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Abstract Anadvancedprocedure is introduced in this
study for determining the transient probability density
function (PDF) of the stochastic oscillator with various
nonlinearity under combined harmonic and modulated
random stimulations, which is an enhancement of the
exponential-polynomial-closure (EPC) methodology.
An evolutionary exponential polynomial function with
time-dependent undefined parameters is selected to
represent the transient probabilistic solution. A bunch
of ordinary differential equations can be formulated
by integrating the weighted residual error where the
weight functions are specially selected as a number of
independent evolutionary base functions that span the
R
n space. The undefined parameters can be fixed by

utilizing numerical approaches to solve those ordinary
differential equations. By comparing the results with
those acquired byMonte Carlo simulation (MCS), four
numerical cases demonstrate that the transient PDF
solutions of the nonlinear oscillators can be acquired
effectively and efficiently, especially in the probabilis-
tic tails which play a key role in reliability analysis. In
addition, the results indicate that the transient responses
of the stochastic oscillators are of nonzeromeans due to
the influence of harmonic stimulation. Meanwhile, the
transient PDFs are also asymmetrical at the nonzero
means resulted by the coupled impacts of the com-
bined harmonic and modulated random stimulations.
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Moreover, utilizing the advanced procedure can lead to
a significant decrease in computational effort without
sacrificing the solution accuracy in contrast to MCS.
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1 Introduction

The responses of the nonlinear systems subjected to
either harmonic stimulation ormodulated randomstim-
ulation have been studied by many investigators due to
the multiple applicability in various science and engi-
neering areas [1,2]. By utilizing analytical methods
and approximation techniques, numerous dynamical
phenomena have been identified. Actually, the circum-
stance that multiple stimulations exist simultaneously
often occurs, and many studies have been focused on
the situationwhere the oscillators are concurrently sub-
jected to multiple stimulations [3].

In general, acquiring the analytical stationary solu-
tions of the nonlinear oscillators under random stim-
ulations requires some restrictive conditions [4–6]. It
can be more difficult or impossible at the moment to
acquire the analytical transient solutions of the oscil-
lators subjected to harmonic and modulated random
stimulations. The nonlinearly damped oscillators sub-
jected to combined broadband random stimulation and
multiplicative harmonic stimulation were ever studied
by some researchers [7],where a set of stochastic differ-
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ential equations can be acquired by employing stochas-
tic averaging technique for the averaged system [8,9].
The analytical solutions of the averaged systems were
obtained according to the stationary potential theory.
The behaviors of the Duffing oscillator subjected to
harmonic and random stimulations were investigated
by utilizing the traditional harmonic balance technique
and stochastic averaging technique [10]. The transient
behaviors of a Duffing oscillator excited by sinusoidal
and random stimulations were studied by adopting the
path integration technique based on the principle of
Gauss-Legendre integration [11,12], which was ini-
tially proposed to solve the quantities-functional prob-
lems [13]. The transient behaviors can be then captured
from the initial state to the evolutionary state. A mod-
ified path integral technique with non-Gaussian tran-
sition was proposed to acquire the probabilistic solu-
tions of the oscillators due to harmonic and random
stimulations [14]. The periodic solutions of the non-
linear oscillators due to harmonic and random stim-
ulations were acquired by utilizing the Gaussian clo-
sure approach and implicit harmonic balance technique
[15], which was initially established to solve the har-
monic problems [16,17]. Beside the methods men-
tioned above, certain approaches which were also uti-
lized such as the equivalent linearization (EL) method
[18–20], which is equivalent to the Gaussian closure
approach in the case that the nonlinear system is sub-
jected to purely external random stimulation. It was
extended to improve the PDF solutions of a cubic non-
linear oscillator with Gaussian mixture technique [21].
An improved moment equation technique is utilized
to obtain the responses of stochastic oscillators under
random stimulations with quasi-moment neglect clo-
sure [22,23]. The transition responses of the strongly
nonlinear systems due to random stimulation were
analyzed with the smoothed particle hydrodynamics
approach [24]. The cell mapping technique was pro-
posed with the short-time Gaussian approximation to
acquire the numerous transient solutions and station-
ary solution for the stochastic oscillators under para-
metric random stimulations [25]. It is still a signifi-
cant challenge for the finite element method to main-
tain the probability density being positive, especially
in the probabilistic tails [26–28]. The meshless tech-
nique was proposed to obtain the transient solutions
of nonlinear oscillators under multiplicative random
stimulations with the unity finite element method [29].
The responses of weakly nonlinear oscillators were

analyzed by utilizing the perturbation technique [30].
Utilizing MCS is a straightforward way to acquire the
transition solutions of stochastic differential equations,
but large effort of computation is necessary, especially
when strong nonlinearity of the systems is encountered
and the tails of the probability density are required for
reliability analysis [31,32]. The cumulant-neglect clo-
sure technique was utilized to acquire the responses of
the nonlinear oscillator under parametric and external
random stimulations [33,34]. The maximum entropy
approach was proposed to investigate the responses
for the nonlinear systems under random stimulations
[35]. To overcome the occurrence of negative values in
the PDF tails acquired from the A-type Gram-Charlier
expansion [36,37], an expansion of C-type form was
adopted for the single-degree-of freedom oscillator
or 2-dimensional FPK equation [38]. Meanwhile, a
more generally utilized method named exponential-
polynomial-closure (EPC) method was proposed [39],
whichworked for the oscillatorswith 2∼4-dimensional
FPKequations [40,41]. It has been verified to be an effi-
cient technique to acquire the PDF solutions of non-
linear oscillators effectively. Later, the EPC method
was extended to acquire the transient PDF solutions
of the Duffing oscillator under Guassian white noise
[42]. However, no verification on the effectiveness of
the presented solution was given by comparison with
MCS. The neural network technique was also utilized
to solve the FPK equation recently, which is an inter-
esting topic [43,44].

Till now, capturing the transient solutions of the non-
linear systems subjected to combined harmonic and
modulated random stimulations is still a challenging
problem though many real problems can be charac-
terized by this class of oscillators. In this paper, an
advanced procedure is presented to complement the
conventional EPCmethod by adopting an evolutionary
exponential-polynomial function with time-dependent
undefined parameters as the transient PDF solution.
Four oscillators are investigated to show the accuracy
and efficiency of the advanced procedure. In addition,
solving the problems by utilizing the advanced proce-
dure is one of the crucial steps in the process of extend-
ing the state-space-split EPC technique to acquire the
transient solutions of the high-dimensional nonlinear
systems in the future work [45,46].
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2 Problem formulation

Consider a stochastic oscillator with various nonlinear
terms and excited by combined harmonic and modu-
lated random stimulations as follows.

Ÿ (t) + h0
(
Y (t), Ẏ (t)

) = Qsin(ωt) + g(t)η(t) (1)

where Y (t) and Ẏ (t) are the time-dependent sys-
tem responses, namely, the displacement and veloc-
ity, respectively; h0

(
Y (t), Ẏ (t)

)
is a nonlinear func-

tion constituted by the combination of response com-

ponents in Y(t) = {
Y (t), Ẏ (t)

}T
; Q is the amplitude

of harmonic stimulation and ω is the frequency of har-
monic stimulation; g(t) is a time-varying function; η(t)
is the random stimulation being Gaussian white noise
characterized by

E [η(t)] = 0,
E [η(t)η (t + τ)] = D0δ(τ )

(2)

where E[·] represents the probabilistic average of [·];
D0 is the intensity of the random stimulation η(t); δ(τ )

is the Dirac delta function; The time-varying intensity
function is defined as

D(t) = |g(t)|2D0 (3)

where g(t) is described as the modulated function of
the random stimulation, which is given as [47]

g(t) =
{

λ1te−λ2t , (t ≥ 0)
0 , (t < 0)

(4)

where λ1 and λ2 (λ1, λ2 > 0) are the shape factors of
the modulated function g(t). The maximum amplitude
of g(t) is defined as

max
t

|g(t)| = 1 (5)

where max donates the maximum value of the modu-
lated function. It is observed that g(t) can be made to
produce various non-stationary random noise by intro-
ducing certain combinations of λ1 and λ2. The modu-
lated random process g(t)η(t) with the shape factors
λ1 = 0.5456 and λ2 = 0.2006 is demonstrated in
Fig. 1.

Subjected to random stimulation, Eq. (1) can be
characterized in Stratonovich’s form as

Ẏ1(t) = Y2(t)

Ẏ2(t) = −h0 (Y1(t),Y2(t)) + Qsin(ωt) + g(t)η(t)
(6)

in which Y1(t) = Y (t),Y2(t) = Ẏ (t).

0 5 10 15 20 25 30 35
-3

-2

-1

0

1

2

3

A
m

p
li

tu
d
e

Modulated random sample

Fig. 1 Modulated random process

Under the random stimulation, the transient joint
PDF of the nonlinear oscillator is governed by the fol-
lowing FPK equation

∂p

∂t
+ y2

∂p

∂y1
− ∂h0

∂y2
p − h0

∂p

∂y2
+ Qsin(ωt)

∂p

∂y2

−1

2
D(t)

∂2 p

∂y22
= 0 (7)

where p = p(y, ẏ, t |y0, ẏ0, t0). The responses Y0 and
Ẏ0 are assumed to be Gaussian with zero means and
variance being σy0 and σẏ0 , respectively. p should com-
ply with the following criteria.
⎧
⎪⎨

⎪⎩

lim
y,ẏ→±∞ p(y, ẏ, t |y0, ẏ0, t0) = 0,
∫ +∞
−∞

∫ +∞
−∞ p(y, ẏ, t |y0, ẏ0, t0)d ẏdy = 1

p(y, ẏ, t |y0, ẏ0, t0) ≥ 0, y, ẏ ∈ R
2

(8)

3 The advanced EPC methodology

There is no available analytical solution to Eq. (7) at the
moment. Therefore, it is necessary to utilize approxi-
mate method to acquire the transient solution. By the
advanced procedure, the approximate transient PDF is
specified as

p̂ (y, t;b) = e	n(y,t;b)

= exp

⎛

⎝
n∑

r ′
1=0

r ′
1∑

r ′
2=0

br (t) y
r ′
1−r ′

2
1 y

r ′
2
2

⎞

⎠
(9)

where 	n (y, t;b) is an evolutionary nth-degree poly-
nomial functionofy = {y1, y2}T ;b = {b0(t), b1(t), ...,
bm−1(t)}, which includes m time-related unknown

variables and m = 1

2
n2 + 3

2
n + 1.
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The residual error can be yielded as follows after
the approximation p̂ (y, t;b) is adopted to replace p in
Eq. (7).

R (y, t;b) = ∂ p̂

∂t
+ y2

∂ p̂

∂y1
− ∂h0

∂y2
p̂ − h0

∂ p̂

∂y2

+ Qsin(ωt)
∂ p̂

∂y2
− 1

2
D(t)

∂2 p̂

∂y22

=
{

∂	n

∂t
+ y2

∂	n

∂y1
− ∂h0

∂y2
− h0

∂	n

∂y2

+ Qsin(ωt)
∂	n

∂y2

− 1

2
D(t)

[
∂2	n

∂y22
+

(
∂	n

∂y2

)2
]}

p̂

= 
(y, t;b) p̂

(10)

where


(y, t;b) = ∂	n

∂t
+ y2

∂	n

∂y1
− ∂h0

∂y2
− h0

∂	n

∂y2

+ Qsin(ωt)
∂	n

∂y2

− 1

2
D(t)

[
∂2	n

∂y22
+

(
∂	n

∂y2

)2
]

(11)

Generally p̂ (y, t;b) �= 0,
(y, t;b) = 0 is the only
possible choice for p̂ (y, t;b) to comply with Eq. (7).
However, 
(y, t;b) �= 0 in general since p̂ (y, t;b) is
just an approximation of the analytical solution. Thus,
a number of independent evolutionary base functions
Uk(y, t) spanning the R

2 space are introduced here.
The integration of 
(y, t;b) on the evolutionary R

2

space is made zero so that Eq. (7) is established in the
weak sense as follows.

∫

R2

(y, t;b)Uk(y, t)dy=0, k=0, 1, 2, ...,m−1

(12)

where Uk(y, t) are determined as follows.

Uk(y, t) = yk1−k2
1 yk22 ψ(y, t;μ, σ ) (13)

in which k1 = 0, 1, ..., n and k2 = 0, 1, ..., k1, (k1 ≥
k2).ψ(y, t;μ, σ ) is a specific choice of bivariate Gaus-
sian PDF; μ, σ represent the mean value and variance
vectors of the response y = {y1, y2}T , respectively,

acquired by utilizing EL at time instant t .

ψ(y, t;μ, σ ) = 1

2πσ1(t)σ2(t)
√
1 − ρ2(t)

× exp

{

− 1

2
(
1 − ρ2(t)

)

[
(y1 − μ1(t))2

σ 2
1 (t)

+ (y2 − μ2(t))2

σ 2
2 (t)

− 2ρ(t) (y1 − μ1(t)) (y2 − μ2(t))

σ1(t)σ2(t)

]}

(14)

in which ρ(t) is the correlation coefficient of the
response y = {y1, y2}T at time instant t , which can
be acquired by

ρ(t) = cov(y1, y2)

σ1σ2
= E[(y1 − μ1)(y2 − μ2)]

σ1σ2
(15)

Resulted by the coupling action between the har-
monic andmodulated randomstimulations in this oscil-
lator, the mean values of the response components in
y = {y1, y2}T are nonzero. The integration terms in
Eq. (12) can be stated as
∫

R2
yh11 yh22 ψ(y, t;μ, σ )dy

=
∫

R2
(x1 + μ1)

h1 (x2 + μ2)
h2 ψ(y, t;μ, σ )dy

=
h1∑

i ′=0

h2∑

j ′=0

(
h1
i ′

) (
h2
j ′

)
μ
h1−i ′
1 μ

h2− j ′
2

∫

R2
xi

′
1 x

j ′
2 ψ(y, t;μ, σ )dy

(16)

where xi = yi − μi and
(
h1
i ′

)
= h1!

i ′!(h1 − i ′)! (17)

Thus, Eq. (12) can be formulated by adopting the
Isserlis’s theorem as
∫

R2
xh11 xh22 ψ(y, t;μ, σ )dy

=
⎧
⎨

⎩

∑∏
E

[
(yi − μi )(y j − μ j ); t

]
, if h1

+h2 is even
0, otherwise

(18)

Integrating the weighted residual error, m nonlinear
ordinary differential equations related to the evolution-
ary variables b(t) can be constructed from Eq. (12).
Those evolutionary variables can be computed by uti-
lizing Runge–Kutta method numerically. In view that
the nonlinear oscillator is under combined harmonic
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and modulated random stimulations, the evolutionary
PDF solution of the oscillator responses with nonzero
mean can be resulted. Meanwhile, as the given modu-
lated function approaches zero, hence the random stim-
ulation disappears as time elapses, which could make
the oscillator completely under harmonic stimulation
in the last.

4 Numerical cases

To acquire the transient PDFs of the nonlinear oscil-
lator responses under combined harmonic and mod-
ulated random stimulations, the numerical analysis is
conducted to ascertain the suitability of the advanced
procedure by considering four cases in the following.
TheMCS is utilized to acquire the numerical PDF solu-
tions in those cases with a sample size being 108. The
polynomial order n = 6 of the exponential approx-
imate function is utilized in the advanced procedure
to acquire the transient PDFs of the nonlinear oscilla-
tor responses. Comparing the numerical results from
the advanced procedure with EL and MCS reflects the
superiority of the advanced procedure for the evolution-
ary PDFs of the oscillator responses. In all the figures
in the following to show the PDF solutions, the PDF of
a response is plotted when the response value is within
[m − 4σ,m + 4σ ] where m is the mean of a response
and σ is the standard deviation of a response given by
EL.

4.1 Case 1: Duffing oscillator

First, a Duffing oscillator under both harmonic and
modulated random stimulations is considered.

Ÿ + 2ξωnẎ + ω2
nY + εY 3 = Qsin(ωt) + g(t)η(t)

(19)

where ξ = 0.25; ωn = 1; ε = 1; Q = 0.3
and ω = 1. The modulated function is considered
as g(t) = 0.5456t exp(−0.2006t); the random stim-
ulation is represented with the correlation function
E [η(t)η(t + τ)] = δ(τ ); A Gaussian distribution is
characterized as the initial PDF of Y and Ẏ at t = 0s
with μY = μẎ = 0 and σ 2

Y = σ 2
Ẏ

= 0.02. In order to
guarantee solution convergence, the time evolutionary
process is performed with the step being
t = 0.1s for

the EL and the presented advanced EPC solution pro-
cedures and 
t = 0.02s for MCS. In all the solution
procedures, the 4th Runge-Kutta method is adopted.

The maximum variance of displacement is around
t = 7s as shown in Fig. 4. The transient PDF of the
response Y at t = 7s and t = 10s, respectively, are
shown in Figs. 2 and 3. It is noticed that the transient
results of the response Y acquired by the advanced
procedure coincide well with MCS, especially in the
PDF tails as demonstrated in the logarithmic PDFs,
which are essential for reliability analysis. However,
the results fromELare far fromMCSdue to the hypoth-
esis that the system responses are Gaussian, which
merely fits the real circumstances where the nonlin-
ear system responses are generally non-Gaussian. It
reveals the effectiveness of the advanced procedure
which can solve the transient solution of the Duff-
ing oscillator due to combined harmonic and modu-
lated random stimulations. In addition, the oscillator
responses are resulted in nonzero means and zero vari-
ances if the system is under only harmonic stimulation.
Similarly, the responses of this oscillator are resulted in
zeromeans and nonzero variances if the system is under
only external modulated random stimulation. From the
transient PDFs of the responseY , it is also observed that
the PDFs are asymmetric about its means at different
time instants due to the coupled impact of the com-
bined harmonic and modulated random stimulations.
In the time evolutionary process, the transient PDFs of
the response Ẏ obtained by the advanced procedure,
EL and MCS overlap, which means the transient PDF
of velocity is always Gaussian distributed. Therefore,
the transient PDF of the response Ẏ is not displayed
here.

The mean and variance of Y evolved with time
are displayed in Fig. 4. It is noticed that the mean
of the response Y acquired by the advanced proce-
dure is nonzero due to the harmonic stimulation. On
the other hand, the variance is also nonzero due to
the external modulated random stimulation. The PDF
solutions acquired by the advanced procedure coin-
cide with MCS as time elapses, which reveals that the
advanced procedure works well for acquiring the tran-
sient PDFs of the oscillator responses. However, the
results acquired by EL cannot match well with those
acquired by MCS and the advanced procedure. It is
noteworthy that the responses fluctuate as time elapses
due to the coupled impact of the combined harmonic
and modulated random stimulations. The modulated
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Fig. 2 Transient PDF of the
response Y at time t = 7s in
the Case 1
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Fig. 3 Transient PDF of the
response Y at time t = 10s
in the Case 1
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function can make the random stimulation disappear
as time elapses, which could finally make the oscilla-
tor under harmonic stimulation only.

Besides, it is noted that the advancedprocedure takes
only 34s to acquire the accurate transient solution at
t = 20s, but 18.34 hours is required forMCS to acquire
the transient solution at t = 20s on the laptopwith Intel
i7-7700HQ processor (RAM16GB, CPU@2.80GHz).
The advanced procedure increases the computational
efficiency dramatically by about 1,940 times.

4.2 Case 2: oscillator with complex nonlinearity

The following oscillator with complex nonlinearity
under combinedharmonic andmodulated randomstim-
ulations is considered.

Ÿ + 2ξωnẎ + ε1Ẏ
3 + ω2

nY + ε2Y
3 + ε3Ẏ

2Y + ε4Ẏ Y
2

= Qsin(ωt) + g(t)η(t) (20)

where ξ = 0.25; ωn = 1; ε1 = 0.5; ε2 = 1;
ε3 = ε4 = 0.2; Q = 0.5 and ω = 1 are given as the
harmonic parameters. The modulated function is con-
sidered as the same as that in the Case 1. The random
stimulation is represented with the correlation function

E [η(t)η(t + τ)] = δ(τ ); the initial Y and Ẏ at t = 0s
are characterized to be Gaussian with μY = μẎ = 0
and σ 2

Y = σ 2
Ẏ

= 0.02. The evolutionary PDF solution
of the oscillator is analyzed with step being 
t = 0.1s
for both the EL and advanced EPC solution procedures,
and 
t = 0.02s for MCS.

The maximum variance of displacement is around
t = 5s as shown in Fig. 7. The transient PDFs of the
oscillator responses at t = 5s and t = 8s, respec-
tively, are shown in Figs. 5∼6. It is noticed that the
transient results of the responses Y and Ẏ acquired by
the advanced procedure stillmatchwellwithMCSafter
adding various nonlinear terms to the oscillator, espe-
cially in the PDF tails as demonstrated in the logarith-
mic figures which play a key role in reliability analysis.
However, the results of Y and Ẏ from EL deviate from
MCS due to the hypothesis that the system responses
areGaussian,which cannot fit the real response because
the oscillator responses are non-Gaussian in this case.
It further reveals the workability of the advanced pro-
cedure, which can give the PDF solutions of the oscil-
lators with various strong nonlinearity and subjected
to combined harmonic and modulated random stimu-
lations. In addition, the transient responses Y and Ẏ
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Fig. 4 Evolutionary mean
and variance of Y , acquired
by various techniques in the
Case 1
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are both of nonzero means due to the impact of har-
monic stimulation. It is also observed that the PDFs are
asymmetric about the response means at different time
instants resulted by the coupling action of the combined
harmonic and modulated random stimulations.

The means and variances of Y and Ẏ vary with time
are displayed in Fig. 7. It is noticed that the means
of the responses Y and Ẏ acquired by the advanced
procedure are nonzero due to the harmonic stimula-
tion. On the other hand, the variances are also nonzero
due to the external modulated randomwhite noise. The
evolutionary PDF solutions acquired by the advanced
procedure coincide with MCS, which reveals that the
advanced procedure also works well for acquiring the
transient PDFs of the oscillator with the strong and
more complicated nonlinear terms in this case. How-
ever, the results acquired by EL cannot match well with
those acquired byMCS. The means and variances fluc-
tuate as time elapses owing to the coupling impact of
the combined harmonic and modulated random stimu-
lations. The modulated function can make the random
stimulation approach zero as time elapses, which could
finally make the oscillator under harmonic stimulation
only.

Regarding the computational efficiency, it is observed
that the advanced procedure takes only 36s to acquire
the transient solution at t = 20s, but the time needed
by MCS is about 18.6 hours for acquiring the transient
solution at t = 20s on the laptop with Intel i7-7700HQ
processor (RAM 16GB, CPU @2.80GHz). The com-
putational time spent by the advanced procedure is dra-
matically decreased by about 1,860 times in compari-
son with that spent by MCS.

4.3 Case 3: oscillator under resonance frequency

Consider the following oscillator under resonance fre-
quency, subjected to combined harmonic and modu-
lated random stimulations.

Ÿ + 2ξωnẎ + ε1Ẏ
2Y + ε2Ẏ Y

2 + ω2
nY + ε3Y

3

= Qsin(ωt) + g(t)η(t) (21)

where ξ = 0.1; ωn = 1; ε1 = ε2 = 0.5; ε3 = 1; Q =
0.2. The resonant frequency of this oscillator is found
to be ω = 1.19 in the sense of determinate vibration.
The frequency of the external harmonic excitation is
taken to be the resonance frequency, i.e.,ω = 1.19. The
modulated function is considered as the same as that
of Case 1. The random stimulation is represented with
the correlation function E [η(t)η(t + τ)] = 0.2δ(τ );
The initial Y and Ẏ at t = 0s are characterized to
be Gaussian with μY = μẎ = 0 and σ 2

Y = σ 2
Ẏ

=
0.02. The evolutionary PDF solution of the oscillator
is analyzed with step 
t = 0.1s for both the EL and
advanced EPC solution procedures, and 
t = 0.02s
for MCS.

The maximum variance of displacement is around
t = 9s as shown in Fig. 10. The transient PDFs of the
oscillator responses at t = 9s and t = 15s, respec-
tively, are shown in Figs. 8∼9. It is observed that the
transient results of the responses Y and Ẏ obtained by
the advanced procedure still well fit with MCS even in
the resonant situation. However, the results of Y and
Ẏ from EL deviate from MCS due to the hypothesis
that the system responses are Gaussian. In addition,
the transient responses Y and Ẏ are both of nonzero
means and asymmetric due to the impact of harmonic
stimulation.

Actually, the resonance cannot happen due to the
influence of white noise even if the harmonic frequency
equals the resonance frequency of the oscillator in
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Fig. 5 Transient PDFs of
the responses Y and Ẏ at
time t = 5s in the Case 2
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Fig. 6 Transient PDFs of
the responses Y and Ẏ at
time t = 8s in the Case 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

P
D

F

EL

EPC(n=6)

MCS

(a) (b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-14

-12

-10

-8

-6

-4

-2

0

lo
g

(P
D

F
)

EL

EPC(n=6)

MCS

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

P
D

F

EL

EPC(n=6)

MCS

(c) (d)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-8

-6

-4

-2

0

lo
g(

P
D

F
)

EL

EPC(n=6)

MCS

123



Transient probabilistic solution 17717

Fig. 7 Evolutionary means
and variances of Y and Ẏ ,
respectively, acquired by
various techniques in the
Case 2
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Fig. 8 Transient PDFs of
the responses Y and Ẏ at
time t = 9s in the Case 3
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Fig. 9 Transient PDFs of
the responses Y and Ẏ at
time t = 15s in the Case 3
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the sense of determinate vibration. However, numer-
ical experiments show that the resonance can become
more and more obvious as the modulated white noise
becomes weaker and weaker after t = 20s as shown
in Fig. 1, which means that the determinate stimula-
tion dominates the oscillator responses in this situa-
tion. On the other hand, when the influence of noise
on the oscillator responses becomes so weak that it can
be neglected after t = 20s, the oscillator needs to be
analyzed by the methods for determinate oscillation in
this situation [1].

The means and variances of Y and Ẏ vary with time
are displayed in Fig. 10. It is noticed that the means
of the responses Y and Ẏ obtained by the advanced
procedure are nonzero due to the harmonic stimula-
tion. On the other hand, the variances are also nonzero
due to the external modulated randomwhite noise. The
evolutionary PDF solutions acquired by the advanced
procedure coincide with MCS, which reveals that the
advanced procedure also works well for acquiring the
transient PDFs of the oscillator under resonant situa-
tion in this case. However, the results acquired by EL
cannot match well with those acquired by MCS. The
means and variances fluctuate as time elapses owing to

the coupling impact of the combined harmonic stimu-
lation and modulated random stimulation.

Regarding the computational efficiency, it is observed
that the advanced procedure takes only 35s to acquire
the transient solution at t = 20s, but the time needed by
MCS is 19 hours for acquiring the transient solution at
t = 20s on the laptop with Intel i7-7700HQ processor
(RAM 16GB, CPU @2.80GHz). The computational
time spent by the advanced procedure is dramatically
decreased by about 1,954 times in comparisonwith that
spent by MCS.

4.4 Case 4: oscillator with non-smooth nonlinear
function

The following oscillator with non-smooth function of
both damping and stiffness terms under both harmonic
and modulated random stimulations is considered.

Ÿ + 2ξωnẎ + ε1Ẏ |Ẏ | + ε2Ẏ
3 + ε3Y

2Ẏ − ω2
nY

+ ε4Y |Y | + ε5Y
3 = Qsin(ωt) + g(t)η(t) (22)

where ω2
n = 0.1; 2ξωn = 0.4; ε1 = 0.2; ε2 = 0.4;

ε3 = 0.2; ε4 = 0.1 and ε5 = 0.05. Q = 0.1 andω = 1.
The modulation function is considered the same as that
of Case 1. The random stimulation is represented with
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Fig. 10 Evolutionary
means and variances of Y
and Ẏ , respectively,
acquired by various
techniques in the Case 3

0 5 10 15 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

EL

EPC(n=6)

MCS

(a)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

EL

EPC(n=6)

MCS

(b)

0 5 10 15 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

EL

EPC(n=6)

MCS

(c)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

EL

EPC(n=6)

MCS

(d)

the correlation function E [η(t)η(t + τ)] = 0.3δ(τ );
The initial PDFs of Y and Ẏ at t = 0s are characterized
as Gaussian variables with μY = μẎ = 0 and σ 2

Y =
σ 2
Ẏ

= 0.05. The time evolutionary process is performed
with step being 
t = 0.1s for the EL and advanced
EPC solution procedures, and 
t = 0.02s for MCS.

The maximum variance of displacement is around
t = 8s as shown in Fig. 13. The transient PDFs of the
oscillator responses at t = 8s and t = 17s, respec-
tively, are shown in Figs. 11 and 12. The PDF of dis-
placement shows bimodal behavior in this case due to
the negative coefficient ofY . It is observed that the tran-
sient PDF solutions of the responses Y and Ẏ acquired
by the advanced procedure also coincide well with
MCS, especially in the PDF tails as demonstrated in
the logarithmic figures, which are essential for reliabil-
ity analysis. However, the results of Y and Ẏ from EL
are far fromMCS due to the hypothesis that the system
responses are Gaussian. It further reveals that the pre-
sented advanced procedure alsoworks effectivelywhen
the response of the oscillator has transient bimodal PDF
solution and when there are nonlinear terms which are
non-smooth function of both displacement and veloc-
ity. In addition, both the PDFs of Y and Ẏ are asym-

metric about their nonzero means due to the impact of
harmonic stimulation.

The means and variances of displacement Y and
velocity Ẏ varying with time are displayed in Fig. 13.
It is noticed that the means of Y and Ẏ acquired by the
advanced procedure are nonzero due to the harmonic
stimulation. On the other hand, the variances are also
nonzero due to the external modulated random stimu-
lation. The responses acquired by the advanced proce-
dure coincide with MCS as time elapses, which reveals
that the advanced procedure also works well for acquir-
ing the transient PDFs of the oscillator responses in this
case. However, the variances acquired by EL cannot
match well with those acquired by MCS. It is notewor-
thy that the responses fluctuate as time elapses owing
to the coupling impact of the combined harmonic and
modulated random stimulations. The modulated func-
tion canmake the random stimulation disappear as time
elapses, which could finally make the oscillator under
pure harmonic stimulation.

Notably, it is observed that the advanced procedure
takes 135s to acquire the transient solution at t = 20s,
but the MCS needs 19.10 hours to acquire the transient
solution at t = 20s on the laptop with Intel i7-7700HQ
processor (RAM 16GB, CPU @2.80GHz). The com-
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Fig. 11 Transient PDFs of
the responses Y and Ẏ at
time t = 8s in the Case 4
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Fig. 12 Transient PDFs of
the responses Y and Ẏ at
time t = 17s in the Case 4
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Fig. 13 Evolutionary
means and variances of Y
and Ẏ , respectively,
acquired by various
techniques in the Case 4
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putational time needed by the advanced procedure is
decreased by about 509 times in comparison to MCS.

5 Conclusions

In this study, the advanced EPC procedure is formu-
lated and presented for solving the challenging prob-
lems about the transient solutions of different oscilla-
tors under combined harmonic and modulated random
stimulations. The results obtained by the advanced pro-
cedure, MCS and EL, respectively, are compared in
various cases. The impact of determinate resonance
frequency on the transient solutions of the oscillator
responses is also studied. The outcomes reveal that (1)
the advanced procedure works well for the transient
PDF solutions of the oscillators under both the har-
monic and modulated random stimulations despite of
the various nonlinear terms in the systems; (2) even if
there are both harmonic and modulated random stim-
ulations in the system, the PDF and moment solu-
tions of the oscillator responses can still well fit the
MCS results in the extendable ranges of MCS solu-
tions; (3) the advanced procedure is also suitable for
the oscillators with bimodal PDF solutions; (4) the
advanced procedure works well for the oscillators with

non-smooth nonlinear terms in both displacement and
velocity. Notably, the probabilistic tails obtained by the
advanced procedure match well with MCS as demon-
strated in the logarithmic figures, which play a key
role in reliability analysis. More accurately predicting
the probabilistic tails of the strongly nonlinear oscilla-
tors subjected to both harmonic andmodulated random
stimulations by utilizing MCS requires a larger sample
size, which in turn demands tremendous computational
effort. In this case, utilizing the advanced EPC solution
procedure can lead to significant decrease in compu-
tational effort without sacrificing the accuracy of PDF
solutions in contrast to MCS when the sample size is
adopted to be 108. More computational burden can be
increased if the MCS solution is to extend to the proba-
bilistic tails as demonstrated in the numerical cases. It is
also noted that the PDFs of the oscillator responses are
of nonzero means and asymmetrical due to the influ-
ence of harmonic stimulation.
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