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Abstract This paper focuses on the investigation of

the dynamics of novel 2-DOF coupled oscillators. The

system consists of a linear oscillator (main structure)

and an attached lightweight nonlinear oscillator,

called a nonlinear energy sink (NES), under harmonic

forcing in the regime of 1:1:1 resonance. The studied

NES has geometrically nonlinear stiffness and damp-

ing. Due to the degeneracies that the NES brings to the

system, diverse bifurcation structures and rich dynam-

ical phenomena such as nonlinear beating and strongly

modulated response occur. The latter two phenomena

represent different patterns of energy transfer. To

capture the bifurcation structure, the slow flow of the

system can be acquired with the use of the complex-

averaging method. Furthermore, by applying the

bifurcation analysis technique, we get curve bound-

aries of several bifurcation points in the parameter

space. These boundaries will induce different types of

folding structures, which can lead to complicated

patterns of strongly modulated responses, in which

intense energy transfer from the main structure to NES

occurs. To study the necessary parameter conditions of

strongly modulated responses, we analyzed the

dynamics of different time scales of the slow flow in

detail and determined the corresponding parameter

ranges finally. It is worth noting that the small

parameter e may have a qualitative impact on the

dynamics of the system.

Keywords Geometry nonlinearity �
Complexification � Slow flow � Bifurcation analysis �
Slow invariant manifold � Strongly modulated

response

1 Introduction

The Nonlinear Energy Sink (NES) [1], a passively

nonlinear vibration absorber, has become an active

research field in recent decades. The application of

NES for the suppression of unwanted vibrations is an

important issue in the modern manufacturing industry

and the civil fields such as mechanical engineering

[2–6], vehicle suspensions [7, 8], acoustical engineer-

ing [9, 10], and aero-structures [11]. Compared with a

traditional linear absorber, called the tuned mass

damper (TMD) [12], which acts on the natural

frequency of structure requiring vibration reduction,

NES can passively absorb vibratory energy over a

wide range of frequencies.
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From the view in the context of dynamical systems,

the addition of NES introduces degeneracies in the

free and forced dynamical system that is constituted by

the main structure and the NES, which may open the

possibility of higher co-dimensional bifurcations and

sophisticated dynamical behaviors. Neglecting the

influences of damping and forcing, the linearized

system of the 2-DOF system consisting of the linear

main structure and NES possesses a degenerate

eigenvalues structure with a pair of complex conjugate

imaginary eigenvalues and a double zero eigenvalue,

in which the codimension three bifurcations may

occur [13]. Generally, this highly degenerate structure

is responsible for complex responses and energy

transfer in the system.

For an impulsively forced system, the NES can

result in a one-way, irreversible target energy transfer

(TET) from the main structure to the NES due to the

influence of nonlinearity and damping, where the

energy is dissipated by damping finally [14]. Reso-

nance captures play an important role in targeted

energy transfer in dissipative systems and provide the

necessary conditions for the process [15]. For a

periodically forced system, due to the existence of a

folding structure and external forcing, the whole

system may occur some kinds of periodic or quasi-

periodically dynamical behaviors, named strongly

modulated responses (SMR) [16]. Viewed in the

context of energy transfer, the SMR can be viewed, in

essence, as periodic or quasi-periodic versions of TET

[17].

The design of nonlinearity plays a core role in the

application and optimization of NES. According to the

kinds of nonlinearity, various types of NES have been

studied. Kevin Dekemele et al. [18] studied an NES

with a softening stiffness and revealed that an inverted

resonance capture cascade leads to the transfer of

vibrations to the NES from low to high frequency.

Wang et al. [19] and Geng et al. [20] theoretically and

experimentally investigated the effects of the piece-

wise stiffness and the gap width on the vibration

responses of NES and the primary system. Similarly,

Wen et al. [21] verified that non-smooth NES has

better vibration suppression capability than TMD

when both have the same vibration absorption mass in

the rotor-blade systems. Rotary NES configuration

enhancing energy absorption and dissipation over a

wide range of initial input energies is investigated by

the work [22]. Nucera et al. [23] experimentally

studied the passive control mechanism between a

linear main structure and a coupled vibro-impact NES.

Furthermore, theoretical and experimental investiga-

tions of the passive control process of a system

coupled with vibro-impact NES are considered by Li

et al. [24] and Gendelman et al. [25]. Geng et al. [26]

considered that non-contact magnetic force is pro-

posed to improve the reliability of the nonlinear

energy sink. Recently, various bistable NES [27–35]

have been designed and studied. Paredes et al. [36–38]

investigated the efficient targeted energy transfer of a

novel NES consisting of coupling negative and cubic

stiffness, and qualitatively analyzed in detail the

response regimes and triggering mechanism of the

bistable NES, and they developed basic constraints for

design optimization of the bistable NES. The works

[39, 40] showed the numerical and experimental

results that the tri-stable and multi-stable NES has a

stronger vibration suppress ability as well as a wider

range of energy endurance.

In recent years, a few works of NES oscillators with

different combinations of local and global potential

were studied. For instance, vakakis et al. [41] studied

in detail the effect that an NES has on the steady-state

dynamics of a weakly coupled system. The work [42]

reported an experimental study of transient resonance

capture that may occur in a system of two coupled

oscillators with essential nonlinearity, which leads to

targeted nonlinear energy transfer. Saeed et al. [43]

verified the robustness of the TET mechanism where

the role of the unsymmetrical NNM backbones in

TET. Andersen et al. [44] investigated two coupled

oscillators with nonlinearly coupling stiffness and

damping and found the forcing conditions for the

damped response of the system with a lock into a

damped, non-resonant transition resembling continu-

ous resonance scattering. The work [45] demonstrated

that as forcing amplitude increases, global nonlinear

stiffness and local nonlinear stiffness can drive the

frequency response curves to move toward the higher

frequency direction and widen the frequency band-

width of the coexistence of multiple steady-state

response regimes.

From the above works of the literature, various

coupled oscillators with geometry nonlinearity have

been studied. These works analytically and experi-

mentally investigated the influence of local and global

geometry nonlinearity, or both of them, in resonance

regimes of coupled oscillators. However, the use of
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grounded nonlinear damping and stiffness in the NES

for coupled oscillators has not been considered before.

Inspired by that, therefore, we give a novel form of

2-DOF coupled oscillators: the main structure, which

is supposed to be linear, is linearly coupled to an NES

with local and global potential functions, in which

local potential and damping are both nonlinear. We try

to highlight the dynamical behavior of the coupled

oscillators at different regimes of external forcing and

system parameters, e.g., nonlinear stiffness and damp-

ing of NES. Furthermore, the main objective of this

paper is to investigate folding structure and bifurcation

parameters pace, which may result in a strongly

modulated response. Finally, this paper will consider

the influence of mass ratio e on the response regimes.

The organization of this paper is structured as

follows. Section 2 is devoted to the description of the

physical and mathematical model of the proposed

system and gives the slow flow of the system by using

the complex averaged technique. In Sect. 3, some kind

of bifurcation structures, as well as their correspond-

ing bifurcation parameters space, of equilibrium

points of the slow flow and frequency response

diagrams are analyzed analytically with the bifurca-

tion analysis method. In Sect. 4, by applying themulti-

time scales method, the parameter expressions of two

singular points and the critical values of excitation

amplitude are studied. Further, the numerical simula-

tions verified the above theoretical prediction. Finally,

the paper is concluded in Sect. 5.

2 Description of the model

The basic model consists of a linear main structure and

a nonlinear energy sink (NES). The main structure has

the mass M, the stiffness k01, and the damping c01, and

the NES composes the mass m, the nonlinear stiffness

k0, and the nonlinear damping c0. In addition, the

stiffness and the damping of coupling between the

main structure and the NES are, respectively, k02 and

c02, f the amplitude of external force, and X the

frequency of external force. It is worth noting that the

mass of NES is far less than the mass of the main

structure, i.e., e = m/M, 0\ e\ \ 1, which is

depicted in Fig. 1.

Let us assume x1 and x2 are displacements of the

main structure and NES, respectively. Governing

equations of the 2-DOF coupled oscillators can be

written as:

M
d2x1
dt2

þ k01x1 þ c01
dx1
dt

þ k02 x1 � x2ð Þ

þ c02
dx1
dt

� dx2
dt

� �
¼ f cosXt

m
d2x2
dt2

þ k02 x2 � x1ð Þ þ c02
dx2
dt

� dx1
dt

� �
þ k0x32

þ c0x22
dx2
dt

¼ 0

ð1Þ

or

€x1 þ x1 þ ek1 _x1 þ ek2 x1 � x2ð Þ þ ek2 _x1 � _x2ð Þ ¼ e A cosxs

e€x2 þ ek2 x2 � x1ð Þ þ ek2 _x2 � _x1ð Þ þ ekx32 þ ekx22 _x2 ¼ 0

ð2Þ

where

x2
0 ¼

k01
M

; x0t ¼ s;
c01

Mx0

¼ ek1;
k02

Mx2
0

¼ ek2;
c02

Mx0

¼ ek2;

k0

Mx2
0

¼ ek;
c0

Mx0

¼ ek;
f

Mx2
0

¼ eA; x ¼ X
x0

¼ 1þ er

ð3Þ

We will investigate the dynamics of the system (2)

by the complexification averaging method. For this

reason, we introduce the following set of complex

variables:

U1e
jxs ¼ _x1 þ jxx1

U2e
jxs ¼ _x2 þ jxx2; j ¼

ffiffiffiffiffiffiffi
�1

p ð4Þ

Fig. 1 The two DOF systems are made up of a main structure

under external forcing coupled to an NES

123

Dynamics of a novel 2-dof coupled oscillators with geometry nonlinearity 18755



The coordinates transformation above is assumed

in the fundamental nonlinear resonance of system (2),

where periodic solutions of the system with dominant

frequency are equal to the frequency of the harmon-

ically external forcing. Moreover, these periodic

steady-state responses can be written in the form of

fast oscillations ejxs modulated by slow-varying

complex amplitudes Ui (i = 1,2), which implies par-

titioning the dynamics into fast and slow components.

Substituting (4) into (2), one can obtain the

complexification system:

_U1e
jxs þ jx

2
U1e

jxs � U�
1e

�jxs
� �

þ 1

2jx
U1e

jxs � U�
1e

�jxs
� �

þ ek1
2

U1e
jxs þ U�

1e
�jxs

� �
þ ek2
2jx

ðU1e
jxs

� U�
1e

�jxs � U2e
jxs þ U�

2e
�jxsÞ

þ ek2
2

ðU1e
jxs þ U�

1e
�jxs � U2e

jxs � U�
2e

�jxsÞ

¼ eA
2

ejxs þ e�jxs
� �

_U2e
jxs þ jx

2
U2e

jxs � U�
2e

�jxs
� �

� k2
2jx

ðU1e
jxs � U�

1e
�jxs � U2e

jxs þ U�
2e

�jxsÞ

� k2
2
ðU1e

jxs þ U�
1e

�jxs

� U2e
jxs � U�

2e
�jxsÞ

þ 1

2jxð Þ3
k U3

2e
3jxs � 3 U2j j2U2e

jxs
�

þ3 U2j j2U�
2e

�jxs � U�3
2 e�3jxs

�

þ k

2 2jxð Þ2

ðU3
2e

3jxs � U2j j2U2e
jxs � U2j j2U�

2e
�jxs þ U�3

2 e�3jxsÞ ¼ 0

ð5Þ

Furthermore, due to the aim to study fundamental

response, we will average over the fast oscillation of

frequency ejxs and neglect the high order frequency

terms of the system (5). The slow flow can be defined

by the following expression:

_U1 þ
ek1
2

þ j
x2 � 1

2x

� �
U1 þ

ek2
2

� j
ek2
2x

� �
U1 � U2ð Þ ¼ eA

2

_U2 þ
jx
2
U2 �

k2
2
� j

k2
2x

� �
U1 � U2ð Þ þ k

8x2
� j

3k

8x3

� �
U2j j2U2 ¼ 0

ð6Þ

3 Qualitative analysis of slow flow

To analyze dynamical behavior around regimes of

1:1:1 resonance of the original system (2), further

investigation of equilibrium points (fixed points) of

slow flow (6) is necessary. Since these fixed points

correspond to the periodic solutions described by

system (2). Letting the derivative of complex ampli-

tude Ui (i = 1,2) with respect to time s equal to zero,

one can obtain the following algebraic relationships:

ek1
2

þ j
x2 � 1

2x

� �
U10 þ

ek2
2

� j
ek2
2x

� �
U10 � U20ð Þ

¼ eA
2

jx
2
U20 �

k2
2
� j

k2
2x

� �
U10 � U20ð Þ

þ k
8x2

� j
3k

8x3

� �
U20j j2U20 ¼ 0

ð7Þ

where U10 and U20 represent the complex amplitudes

of fixed points. With simple algebraic computation,

the expression of fixed points can be given as:

� 1

2

eA �xk2 þ jk2ð Þ
�ex k1 þ k2ð Þ þ j 1þ ek2 � x2ð Þ

þ �xk2 þ jk2ð Þ2e
2x �ex k1 þ k2ð Þ þ j 1þ ek2 � x2ð Þð Þ þ

k2
2
� j

k2 � x2

2x

 !
U20

þ k
8x2

� j
3k

8x3

� �
U20j j2U20 ¼ 0

ð8Þ

Further, Eq. (8) can be brought into the following

compact form as it follows:

a3Z
3 þ a2Z

2 þ a1Z þ a0 ¼ 0 ð9Þ

where Z = |U20|
2. For the sake of brevity, the

coefficients ai (i = 0,1,2,3) of the polynomial (9) are

derived in Appendix. Depending on the coefficients,

the polynomial (9) has one or three positive real roots

corresponding to periodically stationary oscillation

responses, which implies the occurrence of some kind

of bifurcations of fixed points. These bifurcations will

result in complicated dynamical behavior described by

complex variable modulations, and system parameters

selected by the critical values may play a core role in

the definition of bifurcations. These bifurcations stand
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for a change in the number and structure of fixed

points, for instance, saddle-node bifurcation (SN) and

Hopf bifurcation.

3.1 SN bifurcations of fixed points

We now initiate the study by considering the bifurca-

tion structures of fixed points with respect to the

steady-state response of the full system (2). In general,

it is not unreasonable to expect bifurcation structures

of the coupled oscillators since diverse kinds of

bifurcations denote the critical state of different types

of motion corresponding to salient oscillations. More-

over, these bifurcations resulting in instability of

stationary oscillation play a core role in strongly

modulated responses, which implies intense energy

transfer from the main structure to NES in a periodic

way due to the effect of harmonically external forcing.

Of course, all system parameters may lead to the

occurrence of bifurcations as the change of them,

including damping k1 of the main structure, coupling

damping k2 and stiffness k2, geometrically nonlinear

damping k and stiffness k, tuning frequency r, and
amplitude A of external forcing. However, a complete

analysis of whole system parameters is a formidable or

even impossible task. To find the influence caused by

elements we are interested in, we will fix the values of

some system parameters, which results in a ‘‘slice’’ of

curve surfaces composed of bifurcations in parameter

space.

From the previous analysis of fixed points of slow

flow, it is easy to find that number of fixed points may

be changed as the variation of coefficients of the

polynomial (9). That is to say, the SN bifurcation may

occur when the roots of the polynomial coalesce. At

the bifurcation points, the derivative of (9) with

respect to Z should be equal to zero:

3a3Z
2 þ 2a2Z þ a1 ¼ 0 ð10Þ

Substituting the bifurcation conditions above into

compact form (9) of fixed points, we can get bound-

aries of SN bifurcations for system parameters. These

boundaries of SN bifurcations are curve surfaces

composed of parameters. We are interested in the

responses caused by elements of NES and external

excitation, including k, k, and A. Therefore, by fixing

the other system parameters, we obtain the projections

space of SN bifurcation curves.

SN1: a0; a1; a2; a3ð Þj6a1a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3a1a3 þ a22

q	

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3a1a3 þ a22

q
a22 þ 27a0a

2
3 � 9a1a3a2 þ 2a32 ¼ 0




SN2: a0; a1; a2; a3ð Þj � 6a1a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3a1a3 þ a22

q	

þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3a1a3 þ a22

q
a22 þ 27a0a

2
3 � 9a1a3a2 þ 2a32 ¼ 0




ð11Þ

Considering that fixing k1 = k2 = 0 and varying

other parameters slowly, we acquire two parameter

curves of the SN bifurcation with respect to elements

of NES and external forcing around the regime of

1:1:1 resonance. Therefore, one can get solutions for

the boundaries of the SN bifurcations. Furthermore,

for the sake of realizing SN bifurcations, it is

convenient to reduce the parameter space of the SN

bifurcations into two-dimensional planes. Thus, we

obtain the plots depicted in Fig. 2 are two-dimensional

planes for k = 0.5, k = 0.5, and A = 1, respectively. In

these plots, we can find that two curves of SN

bifurcations divide the parameter plane into two

domains, namely, Area D1 (gray region) and Area

D2 (orange region). When one curve characterized by

one parameter passes the SN boundary from Area D1

to Area D2 by a direction transverse, three fixed points

corresponding to the stationary oscillation of the full

system are combined into one fixed point, which

implies the occurrence of SN bifurcation. In addition,

the pattern of oscillation of the system will change

because of the loss of stability.

It is worth noting that one can find the cross point

plotted in Fig. 2 by tracking the two curves of SN

bifurcations. In fact, with the change of parameters of

two-dimensional parameter planes, the coefficients of

the normal form of SN bifurcation will occur degen-

eration, which results in invoking extra bifurcation

condition to track a new bifurcation, namely, codi-

mension-two cusp bifurcation. Equivalently, cusp

bifurcation needs two bifurcation parameters to com-

pute its normal form. We here give the parameter

space of cusp bifurcation shown as follows:

cusp: a0; a1; a2; a3ð Þj27a0a23 � 9a1a2a3 þ 2a32 ¼ 0
� �

ð12Þ

To realize the relation of fixed points and bifurca-

tions, one varies the amplitude of external forcing A in
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a slow way, which can obtain a bifurcation diagram

composed of a square of the module of the complex

amplitude of NES and the amplitude of harmonically

external excitation, in which system parameters are

fixed for e = 0.01 r = 2 k2 = 0.5 k = 0.5 k = 0.5.

There exists only one fixed point before the excitation

amplitude A meets the first SN bifurcation point, in

which the full system occurs trivially steady-state

oscillation. Subsequently, the amplitude A enters the

domain denoted by two stable fixed points and an

unstable one, which implies the system may exist

nontrivial oscillation due to the transitions between the

upper branch and the lower branch of fixed points.

With the increase in the amplitude A, it passed cross

domain denoted by three fixed points into domain

standing for one fixed point where the module of the

complex amplitude of NES is greater than the previous

domain corresponding to one fixed point. The bifur-

cation diagram is plotted in Fig. 3.

3.2 Hopf bifurcations of fixed points

Generally, for investigating dynamics around fixed

points of the slow flow (6), one can introduce the small

perturbations di (i = 1,2):

U1 ¼ U10 þ d1
U2 ¼ U20 þ d2

ð13Þ

Substituting small perturbations (13) into the slow

flow (6) and linearizing it at the fixed point with

respect to the small perturbations di (i = 1,2), we can

obtain the following form:

_d1 ¼ � ek1
2

þ j
x2 � 1

2x

� �
d1 �

ek2
2

� j
ek2
2x

� �
d1 � d2ð Þ

_d�1 ¼ � ek1
2

� j
x2 � 1

2x

� �
d�1 �

ek2
2

þ j
ek2
2x

� �
d�1 � d�2
� �

_d2 ¼ �j
x
2
d2 þ

k2
2
� j

k2
2x

� �
d1 � d2ð Þ

� k
8x2

� j
3k

8x3

� �
2 U20j j2d2 þ U2

20d
�
2

� �

_d�2 ¼ j
x
2
d�2 þ

k2
2
� j

k2
2x

� �
d�1 � d�2
� �

� k
8x2

þ j
3k

8x3

� �
2 U20j j2d�2 þ U�2

20d2
� �

ð14Þ

where asterisk denotes complex conjugate. The char-

acteristic polynomial of the vector fields (14) is given

for:

c4l
4 þ c3l

3 þ c2l
2 þ c1lþ c0 ¼ 0 ð15Þ

l is the eigenvalue of the Jacobian matrix located at

the origin of the vector fields (14). The coefficients ci
(i = 0,1,2,3,4) of the polynomial (15) are derived in

Fig. 2 The projections of SN bifurcation curves on the parameter planes, in which area D1 (gray region) stands for a domain having

three fixed points and area D2 (orange region) domain having one fixed point. (System parameters for e = 0.01 r = 2 k2 = 0.5)

Fig. 3 SN bifurcations diagram of fixed points with amplitude

of external forcingA for e = 0.01 r = 2 k2 = 0.5 k = 0.5 k = 0.5
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Appendix. We now try to analyze the characteristic

eigenvalues of the polynomial (15). With fixing the

system parameters into an adequate range, these

characteristic eigenvalues of the polynomial may

change their sign from negative to positive, leading

to the SN bifurcation, and possess a pair of purely

imaginary eigenvalues, which implies the occurrence

of Hopf bifurcations of fixed points of the slow flow.

The conditions and boundaries of parameters of SN

bifurcation have been studied in the above sec-

tion. Therefore, in this section, we will study the

conditions of Hopf bifurcations of fixed points.

Hopf bifurcation is a kind of common and impor-

tant bifurcation since its neighborhood exists tori

corresponding to periodic or quasi-periodic oscilla-

tions, which implies salient types of system responses.

To detect the range of system parameters of the

occurrence of Hopf bifurcation, we substitute l = ±

jh into the characteristic polynomial (15). Then, the

frequency h circling fixed points and the range of

system parameters of Hopf bifurcations are given as:

h2 ¼ c1
c3

ð16Þ

and

c21 � c1c2c3 þ c0c
2
3 ¼ 0 ð17Þ

By applying Eqs. (16) and (17), one can get alge-

braic relation:

b5Z
5 þ b4Z

4 þ b3Z
3 þ b2Z

2 þ b1Z þ b0 ¼ 0 ð18Þ

Still, the coefficients of the polynomial (18) are

derived in Appendix in detail. In fact, by fixing system

parameters at k1 = k2 = 0 and applying Eq. (9) the

boundaries of Hopf bifurcations can be acquired:

HP1 a; bð Þja3K3 þ 2a2b4K
2 þ 4a1b

2
4K þ 8a0b

3
4 ¼ 0

� �
HP2 a; bð Þj � a3K

3 þ 2a2b4K
2 � 4a1b

2
4K þ 8a0b

3
4 ¼ 0

� �
ð19Þ

where

K ¼ b3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4b4b2 þ b23

q

a ¼ a0; a1; a2; a3ð Þ; b ¼ b2; b3; b4ð Þ
ð20Þ

The above analysis demonstrates that two bound-

aries of Hopf bifurcations divide parameter space into

two regions, namely, Area C1 (white region) for the

domain having limit cycles, and AreaC2 (blue region)

for the domain owning no limit cycles. To trace Hopf

bifurcations on the parameter plane, we take the curve

characterized by one parameter passing through any of

the boundaries transversely fromAreaC2 to AreaC1.

We will realize that as the change of parameters the

Hopf bifurcation generates limit cycles oscillating

around the fixed point with frequency characterized by

the pure imaginary eigenvalue, which may result in the

occurrence of tori. The projection of boundaries of

Hopf bifurcations on parameter planes is plotted in

Fig. 4 in detail.

3.3 Frequency response diagrams

In this section, we still restrict our consideration to

dynamics around the 1:1:1 resonance regime, in which

the main structure and the NES vibrate with the

frequencies are equivalent to the frequencies of

external forcing approximately. We here introduce a

tuning parameter r, and such parameter r implies a

small perturbation of frequency between the main

structure and the external forcing. Then, it is the

Fig. 4 The projections of Hopf bifurcation curves on the parameter planes, where Area C1 (white region) stands for a domain having

limit cycles, and Area C2 (blue region) domain owning no limit cycles. (System parameters are fixed at e = 0.01 r = 2 k2 = 0.5)
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potential to decide possible response regimes when the

frequency of harmonically external excitation

increases and decreases slowly. In the above analysis

of bifurcations of fixed points of the slow flow, we

have got parameter planes with respect to SN bifur-

cations and Hopf bifurcations, respectively. For that, it

is brisk to demonstrate that frequency response

diagrams are related to response regimes with the

change of tuning parameter r, which shows a piece of
important information for the evolution of fixed points

corresponding to stationary oscillations of the original

system (2).

In Fig. 5, we show the set of representative

frequency response diagrams, in which bifurcation

points and stability types as well as instability types of

branches of solutions are marked. By fixing the other

system parameters at certain values, including forcing

amplitude A, small parameter e, nonlinear stiffness k,
and damping k of NES, these frequency response

diagrams can be constituted by diverse curves on the

r–Z plane, with different values of coupling stiffness

k2. According to assumption (4), the frequency

response diagrams provide the information corre-

sponding to the approximately fundamental resonance

of the original system in the frequency domain. For

instance, in subplot (a) of Fig. 5 upper stable branch

and lower stable branch present large amplitude

oscillations and small amplitude oscillations,

Fig. 5 Frequency response diagrams for system parameters for e = 0.01 k = 0.2 k = 0.5 A = 0.2; a k2 = 0.4; b k2 = 0.6; c k2 = 0.8; d
k2 = 1
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respectively, which provides suggestions for the

design of vibration suppression. More information

on the frequency of responses can be seen in Fig. 5.

However, Fig. 5 shows an isolated resonance curve

that may lead to a large response for the original

system. Therefore, it is necessary to optimize the

system parameter to avoid the occurrence of the

isolated resonance curve. Optimizing the nonlinear

damping to k = 0.5 while keeping other system

parameters unchanged, the isolated resonance curve

disappears. Furthermore, as the growth of the linear

stiffness k2, the maximum value of the frequency

response curve first decreases and then, increases for a

large detuning range. The detailed information on the

frequency response curve is depicted in Fig. 6.

4 Dynamics of different time scales of slow flow

We begin to investigate that the response regime of the

2-DOF coupled oscillators driven by an external

excitation may exist regular stationary response and

nonlinear beat, or even nontrivial oscillatory behavior

modulated by the slowly changed complex amplitude,

i.e., strongly modulated response. Generally speaking,

a pair of SN bifurcations are common compositions of

the strongly modulated response because they can

Fig. 6 Frequency response diagrams for system parameters for e = 0.01 k = 0.5 k = 0.5 A = 0.2. a k2 = 0.4; b k2 = 0.6; c k2 = 0.8; d
k2 = 1
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form a folding structure and transform the pattern of

system oscillations. Especially, such folding structures

forced by the harmonically external excitation make

the original system occur the strongly modulated

responses and energy transfer periodically. For this,

we focus on investigating of conditions of the strongly

modulated responses driven by external forcing.

Moreover, we will give a more convenient form of

the slow flow (6). Taking simple algebraic calculation

and calculating the derivative of the second equation

of (6) with respect to s, one can get the following

differential equation:

d2U2

ds2
þ d

ds
ec3U2 þ c1U2 þ c2 U2j j2U2

� �

þ ec3 c1U2 þ c2 U2j j2U2

� �
þ ec4U2 þ

eA
2

¼ 0 ð21Þ

where

c1 ¼
k2
2
þ j

x2 � k2
2x

; c2 ¼
k

8x2
� j

3k

8x3
;

c03 ¼
k1 þ k2

2
þ j

x2 � 1� ek2
2x

c3 ¼
k1 þ k2

2
þ j

x2 � 1

2x
; c4 ¼

k2
2
� j

k2
2x

ð22Þ

Furthermore, introducing the multi-time scales

si = eis (i = 0,1,2…), and differentiating it with

respect to si (i = 0,1,2…):

d

ds
¼ o

os0
þ e

o

os1
þ � � � ; d

2

ds2
¼ o2

os20
þ 2e

o2

os0s1
þ � � �

ð23Þ

and bringing them into differential Eq. (21), we get a

new form:

o2

os20
U2 þ 2e

o2

os0s1
U2 þ

o

os0
ec03U2 þ c1U2 þ c2 U2j j2U2

� �

þ e
o

os1
ec03U2 þ c1U2 þ c2 U2j j2U2

� �

þ ec03 c1U2 þ c2 U2j j2U2

� �
þ ec4U2 þ

eA
2

¼ 0

ð24Þ

Setting the coefficients of powers of e equal to zero,
we derive the following hierarchy of problems at

successive orders of approximation:

e0 :
o2U2

os20
þ o

os0
c1U2 þ c2 U2j j2U2

� �
¼ 0 ð25Þ

e1 : 2
o2

os0s1
U2 þ c3

o

os0
U2

þ o

os1
c1U2 þ c2 U2j j2U2

� �

þ c3 c1U2 þ c2 U2j j2U2

� �
þ c4U2 þ

A

2
¼ 0. . .

ð26Þ

4.1 s0 time scales of the slow flow

Equation (25) describes the leading approximation of

the slow flow (6). The equation can be integrated

trivially:

oU2

os0
þ c1U2 þ c2 U2j j2U2 ¼ C s1ð Þ ð27Þ

When qU2/qs0 = 0, we can acquire an equilibrium

of (27), which captures the leading approximation of

dynamical phenomena around the slow flow. In

addition, it is easy to solve C(s1) from slow flow.

Hence, the slow invariant manifold can be expressed

in the following form:

c1U2 þ c2 U2j j2U2 ¼ c4U1 ð28Þ

Assuming complex values amplitude Ui (i = 1,2)

can be expressed to the polar coordinates (29):

U1 ¼ N1e
jh1 ;

U2 ¼ N2e
jh2 ; Ni 2 Rþ; hi 2 R i ¼ 1; 2ð Þ:

ð29Þ

Substituting polar coordinates (29) into (28), and

taking the square of modulus on both sides of equal

sign:

q1 ¼ N2
1

q2 ¼ N2
2

ð30Þ

We get the relation of q1 and q2 written as:

c1 þ c2q2j j2q2 ¼ c4j j2q1 ð31Þ

Or, equivalently

� k22x
2 þ k22

� �
q1 þ x4 þ k22x

2 � 2x2k2 þ k22
� �

q2

� 1

2x2
�kx2k2 þ 3kx2 � 3kk2
� �

q22

þ 1

16x4
k2x2 þ 9k2
� �

q32 ¼ 0

ð32Þ
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It is obvious to get a graphic of the slow invariant

manifold at s0 time scale. Furthermore, one can obtain

conditions of occurrence of a pair of SN bifurcations:

x4 þ k22x
2 � 2x2k2 þ k22

� 1

x2
�kx2k2 þ 3kx2 � 3kk2
� �

q2

þ 3

16x4
k2x2 þ 9k2
� �

q22
¼ 0 ð33Þ

as well as its representation expressed by parameters:

Consequently, it is easy to solve two SN bifurca-

tions of the slow invariant manifold. They are denoted

by (q11, q21), (q12, q22). These bifurcations can be seen
in Fig. 7 in detail.

Consider an initial position in the neighborhood of

the lower branch, which is related to the stable sta-

tionary oscillation of the original system. As the

increase in time, this point moves toward and along the

lower branch until reaching the SN bifurcation (q11,
q21). Due to the loss of stability of the slow invariant

manifold, the point makes a jump from the

stable lower branch to the stable upper branch.

Further, as time goes on, this point performs a motion

moving toward and along the upper branch until

reaching the SN bifurcation (q12, q22), and then, it

makes a transition from the upper branch to the lower

branch. Eventually, the point now has completed a

period loop. This loop composes periodically a

strongly modulated response.

4.2 s1 time scales of the slow flow

In the period of oscillation of NES with respect to s1
time scale, the displacement satisfies U2 = U2(s1);
then, Eq. (26) can be given as:

o

os1
c1U2 þ c2 U2j j2U2

� �
þ c3 c1U2 þ c2 U2j j2U2

� �

þ c4U2 þ
A

2
¼ 0 ð35Þ

For the sake of brevity, letting:

G ¼ c3 c1U2 þ c2 U2j j2U2

� �
þ c4U2 þ

A

2
ð36Þ

and taking the conjugate of Eq. (35), one can get that:

c1 þ 2c2 U2j j2
� � oU2

os1
þ c2U

2
2

oU�
2

os1
¼ �G

c�2U
�2
2

oU2

os1
þ c�1 þ 2c�2 U2j j2
� � oU�

2

os1
¼ �G�

ð37Þ

By using Eqs. (37) and polar coordinates (29), we

obtain dynamics around slow flow at s1 time scale:

oU2

os1
¼ f N2; h2ð Þ

g N2ð Þ ð38Þ

where

q21¼
4x2

3k2x2 þ 27k2
�2kk2 þ 6kð Þx2 � 6kk2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x4 � 27k22x

2 � 18x2k2 þ 9k22
� �

k2 � 24kx2k2 x2 � k2ð Þkþ �3x6 þ x4k22 þ 6x4k2 � 3k22x
2

� �
k2

q �

q22¼� 4x2

3k2x2 þ 27k2
2kk2 � 6kð Þx2 þ 6kk2

�

þ

9x4 � 27k22x

2 � 18x2k2 þ 9k22
� �

k2 � 24kx2k2 x2 � k2ð Þkþ �3x6 þ x4k22 þ 6x4k2 � 3k22x
2

� �
k2

q �

ð34Þ
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f N2; h2ð Þ ¼ �c2c
�
2c3N

5
2

þ c�1c2c
�
3 þ c2c

�
4 � 2c1c

�
2c3 � c�1c2c3 � 2c�2c4

� �
N3
2

þ 1

2
c2Ae

jh2N2
2 � c1c

�
1c3 þ c�1c4

� �
N2

� 1

2
2c�2AN

2
2 þ c�1A

� �
e�jh2

ð39Þ

and

g N2ð Þ ¼ 3c2c
�
2N

4
2 þ 2 c1c

�
2 þ c�1c2

� �
N2
2 þ c1c

�
1 ð40Þ

It is convenient to investigate the vector field of

(38) by splitting real and imaginary parts:

oN2

os1
¼ f1 N2; h2ð Þ

g N2ð Þ
oh2
os1

¼ f2 N2; h2ð Þ
g N2ð Þ

ð41Þ

Consider k1 = k2 = 0, one can get that:

g N2ð Þ ¼ 1

64x6
3k2x2 þ 27k2
� �

N4
2

�
þ �48kx4 þ 48kx2k2
� �

N2
2

þ16x8 � 32x6k2 þ 16x4k22
�

ð42Þ

f1 N2; h2ð Þ ¼ 1

16x4
ð�4Ax3ð�x2 þ k2Þ sin hð Þ

� 3N2ð�
4

3
x4 þ kN2 þ 4

3
k2x

2Þk2Þ

ð43Þ

To be more exact, vector fields (41) consist of the

whole dynamical behavior of slow flow at s1 time

scale. When both derivatives of modulus and argu-

ment of variable U2 are equal to zero, one may obtain

equilibrium points of the vector field (38). However, it

is more important to study the conditions of singular

points of the vector fields because these points play an

important role in strongly modulated responses.

Hence, we will analyze the following two situations.

4.3 Case (a)

Consider that g(N2) = 0, f1(N2, h2) = 0, f2(N2,

h2) = 0, due to g(N2) = 0 it is more convenient to

analyze fixed points of vector fields (41). Rescaling the

time by the function g(N2), we yield the equations

shown as:

N 0
2 ¼ f1 N2; h2ð Þ

h02 ¼ f2 N2; h2ð Þ
ð45Þ

Fixed points of Eq. (45) obey algebraic relations:

f1 N20; h20ð Þ ¼ 0

f2 N20; h20ð Þ ¼ 0
ð46Þ

f2 N2; h2ð Þ ¼ 1

128N2x7
�48x4A � 2

3
x4 þ kN2

2 þ
2

3
k2x

2

� �
cos hð Þ þ 16N2 AN2x

5k sin hð Þ � x10
���

þ 1þ 2k2ð Þx8 þ 3kN2
2 � k22 � 2k2

� �
x6 þ ð� 1

16
N4
2k

2 þ �3k þ 3

2
kÞk2 � 3k

� �
N2
2 þ k22

� �
x4

þ � 9k2

16
þ 1

16
k2

� �
N4
2 þ 3kN2

2k2

� �
x2 þ 9N4

2k
2

16

��

ð44Þ

Fig. 7 Slow invariant manifold of the slow flow, where the blue

solid line denotes stable slow invariant manifold and red dotted

line unstable slow invariant manifold
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For the sake of brevity, we rewrite the form of

Eq. (46) in the following matrix form:

m11 m12

m21 m22

� �
cos h20
sin h20

� �
¼ h1

h2

� �
ð47Þ

where

m11 ¼ 0; m12 ¼ � 1

4x
A �x2 þ k2
� �

;

m21 ¼ � 3

8x3N20

A � 2

3
x4 þ kN2

20 þ
2

3
k2x

2

� �
;

m22 ¼
1

8x2
N20Ak;

h1 ¼ � 1

16x4
N20k2 �4x4 þ 3kN2

20 þ 4k2x
2

� �

h2 ¼
1

128x7
ð�16x10 þ ð32k2 þ 16Þx8

þ ð48kN2
20 � 16k22 � 32k2Þx6

þ ð�N4
20k

2 þ ðð�48k þ 24kÞk2
� 48kÞN2

20 þ 16k22Þx4

þ ðð�9k2 þ k2ÞN4
20 þ 48kN2

20k2Þx2 þ 9N4
20k

2Þ
ð48Þ

When Eq. (47) exists only one equilibrium point as

the determinant of the convenient matrix of Eq. (49) is

not zero:

m11 m12

m21 m22


 ¼ 1

32

A2 �x2 þ k2ð Þ �2x4 þ 3kN2
20 þ 2k2x2

� �
x4N20

6¼ 0

ð49Þ

According analysis above, we can get the solution

of matrix form (49):

cos h20 ¼ � 1

16

3N20

x4ð�x2 þ k2Þð� 2
3
x4 þ kN2

20 þ 2
3
k2x2ÞA

� 16x12

9
þ 16

3
k2 þ

16

9

� �
x10 þ ð� 16

3
k2 �

16

3
k22

�
þ 16

3
kN2

20

�
x8

þ 16

9
k32 þ

16

3
k22 �

32

3
N2
20 k � k

12

� �
k2 �

1

9
N2
20ðk2N2

20 þ 48kÞ
� �

x6

þ � 16

9
k32

�
þ 16

3
N2
20 k � k

6

� �
k22

þ 1

9
N2
20ðk2N2

20 þ 96kÞk2 þ N4
20 �k2 þ 1

9
k2

� ��
x4

þ N2
20 � 16

3
kk22 þ N2

20

4

3
kk

��
þk2 � 1

9
k2
�
k2 þ N2

20k
2
�
x2 � N4

20k
2k2
�

sin h20 ¼ � 1

4

N20 �4x4 þ 3kN2
20 þ 4k2x2

� �
k2

Ax3 �x2 þ k2ð Þ

ð50Þ

Obviously, it is easy to get solution N20, h20 from
Eq. (50).

4.4 Case (b)

Consider that g(N2) = 0, f1(N2, h2) = 0, f2(N2, h2) = 0,

by applying the second of Eqs. (30), we rewrite

g(N2) = 0 as:

P ¼ 3 k2x2 þ 9k2
� �

q22 þ 48kx2 �x2 þ k2
� �

q2
þ 16x4 x2 � k2

� �2
¼ 0 ð51Þ

Thus, we can get a boundary of singular points:

qS1 ¼ 4
�6k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3k2x2 þ 9k2

p� �
�x2 þ k2ð Þx2

3k2x2 þ 27k2

qS2 ¼ �4
6k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3k2x2 þ 9k2

p� �
�x2 þ k2ð Þx2

3k2x2 þ 27k2

ð52Þ

According to case (a), the condition of equilibrium

points has |sinh20|B 1, and we get:

�
N20 �4x4 þ 3kN2

20 þ 4k2x2
� �

k2

4Ax3 �x2 þ k2ð Þ


� 1 ð53Þ

Consequently, one can obtain the condition of

critical values of the excitation amplitude A:

AC1 ¼ � q1=2S1 �4x4 þ 3kqS1 þ 4k2x2ð Þk2
4x3 �x2 þ k2ð Þ




AC2 ¼ � q1=2S2 �4x4 þ 3kqS2 þ 4k2x2ð Þk2
4x3 �x2 þ k2ð Þ




ð54Þ

4.5 Numerical simulations and verification

Based on the above analysis corresponding to the

relation between the singular points and the parame-

ters, we get the necessary condition regarding the

occurrence of strongly modulated responses. Specif-

ically, it should be clarified that the two singular points

mentioned above are essentially a pair of SN bifurca-

tion points, because when parameters k1 = 0 and

k2 = 0, Eq. (34) is equal to Eq. (52). Therefore, the
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Fig. 8 The numerical results of the system, where the blue line

denotes the time series of NES response and the red line denotes

the time series of modulus of the complex amplitude of NES,

fixing system parameter at e = 0.001 r = 2 k2 = 0.5

k = 0.5 k = 0.5. a, b A = 0.22; c, d A = 0.31; e, f A = 0.5
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trajectory of NES reaching two singular points will

lose stability, leading to jumps.

For instance, by fixing the system parameters at

e = 0.001 r = 2 k2 = 0.5 k = 0.5 k = 0.5, the two

boundaries of singular points are obtained:

qS1 ¼ 0:479

qS2 ¼ 1:139
ð55Þ

Similarly, the critical values of the excitation

amplitude A are obtained:

AC1 ¼ 0:223

AC2 ¼ 0:083
ð56Þ

It should be noted that the amplitude A of the

external excitation should be at least greater than

max{AC1, AC2} to cause the strongly modulated

responses to occur, as only when the amplitude A is

large enough can the NES trajectory pass through a

pair of singular points resulting to two sudden changes

of the response amplitude.

As the amplitude of external excitation changes,

NES will exhibit different response modes. When the

amplitude A = 0.223, viewing from the subplots (a)–

(b) of Fig. 8, the NES keeps stationary oscillations

except for the initial time. There are no strongly large

amplitude responses since the trajectory of NES

cannot pass through the singular point. Increasing A

to 0.31, the time series of NES shows significantly

drastic changes irregularly, viewing in the subplot (c)

of Fig. 8. It is easy to notice that the trajectory of NES

passes through a pair of singular points where the

response amplitude of NES increases and decreases

instantaneously, which results in the occurrence of the

strongly modulated responses. In subplot (d) of Fig. 8,

one can notice the close-up of irregular strongly

modulated responses. Furthermore, by increasing the

amplitude A of external force to 0.5, the time series of

NES response presents the strongly modulated

response periodically. In the subplot (e) and (f) of

Fig. 8, it is obvious to find that when the amplitude of

NES response is equal to q1=2S1 = 0.692, it instanta-

neously increases and then, keeps nearly stationary

oscillations until it reaches q1=2S2 = 1.067, and the

amplitude of NES response instantaneously decreases.

Viewing from the subplot (f) of Fig. 8, one can realize

the two instantaneous changes in the response of NES,

which will lead to a significantly strong amplitude

modulation response.

The analytical prediction of the threshold of

singular point and excitation amplitude is validated

by the numerical simulations depicted in Fig. 8.

Consequently, we realize that only when the excitation

amplitude is greater than the threshold max{AC1,

AC2}, can the amplitude of the NES response reach

two singular points, leading to two instantaneous

jumps, which induces the occurrence of a strongly

modulated response.

Substituting another group of system parameters

e = 0.001 r = 4 k2 = 0.7 k = 0.5 k = 1 into Eq. (52)

and Eq. (54), one can get the values of two singular

points and the critical values of excitation amplitude

A, respectively. They are shown as Eq. (57) and

Eq. (58).

qS1 ¼ 0:140

qS2 ¼ 0:397
ð57Þ

AC1 ¼ 0:173

AC2 ¼ 0:018
ð58Þ

As the excitation amplitude A = 0.173, the NES

response presents stationary oscillation after the initial

time, viewing in subplots (a) and (b) of Fig. 9.

Increasing the amplitude A to 0.2, the time series of

NES begins to exhibit irregular oscillations. When the

excitation amplitude is greater than max{AC1, AC2}

and reaches q1=2S1 = 0.374 and q1=2S2 = 0.630, respec-

tively, NES will generate an obvious jump process,

depicted in subplots (c) and (d) of Fig. 9. Furthermore,

as the amplitude A = 0.25, the NES response repeats

two jump process periodically, resulting in the

strongly modulated response. The detailed evolution

of this process can be seen in subplots (e) and (f) of

Fig. 9.

Similarly, by fixing the system parameters at

e = 0.001 r = 4 k2 = 0.7 k = 0.3 k = 0.5, it is easy

to get the values of two singular points and threshold

of excitation amplitude A. They are expressed in

Eq. (59) and Eq. (60), respectively.

qS1 ¼ 0:282

qS2 ¼ 0:779
ð59Þ
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Fig. 9 The numerical results of the system, where the blue line

denotes the time series of NES response and the red line denotes

the time series of modulus of the complex amplitude of NES,

fixing system parameter at e = 0.001 r = 4 k2 = 0.7

k = 0.5 k = 1. a, b A = 0.173; c, d A = 0.2; e, f A = 0.25
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Fig. 10 The numerical results of the system, where the blue line denotes the time series of NES response and the red line denotes the

time series of modulus of the complex amplitude of NES, fixing system parameter at e = 0.001 r = 4 k2 = 0.7 k = 0.3 k = 0.5. a,
b A = 0.244; c, d A = 0.3; e, f A = 0.35
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AC1 ¼ 0:244

AC2 ¼ 0:036
ð60Þ

As the excitation amplitude A gradually increases,

we notice that a significant strongly modulated

response occurs when the NES response amplitudes

reach q1=2S1 = 0.531 and q1=2S2 = 0.883, and vice versa.

Viewing in subplots (a)–(f) of Fig. 10, similar to the

above two cases, when the excitation amplitude

A = max{AC1, AC2}, the NES only undergoes station-

ary oscillation except for some initial time. The

strongly modulated response only occurs when the

excitation amplitude A is greater than the critical value

to ensure sufficient input energy.

In addition, according to the qualitative analysis of

slow flow, the change of small parameter e may result

in qualitatively different dynamics of the original

system since small parameter e is included in coeffi-

cients of the slow flow characteristic polynomial as

well as boundaries of the bifurcations parameter

spaces.

For instance, when we select system parameters at

r = 2 k2 = 0.5 k = 0.5 k = 0.5 A = 0.5, both displace-

ments of the main structure and the NES express

nonlinear beat for small parameter e = 0.01; however,

for the same system parameters, the displacement of

NES shows evident strongly modulated response

where small parameter e = 0.001. In subplots (a) and

(b) of Fig. 11, we can observe different evolution of

the time series of the system responses.

Similarly, selecting system parameters r = 0.5

k2 = 0.9 k = 1.5 k = 1 A = 0.2 and the small

Fig. 11 The time series response of the system for parameters r = 2 k2 = 0.5 k = 0.5 k = 0.5 A = 0.5; a e = 0.01 b e = 0.001

Fig. 12 The time series response of the system for parameters r = 0.5 k2 = 0.9 k = 1.5 k = 1 A = 0.2; a e = 0.01 b e = 0.001
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parameters e = 0.01, both displacements of the main

structure and the NES present stationary oscillations

after the initial time. However, as the small parameter

e = 0.001, the amplitudes of these stationary oscilla-

tions become slowly change, which shows a distinct

oscillation type compared to the steady-state oscilla-

tion. The detailed information of system responses

corresponding to different values for small parameter e
is depicted in subplots (a) and (b) of Fig. 12

separately.

Fixing system parameters at r = 1 k2 = 0.9

k = 1.5 k = 1 A = 0.3, when e = 0.01, the system

exhibits non-stationary oscillation since its amplitude

slowly changes, while when e = 0.001, the system

response presents stationary oscillation except for

initial time. The numerical results of these responses

are depicted in subplots (a) and (b) of Fig. 13

separately.

5 Conclusion

A qualitative analysis of the dynamics of a novel

2-DOF coupled oscillators is presented, in which one

of the oscillators is the linear main structure, and the

second one is a nonlinear energy sink with essentially

geometrical nonlinearities. Based on the complexifi-

cation and averaging technique, the slow flow of the

system is obtained, and thus, the structure of fixed

points of slow flow is acquired with the change of

system parameters. Further, by applying the

bifurcation analysis method, we calculate SN bifur-

cation, cusp bifurcation, and Hopf bifurcation and

obtain corresponding expressions of boundary curves

in parameter planes, respectively. Moreover, these

parameter planes capture the behavior of each region

of fixed points and limited cycles, respectively.

With the multiple time scales technique, we study

in detail different time scales dynamics of slow flow.

At s0 time scale, our analysis shows the folding

relationship of the square of the modulus of the main

structure and the NES. The slow invariant manifold is

obtained to illustrate the relationship. The folding

structure, consisting of the slow invariant manifold

and a pair of SN bifurcations, verifies that strongly

modulated responses may occur. Further, we give an

expression of a pair of SN bifurcation points with

system parameters, respectively. Similarly, at s1 time

scale, expression of singular points and conditions of

critical values of the amplitude of external force is

acquired. Through the above analysis, the critical

parameter condition of excitation amplitude with

respect to the occurrence of strongly modulated

response are obtained.

By choosing the value of the amplitude of external

excitation equal to the critical value, the NES response

presents a stationary oscillation. Furthermore, as the

values of the excitation amplitude gradually, the NES

response exhibits a distinct kind of oscillation from the

stationary oscillation to the large amplitude modula-

tion oscillation. Numerical simulations show that

when the amplitude of the NES response passes

Fig. 13 The time series response of the system for parameters r = 1 k2 = 0.9 k = 1.5 k = 1 A = 0.3; a e = 0.01 b e = 0.001
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through the values of a pair of singular points, it occurs

twice in sudden and drastic changes, resulting in a

strongly modulated response. In addition, the small

parameter e has a qualitative impact on the dynamics

of the system. By choosing the different three groups

of system parameters, the evolution of the time series

of displacement of 2-DOF coupled oscillators shows

significantly different types when the small parameter

e changes from 0.01 to 0.001.

According to the analysis and numerical results of

the 2-DOF coupled oscillators in this paper, the

different combinations of system parameters and

excitation parameters will induce rich and complex

dynamical behaviors, which may lead to different

passive vibration absorption efficiencies of this

grounded NES. The design of NES suitable for

different vibration scenarios is worthy of an in-depth

discussion in future work.
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Appendix

The coefficients of the compact form (9) are followed

as:

a3 ¼
1

64x6
ðk2x2 þ 9k2Þ ðA4Þ

The coefficients of the polynomial of (15) are

followed as:

a0 ¼
e2A2 x2k22 þ k22

� �
4e2 x2 k1 þ k2ð Þ2þk22

� �
þ 8ek2 1� x2ð Þ þ 4 x2 � 1ð Þ2

ðA1Þ

a1 ¼
1

4x2ðx4 þ x2ðe2ðk1 þ k2Þ2 � 2ek2 � 2Þ þ ðek2 þ 1Þ2
ðx8 þ x6ðe2ðk1 þ k2Þ2 þ 2eðk22 � k2Þ þ k22 � 2k2

� 2Þ þ x4ðe2ðk21k
2
2 � 2k2k

2
1 þ k22Þ þ 2eðk22 � k22 þ k2Þ þ k22 � 2k22 þ 4k2 þ 1Þ þ x2ðe2k22k

2
1 � 2ek22 � 2k22

þ k22 � 2k2Þ þ k22Þ
ðA2Þ

a2 ¼
1

8x4 x4 þ x2 e2 k1 þ k2ð Þ2�2ek2 � 2
� �

þ ek2 þ 1ð Þ2
� � x6 kk2 � 3kð Þ þ x4

�
�3e2 k1 þ k2ð Þ
�

kð k1ð

þk2Þ�
1

3
kk1k2

�
þ 6ek � k22

2
þ k2

� �
þk 3k2 þ 6ð Þ � 2kk2Þ þ x2 e2

�
3kk2 k21 � k2

� �
þ kk1k

2
2

� �
� 3ek k22

�

�k22 þ 2k2
�
�3k 2k2 þ 1ð Þ þ kk2Þþ3kk2 ek2 þ 1ð ÞÞ

ðA3Þ
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c3 ¼
1

2x2
2k1 þ 2k2ð Þeþ 2k2ð Þx2 þ kZ

� �
ðB4Þ

c4 ¼ 1 ðB5Þ

The coefficients of the polynomial of (18) are

followed as:

c0 ¼
1

256x8
16x12 þ 16 k1 þ k2ð Þ2e2 þ 32k22 � 32k2

� �
eþ 16k22 � 32k2 � 32

� �
x10 þ 16 k21k

2
2 � 2k2k

2
1

���

þk22
�
e2 þ 2 k22 � k22 þ k2

� �
eþ kk2 � 4kð ÞZ þ k22 � 2k22 þ 4k2 þ 1

�
x8 þ 3Z2k2þ

�
�48 k1 þ k2ð Þð k1ðð

þk2Þk �
1

3
kk2k1

�
e2 þ 96 � 1

2
k22 þ k2

� �
keþ 16 3kk2 � 2kk2 þ 6kð ÞÞZ þ 16k22e

2k21 � 32k22e� 32k22

þ 16k22 � 32k2Þx6 þ ðð3k2 k1 þ k2ð Þ2e2 � 6k2k
2eþ 27k2 � 6k2ÞZ2 þ ð 16 kk1 � 3kð Þk22 þ 48k2kk

2
1

� �
e2

�48k k22 � k22 þ 2k2
� �

e� 96kk2 þ 16kk2 � 48k
�
Z þ 16k22

�
x4 � 54 � 1

18
k22k

2 � 1

2
k2 k1 þ k2ð Þ2

� �
e2

��

þk2 k2 � 1

9
k2

� �
eþ k2 � 1

18
k2
�
Z � 8

9
kk2 ek2 þ 1ð Þ

�
Zx2 þ 27Z2k2 ek2 þ 1ð Þ2

�

ðB1Þ

c1 ¼
1

64x6
16k1 þ 16k2ð Þeþ 16k2ð Þx8 þ 16k1k2ðk1 þ k2ð Þe2 � 32 � 1

2
k22 þ k2

� �
k1eþ 8kZ � 32k2

� �
x6
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� �

Z þ 2k22k1
� �
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� �
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þ 3Z
8

3
k22ke

2 þ ðk2ðk1 þ k2
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1

6
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Þeþ 8

3
kÞx2 þ 27k2ðk1 þ k2ÞZ2eÞ
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1

64x6
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eþ 16k22 � 32k2 � 32
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x6 þ 16e2k22

��
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b0 ¼ � 1
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x2 eþ 1ð Þ2k22 þ 2x2ek1 eþ 1ð Þk2 þ e2x2k21 þ �2x2 þ ek2 þ k2 þ 1
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x2k1ðeþ 1Þ2k32
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k2 þ k22k
2
1e

2
�
e
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b1 ¼
1

16x6
k21x

2 þ x4
� �

e2 þ 2x4 � 2x2
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b2 ¼ � 1
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