAR

residual point sampling strategy.

2.1 phPINN with PFNN structure

In the case of PDEs with multiple physical compo-

nents, the neural network needs to output multiple

variables simultaneously. The conventional approach

involves constructing a large fully-connected neural

network (FNN) that outputs all variables jointly.

Alternatively, multiple smaller networks can be con-

structed with each network responsible for outputting

a single component. This network structure is referred

to the PFNN. Particularly, studying the complicated,

multi-component coupled equation in this paper, the

traditional approach with employing a large network

can become excessively intricate and challenging to

train. Given the significant differences among differ-

ent components, using multiple small networks to

output each component individually can lead to

improved prediction results. Hence, we adopt the

PFNN framework to address this concern.

Incorporating the hard constraint enables the

embedding of known initial conditions into the neural

network, ensuring that the network output automati-

cally satisfies precise initial conditions, which greatly

enhances prediction accuracy [20]. Instead of mini-

mizing the mean squared error between the predicted

and the real values at the initial time, we utilize hard

constraint initial conditions, and thus there is no need

to include the loss of initial conditions. Figure 1

illustrates the training process of the phPINN. Ini-

tially, we initialize the network parameters to obtain

initial estimates of the real and imaginary parts of

variables E, p, and g in Eq. (1). Following the initial

estimation, we formulate a loss function to minimize

the residuals of the PDEs, as well as the errors between

the ground truth and the approximations at the

boundaries. The network parameters are iteratively

updated until the total loss converges.

2.2 NLS–MB system constraint

We adopt the (1 ? 1) dimensional coupled NLS–MB

equation as the physical constraint to construct the

phPINN above. The E and p in NLS–MB Eq. (1) are

the complex solutions of z and t, which will be

determined subsequently, necessitating the separation

of the real and imaginary components. Furthermore, g
denotes the real-valued solution of z and t, determined

at a later stage. We obtain the model corresponding to

Eq. (1) for the phPINN as

f1:¼a1Re Ettf g�a2Re Ef g Re Ef g2þIm Ef g2
� �

þ2Im pf g�Im Ezf g;

f2:¼a1Im Ettf g�a2Im Ef g Re Ef g2þIm Ef g2
� �

�2Re pf gþRe Ezf g;

f3:¼2Im Ef gg�Im ptf gþ2x0Re pf g;
f4:¼�2Re Ef ggþRe ptf gþ2x0Im pf g;
f5:¼2Im pf gIm Ef gþ2Re pf gRe Ef gþgt;

8>>>>>>>><
>>>>>>>>:

ð2Þ

where Re{�} and Im{�} represent the real and imag-

inary parts of the respective quantities.

2.3 Loss functions and optimization algorithm

Given the utilization of a hard constraint in the initial

condition, the loss function employed in the optimiza-

tion process does not encompass the initial condition.

The specific form of the loss function is defined as
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Loss ¼ wbLossb þ wf Lossf ð3Þ

where

Lossb¼
1

Nb

XNb

i¼1

Ei�Ê zi;ti
� ��� ��2þ

XNb

i¼1

pi�p̂ zi;ti
� ��� ��2þ

XNb

i¼1

gi�ĝ zi;ti
� ��� ��2

" #

ð4Þ

Lossf¼
1

Nf

XNf

j¼1

f1 zjf ;t
j
f

� ����
���
2

þ
XNf

j¼1

f2 zjf ;t
j
f

� ����
���
2

þ
XNf

j¼1

f3 zjf ;t
j
f

� ����
���
2

"

þ
XNf

j¼1

f4 zjf ;t
j
f

� ����
���
2

þ
XNf

j¼1

f5 zjf ;t
j
f

� ����
���
2

#

ð5Þ

and wb;wf are the weights, and zi; ti;Ei; pi; gif gNb

i¼1

represents the input boundary value data in Eq. (2).

Moreover, Ê zi; tið Þ, p̂ zi; tið Þ and ĝ zi; tið Þ denotes the

optimal output data obtained by training the neural

network. The collocation points on networks Lossf are

denoted via z jf ; t
j
f

n oNf

j¼1
.

The phPINN algorithm employed in this study aims

to identify optimized parameters, including weights,

deviations, and additional coefficients in activation, to

minimize the loss function. To evaluate the training

errors, the relative L2-error is defined as

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
k¼1

qexact Xkð Þ � qpredict Xk;H
� ��� ��2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
k¼1

qexact Xkð Þj j2
s ð6Þ

where qpredict Xk;H
� �

represents the predicted solution

obtained during the model training, and qexact Xkð Þ
represents the exact analytical expression at point

Xk ¼ tk; zkð Þ. Additionally, the joint Adam and

L-BFGS algorithms are employed to optimize all loss

functions in this method. The Adam optimization

algorithm is a variant of the conventional stochastic

gradient descent algorithm, while the L-BFGS opti-

mization algorithm is a second-order algorithm based

on quasi-Newton’s method, which performs full batch

gradient descent optimization. Adam is a first-order

algorithm that may not effectively optimize the error

to a very small value, but its initial convergence is

Fig. 1 The phPINN framework structure for the NLS–MB equation, wherein we utilize five independent FNNs and enforce hard

constraint initial conditions for all examples
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rapid. Therefore, we initially utilize Adam for tens of

thousands of optimization steps (depending on the

specific problem), and subsequently replace the opti-

mization algorithm with L-BFGS to further reduce the

error to a smaller magnitude.

2.4 Training points resample and RAR method

The phPINN primarily focuses on optimizing loss

functions of PDEs to ensure the consistency of the

trained network with the PDE being solved. The

evaluation of losses of PDEs is performed at a set of

randomly distributed residual points. From an intuitive

standpoint, the influence of residual points on phPINN

is similar to the impact of grid points on the Finite

Element Method (FEM). Consequently, the position

and distribution of these residual points are crucial for

the performance of phPINN. However, previous

literatures [21–23] about the PINN commonly

employed sampling methods that neglect the signifi-

cance of residual points, leading to inadequate

predictive performance in unsampled regions. In this

study, we propose a resampling approach for the

residual training points in the network after a specific

number of training iterations, allowing for the inclu-

sion of additional points without increasing the total

number of residual points to prevent the overfitting.

Although the uniform sampling proves effective for

certain simple PDEs, it may not be suitable for

solutions exhibiting steep gradients. To illustrate this

point, let us consider rogue wave as an example.

Intuitively, it is necessary to allocate more points near

sharp edges to accurately capture the discontinuities.

The manual selection of residual points in a non-

uniform manner can enhance the accuracy, while this

approach heavily depends on the specific problem and

often becomes burdensome and time-consuming.

Thus, in this article we focus on automatic and

adaptive non-uniform sampling. Inspired by the

adaptive mesh refinement technique in the FEM, Lu

et al. [24] introduced the first adaptive non-uniform

sampling method for PINN, known as the RAR

method, which introduces new residual points in

regions with large PDE residuals, iteratively adding

them during training until the average residual falls

below a specified threshold. By adaptively adjusting

the distribution of training points throughout the

training process, the RAR method further enhances

the performance of phPINN.

In our approach, we perform resampling of the

residual training points every 5000 training iterations,

exclusively utilizing the RAR method during the

training phase of the Adam optimizer. Specifically, we

incorporate the 50 points with the highest residuals

every 2000 iterations, resulting in a total of 5 sessions.

2.5 Training data and network environment

In the context of supervised learning, the training data

plays a crucial role in effectively training neural

networks. In this particular problem, we can acquire

the training data from various sources, which include

accurate solutions (if available), high-resolution

numerical solutions (utilizing methods such as spec-

tral methods, finite element methods, Chebfun numer-

ical methods, discontinuous Galerkin methods, among

others), as well as high fidelity datasets generated

through meticulously executed physical experiments.

For nonlinear systems like the NLS–MB equation,

fortunately, there exist effective methods to obtain

exact localized wave solutions, thereby offering a rich

sample space from which training data can be

extracted.

Furthermore, in our approach, we employ Xavier

initialization and hyperbolic tangent (tanh) function as

the activation function. In this study, a pseudorandom

number generator with the PCG-64 algorithm is

employed to generate residual training points [25].

All codes in this article are developed using the

DeepXDE library [24], implemented in Python 3.10

and Tensorflow 2.10. The numerical experiments

presented herein are executed on a computer system

equipped with a 12th Gen Intel (R) Core (TM) i7-

12,700 processor, 16 GB of memory, and a 6GB

Nvidia GeForce RTX 2060 graphics card.

3 Prediction of soliton evolution for NLS–MB

Equation

In this section, we focus on solving the forward

problems associated with NLS–MB equation, namely

the prediction of soliton evolution, considering a hard

constraint initial condition and Dirichlet boundary

conditions through the utilization of the aforemen-

tioned phPINN algorithm. The NLS–MB equation,

subject to the specified initial and boundary condi-

tions, can be expressed as
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Ez ¼ ia1Ett � ia2 Ej j2E þ 2p;

pt ¼ 2ix0pþ 2Eg;

gt ¼ � Ep� þ E�pð Þ;
E L0; zð Þ ¼ ElbðzÞ; p L0; zð Þ ¼ plbðzÞ; g L0; zð Þ

¼ glbðzÞ;
E L1; zð Þ ¼ EubðzÞ; p L1; zð Þ ¼ pubðzÞ; g L1; zð Þ

¼ gubðzÞ;
E t; T0ð Þ ¼ E0ðtÞ; pðt; T0Þ ¼ p0ðtÞ; g t; T0ð Þ

¼ g0ðtÞ; z 2 L0; L1½ �; t 2 T0; T1½ �

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð7Þ

where ‘‘i’’ is an imaginary number, the subscript

represents the partial derivative of each quantities with

respect to space z and time t, L0 and L1 represent the

upper and lower boundaries of time t, and T0 and T1
represent the initial time and final time of the spatial

variable z, respectively. Furthermore, �0ðtÞ represents
the initial value at � ¼ T0, while �lbðzÞ and �ubðzÞ
correspond to the lower and upper boundaries of t ¼
L0 and t ¼ L1, respectively.

3.1 Bright-M-W shaped one soliton

Set the parameters a1 ¼ 1
2
, a2 ¼ �1 and x0 ¼ �1, the

bright-M-W shaped one soliton solution of the NLS–

MB Eq. (1) is given by [26]

Eðz; tÞ ¼ 2 expð�2itÞ
coshð2t þ 6zÞ ;

pðz; tÞ ¼ expð�2itÞ expð�2t � 6zÞ � expð2t þ 6zÞf g
coshð2t þ 6zÞ2

;

gðz; tÞ ¼ coshð2t þ 6zÞ2 � 2

coshð2t þ 6zÞ2
:

ð8Þ

To obtain the original training dataset for the

specified initial and boundary conditions, the spatial

region [- 2, 2] and the temporal region [- 3, 3] are

discretized into 512 points, and the exact bright-M-W

shaped one soliton solution is discretized accordingly.

These data will be used to calculate the relative L2-

error. Furthermore, by randomly selecting the bound-

ary data points Nb = 100 from the original dataset, a

smaller training set containing boundary data is

generated. The initial value of the number of PDE

residual training points is Nf = 20,000. With 30,000

iterations using the Adam optimizer and an additional

11,563 iterations using the L-BFGS optimizer, the

phPINN framework successfully learns the bright-M-

W shaped one soliton utilizing five subnetworks. The

network achieves a relative L2 error of E as

9.158e-03, p as 9.960e-03, g as 2.603e-03, with a

total of 41,563 iterations and a training time of 2839 s.

Figure 2 illustrates the deep learning results of

bright-M-W shaped solitons based on the NLS–MB

equation using the phPINN. Figures 2A and B

demonstrate the propagation of a soliton from left to

right along the t-axis, indicating that the soliton’s

amplitude remains constant over time. Figures 2C and

D present cross-sectional views of the predicted and

exact solutions generated by phPINN at different time.

It can be observed that the predicted solution closely

matches the exact solution. Figure 2F shows that the

error in the prediction solution gradually adds with the

evolution, with a maximum value of only 0.087 at

t = 3. Figure 2E displays the oscillatory behavior of

the loss function curve during optimization using

Adam, while L-BFGS exhibits linear convergence.

The final loss value drops to 3.339e-07. Additionally,

we compare and present the prediction results of the

standard PINN from reference [1] in Fig. 3. From

Fig. 3, it can be observed that the prediction results of

the standard PINN are not satisfactory, indicating the

superiority of our phPINN framework for the given

example.

3.2 Bright-bright-dark one soliton

Considering the NLS–MB Eq. (1) with the parameter

values a1 ¼ 1
2
, a2 ¼ �1 and x0 ¼ 1, the bright-bright-

dark one-soliton solution can be derived as [26]

Eðz;tÞ¼
2exp �2

5
ið5t�2zÞ

� �

cosh 2tþ22
5
z

� � ;

pðz;tÞ¼
�1

5
iexp �2

5
ið5t�2zÞ

� �
ð�2þiÞexp �2t�22

5
z

� �
�ð2þiÞexp 2tþ22

5
z

� �� 	

cosh 2tþ22
5
z

� �2 ;

gðz;tÞ¼
5cosh 2tþ22

5
z

� �2�2

5cosh 2tþ22
5
z

� �2 :

ð9Þ

In a similar manner, the spatiotemporal region is

defined as [- 2, 2] 9 [- 3, 3]. The soliton is

discretized into a grid of 512 9 512 data points,

which includes the initial boundary value conditions.

The selection method and quantity of dataset are

consistent with those in Sect. 3.1. Furthermore, the

initial number of residual training points for the
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Fig. 2 Prediction results of bright-M-W shaped one soliton.

A Exact solution,B predicted solution. The comparison between

the exact (solid curve) and predicted (dash curve) solutions at

C t = - 2 and D t = 2. E The Loss function curve obtained

through the combined usage of the Adam and L-BFGS

optimization algorithms. F The point-by-point absolute error

between the predicted and exact solutions
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equation is set to 20,000. By conducting 30,000 Adam

iterations and 8832 L-BFGS iterations, bright-bright-

dark solitons are effectively learned. The network

achieves a relative L2 error of E as 1.871e-03, p as

2.626e-3, and g as 6.669e-04. The total number of

iterations is 38,832, with a training time of 2057 s.

Figure 4 presents the deep learning results of

bright-bright-dark one soliton based on the NLS–MB

equation using the phPINN. The three-dimensional

prediction dynamics diagrams 4A–C demonstrate the

propagation of solitons along the t-axis, indicating that

the soliton’s amplitude remains constant over time

t. Cross-sectional views of the predicted and exact

solutions generated by phPINN at different time are

depicted in Figs. 4D and E. It can be observed that the

predicted solutions align well with the exact solutions.

The density plot and the corresponding peak scale plot

in Fig. 4F illustrate the point-by-point absolute error

dynamics, where it is evident that the maximum error

value does not exceed 0.02.

3.3 Two solitons

Assuming parameters a1 ¼ 1, a2 ¼ �2, and x0 ¼ 1,

the explicit double soliton solution can be found in

Eq. (16) of reference [27]. Specifically, we select

parameters w1 = 1 ? 0.5i, w2 = 1 - 0.5i, h10 = 1 and

h20 = 1. To obtain the original training dataset of

double solitons, we divide the spatial region [- 5, 5]

and the temporal region [- 5, 5] into 512 points each,

which will be used to calculate the relative L2-error.

Furthermore, considering the complexity of the solu-

tion, we increase the number of data points on the

boundary by randomly selecting Nb = 200 from the

original dataset, and generate a training dataset that

includes boundary data. The initial number of residual

training points for the equation is also increased to Nf

= 25,000. With 30,000 Adam iterations and a weight

wb = 100 for the boundary condition in the loss

function, followed by 14,810 L-BFGS iterations, the

double soliton interaction solution is successfully

learned. The network achieves a relative L2-error of

E as 2.651e-03, p as 2.739e-03, and g as 7.598e-04.

The total number of iterations is 44,810.

Figure 5 illustrates the deep learning results of the

interaction between two solitons in the NLS–MB

equation using the phPINN approach. Specifically,

Figs. 5A, B and D depict density plots and correspond-

ing peak scales for different dynamics, including precise

dynamics, predictive dynamics, and absolute error

dynamics, respectively. These plots demonstrate the

head-on interaction between two bidirectional solitons.

Bright solitons for E and p can be observed, while, dark

soliton for g can be observed. After the interaction, the

solitons maintain their shapes unchanged except for a

phase shift, with a maximum error of 0.008. Figure 5C

displays the change of the loss function, which even-

tually decreases to 2.137e-07.

Fig. 3 A Predicted solution of standard PINN for the bright-M-W shaped one soliton. B The comparison between the exact (solid

curve) and predicted (dash curve) solutions at time t = - 2

123

18408 S.-Y. Xu et al.



3.4 Bound-state solitons

Assuming parameters a1 ¼ 1, a2 ¼ �2 and x0 ¼ 1,

the exact bound-state solution is obtained as described

in Eq. (16) of reference [23]. Here the parameters w1 =

1,w2 = 0.4, h10 = 0 and h20 = 0 are selected. The dataset
selection method and quantity for bound-state solitons

are the same as those in Sect. 3.3, and the initial

number of residual training points for the equation is

also set to 25,000. By conducting 30,000 Adam

Fig. 4 Prediction results of the bright-bright-dark one soliton.

A–C The three-dimensional evolution diagram of the predicted

solution. The comparison between the predicted results (dash

curve) and the exact solution (solid curve) at D t = - 2 and

E t = 2. (F) Point-by-point absolute error between the predicted

and exact solutions
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iterations and 22,948 L-BFGS iterations, the phPINN

successfully learn the bound-state solitons. The net-

work achieves a relative L2 error of E: 3.649e-03, p:

3.707e-03, and g: 1.115e-03. The total number of

iterations performed was 52,948.

Figure 6 illustrates the deep learning results of the

bound-state solitons for the NLS–MB Eq. (1) using

the phPINN approach. Both the precise dynamics in

Fig. 6A and the predicted dynamics in Fig. 6B

indicate the existence of bound-state solitons when

two solitons have the same velocity. Figure 6C

presents a cross-sectional view of the corresponding

predicted and exact solutions generated by phPINN at

time t = - 1. It can be observed that the predicted

solutions align well with the exact solutions.

Figure 6D depicts the point-by-point absolute error

between the predicted and exact solutions, where the

maximum error value does not exceed 0.01.

3.5 Rogue waves

Rogue waves are a significant research area within the

field of ocean dynamics and nonlinear optics. Machine

learning methods have also been extensively studied

for their application to rogue waves [19, 28, 29]. In

fact, the phPINN demonstrates enhanced convergence

speed of the loss function, improved stability, and

superior approximation capabilities, and thus enables

accurate prediction of these rare and unusual wave

phenomena.

Fig. 5 Prediction results of two solitons. A Exact solution, B predicted solution, C loss function curve using the combined Adam and

L-BFGS optimization algorithm, D point-by-point absolute error between the predicted and exact solutions
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Assuming parameters a1 ¼ 1
2
, a2 ¼ �1 and x0 ¼ 1

2
,

the exact solution of rogue wave can be found in

Eqs. (6)–(8) of reference [30] with here considering

the specific choices d = 1 and b = 1.5. By randomly

selecting boundary data points Nb = 200 from the

original dataset, a reduced training dataset that

includes boundary information is generated. Notably,

for rogue waves, the weight wb of boundary conditions

is increased to 1000 in the loss function, and the initial

number of residual training points Nf is set to 25,000.

Employing 30,000 Adam iterations and 20,589

L-BFGS iterations, the phPINN successfully predicts

rogue wave solutions. The network achieves relative

L2 errors of E as 7.698e-04, p as 7.830e-04, and g as

2.580e-03. The total number of iterations is 50,589,

which indicates the additional computation required to

capture the complicated localized wave behaviors.

Figure 7 presents the deep learning results for

rogue wave solutions of the NLS–MB Eq. (1) using

the phPINN. E represents a typical rogue wave, while

p and g corresponds to the dark rogue wave. Compar-

ing Fig. 7A with Fig. 7B, we hardly observe their

difference between the predicted and exact solutions.

Figure 7C displays the convergence behavior of the

loss function, which eventually reaches a value of

1.475e-05. The maximum point-by-point absolute

error shown in Fig. 7D is 0.023.

Fig. 6 Prediction results of bound-state solitons. A Exact solution, B predicted solution, C comparison of predicted results (dash curve)

with exact solutions (solid curve) at t = - 1, and D point-by-point absolute error between the predicted and exact solutions
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By extensive numerical training, we have demon-

strated that this phPINN algorithm performs excep-

tionally well in describing relatively smooth solutions

and effectively learns complicated dynamic behaviors

of rogue wave solution. Table 1 summarizes the results

obtained from solving various forward problems of the

NLS–MB equation using the phPINN.

4 Prediction of equation parameters for NLS–MB

Equation

In this section, we focus on the inverse problem of the

NLS–MB equation, specifically the parameter estima-

tion of the NLS–MB equation using small training

datasets. To learn the unknown parameters a1; a2 and
x0 in Eq. (1), we employ the same phPINN frame-

work as described in Sect. 3. Firstly we utilize the

bright-bright-dark one soliton as our dataset. One

advantage of the phPINN algorithm for the inverse

problem is its ability to work with very small training

datasets. Therefore, we consider data within the range

t [ [0, 1] and z [ [- 1, 1], and then randomly extract

Nq = 2000 data points from the original dataset to

form a small training dataset. The equation residual is

computed by using the Nf = 10,000 points generated

by the pseudorandom method. After preparing the

training dataset, the unknown parameters a1; a2 andx0

are all initialized to 2.0. Following 20,000 Adam

iterations and additional L-BFGS iterations, all

Fig. 7 Prediction results of rogue waves. A Exact solution, B predicted solution, C loss function curve using the combined Adam and

L-BFGS optimization algorithm, D point-by-point absolute error between the predicted and exact solutions
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learnable parameters of the phPINN are optimized,

and the loss function is adjusted to predict the

unknown parameters a1; a2 and x0. The relative error

of unknown parameters is defined as

RE ¼ d� d
d

����
����� 100% ð10Þ

where bd and d represent the predicted and true values,
respectively. In this section, we introduce the noise

interference to the selected small dataset as follows.

Data ¼Data þ noise � np:stdðDataÞ
� np:random:randnðData:shape 0½ �;Data:shape½1�Þ

Where, Data refers to the selected dataset, and noise

represents the intensity of the noise. The function

np.std(�) calculates the standard deviation of array

elements, and np.random.randn(�,�) generates a set of
samples with a standard normal distribution.

Figure 8 illustrates our prediction results. Fig-

ure 8A shows the randomly selected 2000 points

(marked with ‘‘x’’ symbols) in each component to

constitute the dataset. Figure 8B presents the conver-

gence of the loss curve under different noise condi-

tions by utilizing both Adam and L-BFGS optimizers.

The minimum value of the loss function increases with

the amount of noise. Figures 8C–E depict the numer-

ical variations of the unknown parameters a1, a2, and
x0, respectively. The shadow represents the error

range of ± 10%, the dotted line and solid curve

represent the true value and learned parameters,

respectively. It can be observed that the phPINN

framework accurately predicts the unknown parame-

ters under different noise conditions, which demon-

strates its robustness to noise. Figure 8F displays the

relative error of the learned parameter. In general, the

error increases with increasing noise but remains

below 1% in all cases.

Next, we explore the parameter estimation capability

under different datasets. We select the rogue waves

solution as the dataset and employ the same sampling

method as used for the one soliton solution mentioned

above. Notably, we set different initial values for the

parameters under various noise conditions to test the

parameter inversion ability of the phPINN framework.

Figure 9 presents our prediction results. Figure 9A

shows the randomly selected 2000 points (marked with

‘‘x’’ symbols) in each component to form the training

dataset. Figure 9B shows the convergence of the loss

curve under different noise conditions by utilizing both

the Adam optimizer and the L-BFGS optimizer. The

minimum value of the loss function adds with the

increasing noise. Figure 9C–E illustrate the numerical

variations of the unknown parameters a1, a2, and x0,

respectively. The shadow, dotted line, and solid line

have the same interpretations as those in Fig. 8. It is

evident that the phPINN framework accurately predicts

the unknown parameters under different noise condi-

tions, which also demonstrates its robustness in this

scenario. Figure 9F illustrates the relative error of the

final learned parameter. Generally, the error increases

with the level of noise but remains below1%in all cases.

These results demonstrate the satisfactory performance

of the phPINN, incorporating both the PFNN structure

Table 1 Results of solving different forward problems of NLS–MB equation using the phPINN

Result Solution

Bright-M-W-shaped one

soliton

Bright-bright -dark one

soliton

Two-soliton

solution

Bound-state soliton

solution

Rogue wave

solution

E’s relative
L2-error

9.158e-03 1.871e-03 2.651e-03 3.649e-03 7.698e-04

p’s relative
L2-error

9.960e-03 2.626e-03 2.739e-03 3.707e-03 7.830e-04

g’s relative
L2-error

2.603e-03 6.669e-04 7.598e-04 1.115e-03 2.580e-03

Training time

(s)

2839 2057 3615 3687 4853

Training

steps

41,563 38,832 44,810 52,948 50,589

Final loss

value

3.339e-07 4.171e-07 2.137e-07 3.251e-07 1.475e-05
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Fig. 8 Parameter estimation results of NLS–MB equation by

using the bright-bright-dark one soliton as dataset. A selected

points (marked with ‘‘x’’ symbols) of solitons in t [ [0,1] to

form the dataset, B the loss function under different noise

conditions. The evolution of the unknown parameters of the

NLS–MB equation during the training process under noise

levels of C 0%, D 5%, and E 10%, respectively. F Error results

of parameter under different noise conditions
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Fig. 9 Parameter estimation results of NLS–MB equation by

using the rogue wave solution as the dataset. A selected points

(marked with ‘‘x’’ symbols) of rogue wave to form the dataset,

B the loss function under different noise conditions. The

evolution of the unknown parameters of the NLS–MB equation

during the training process under noise levels of C 0%, D 5%,

and E 10%, respectively. F Error results of parameter under

different noise conditions
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and the RARmethod, in addressing the inverse problem

of the NLS–MB system.

In summary, this section presents the results and

corresponding analysis of the phPINN to study the

inverse problem of the NLS–MB equation under differ-

ent conditions. The utilization of a pre-trained network

can reduce the training time for similar variant problems.

However, its effectiveness may vary depending on the

specific scenario. In this work, we implement the inverse

problem of two examples from scratch without relying

on a pre-trained network, which highlights the inherent

generalizability of this phPINN framework.

5 Conclusion

Utilizing the phPINN algorithm with PFNN structure

and RAR residual point sampling strategy, this study

presents the forward and inverse problems of coupled

NLS–MB equations. Based on the numerical evidence

presented in this article, the phPINN framework is an

effective approach for predicting solutions of the

NLS–MB equation, encompassing single solitons,

multiple solitons, and rogue waves, even with a small

sample dataset. The analysis of the absolute error

graph revealed that the errors associated with solitons

primarily concentrated in the farthest region from the

initial moment, while errors related to rogue waves

were concentrated in the sharp regions. Moreover, the

phPINN algorithm successfully addresses the param-

eter estimation problem associated with the NLS–MB

equation, showcasing its capability in accurately

retrieving parameters under diverse conditions,

including variations in data types, noise levels, and

initial values. These findings provide essential theo-

retical foundations and numerical experiences for

conductingmore specialized research on the NLS–MB

equation [31, 32]. The future work is mainly to

optimize our algorithm and apply it to more complex

nonlinear systems. It is foreseeable that our work will

continue to play an important role in the field of

nonlinear dynamics, potentially leading to novel

breakthroughs and advancements in this domain.
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