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Abstract This article introduces a generalized (3+1)
dimensional integrable Ito equation based on relevant
literatures. Firstly, the bilinear form of the equation is
obtainedbyBell polynomialmethod, andvarious forms
of Bäcklund transformations, Lax pair and infinite con-
servation lawsof the equation are obtained, proving that
the equation is integrable in the Lax sense. Secondly,
using the trial function method and the mathematical
calculation software Mathematica, various solutions
of the equation are constructed, including N-soliton
solutions, one-order breather wave solution and Lump-
Type solution. Finally, the interactions between various
functional solutions are analyzed through the three-
dimensional and contour plots of the solutions.
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1 Introduction

Mathematics is a subject with a wide range of appli-
cations. In many fields, people often study and ana-
lyze the phenomena and essence of things by establish-
ingmathematicalmodels [1,2]. Themodels established
when studying nonlinear phenomena and related prob-
lems are called nonlinear evolution equations (NLEEs).
In recent years, the study of NLEEs has received
widespread attention from scholars from all walks of
life. It can be used to describe complex nonlinear phe-
nomena in many scientific fields, such as fluid mechan-
ics, mathematics, chemistry, optics, quantum mechan-
ics, etc, and the exact solutions of NLEEs can provide
important information for describing nonlinear phe-
nomena [3–6]. Therefore, finding analytical solutions
for NLEEs has become a key topic of concern for peo-
ple. At present, scholars have done a lot of work on the
research of NLEEs’ soliton solutions, Lump solutions,
breather wave solutions and other analytical expression
[7–11], and have proposed various solutions, such as
theHirota bilinearmethod [12–14], theBäcklund trans-
formation method [15], the Riccati projective equation
method [16], the Lie symmetry method [17–20], the
sine-cosine method [21,22], the trial function method
[23], the three wave method [24,25] and the Darboux
transformation method [26–28].

In the 1980s, Ito extended the bilinear KdV equa-
tion and established the famous (1+1) dimensional Ito
equation
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u2t + u3xt + 3(2uxut + uuxt ) + 3u2x∂
−1
x ut = 0 (1)

and (2+1) dimensional Ito equation [29]

u2t + u3xt + 3(2uxut + uuxt ) + 3u2x∂
−1
x ut + αuyt

+ βuxt = 0. (2)

References [30–33] simultaneously studied equa-
tions Eqs. (1) and (2), and obtained multiple new
results. For example, multiple-soliton solutions, Bäck-
lund transformation, Lax integrability and multiple
wave solutions. References [34–38] applied different
methods to obtain various forms of exact solutions for
Eq. (2), including the Lump solution, breather wave
solution, interaction solution, solitary wave solution
and soliton solutions. The extended (3+1) dimensional
Ito equation was first proposed in reference [39]

u2t +6(uxut )x +u3xt + (αux +βuy +γ uz)t = 0, (3)

moreover, the Hirota bilinear method was applied to
obtainmultiple-soliton solutions andLump solution for
Eq. (3).

This article proposes a new generalized (3+1)
dimensional Ito equation based on references [29–39]

u2t +λ(uxut )x +ξu3xt +(αux +βuy+γ uz)t = 0, (4)

where α, β, γ, λ and ξ are all arbitrary real numbers,
α �= β in Eqs. (3) and (4). When λ = 6, ξ = 1, Eq. (4)
is transformed into Eq. (3).

The goal of this article is to apply Bell polynomial
method and trial function method to study different
forms of Bäcklund transformations, Lax pair, infinite
conservation laws and exact solutions of Eq. (4). All
the content obtained in the paper and the images drawn
were obtained usingmathematical calculation software
Mathematica. The transformation (5) introduced when
the equation is converted into bilinear form is the high-
light of the paper. The three arbitrary function terms
added in the transformation can be reduced when the
equation is bilinear, so that more abundant solutions of
the equation can be obtained, which has not been found
in the previous literature. Compared to reference [39],
this study investigates the integrability of the equation
in the Lax sense, obtaining infinite conservation laws,
various forms of Bäcklund transformations, and exact
solutions, which are more valuable for research.

The main contents of this paper are as follows: In
Sect. 2, the bilinear formofEq. (4) is obtained by apply-
ing Bell polynomial method. In Sect. 3 and 4, obtained
the double Bell polynomial Bäcklund transformation
and bilinear Bäcklund transformation of Eq. (4), and
obtained the Lax pair and infinite conservation laws of
the equation through the double Bell polynomial Bäck-
lund transformation. In Sect. 5, three types of bilinear
auto-Bäcklund transformations were obtained through
the Hirota bilinear method and different equivalent
exchange formulas. In Sect. 6 and 7, the N-soliton solu-
tions and Lump-Type solution of Eq. (4) were obtained
using the obtained bilinear equations. Based on the N-
soliton solutions, obtain the one-order breather wave
solution and the interaction solution between the one-
order breather wave solution and the one-soliton solu-
tion of the equation through the complex conjugate
method. The interaction solution between the obtained
solution anddifferent functional solutionswas obtained
through transformation. At last, Sect. 8 is the conclu-
sion and outlook of this article.

2 The bilinear form of Eq. (4)

Introducing the potential function q = q(x, y, z, t), we
set

u = cqx (x, y, z, t) + κ(y, z) + ζ(y) + 
(z), (5)

where κ(y, z), ζ(y) and 
(z) are arbitrary functions
of their variables, respectively.

Substituting expression (5) into Eq. (4), divide the
x product once, and take the constant of integration as
zero to get

cqtt + c2λqxxqxt + cξq3xt + cαqxt + cβqyt + cγ qzt

= 0, (6)

when c = 1, λ = 3ξ , expression (6) can be transformed
into

E(q) = qtt + 3ξqxxqxt + ξq3xt + αqxt + βqyt

+ γ qzt = 0, (7)

the above expression can be represented by a P-
polynomial
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Ptt (q) + ξ P3xt (q) + αPxt (q)

+ βPyt (q) + γ Pzt (q) = 0. (8)

Under transformation q(x, y, z, t) = 2 ln f (x, y, z,
t), we can get the bilinear form of Eq. (4)

(D2
t + ξD3

x Dt + αDx Dt + βDyDt

+ γ DzDt ) f · f = 0, (9)

with f (x, y, z, t), g(x, y, z, t) are real functions with
respect to variables x, y, z and t ,whereDx , Dy, Dz, Dt

are the bilinear operators defined by Hirota [40]

Dm
x Dn

y D
p
z D

q
t f (x, y, z, t) · g(x, y, z, t)

= ( ∂

∂x
− ∂

∂x ′
)m( ∂

∂y
− ∂

∂y ′
)n( ∂

∂z
− ∂

∂z′
)p

( ∂

∂t
− ∂

∂t ′
)q

f (x, y, z, t)g(x ′, y′, z′, t ′)|x=x ′,y=y′,z=z′,t=t ′ .
(10)

with m, n, p and q being the non-negative integers.

3 Bilinear Bäcklund transformation and Lax pair

Below we use Bell polynomials to construct Bäck-
lund transformation andLaxpairs of generalized (3+1)-
dimensional Ito equations.

Assuming q ′ is another solution to Eq. (8), introduce
the following transformation

q = 2 ln F = w − v, q ′ = 2 lnG = w + v,

v = ln
G

F
, w = ln FG, (11)

we have

E(q ′) − E(q) = E(w + v) − E(w − v)

= 2(v2t + γ vzt + βvyt + αvxt + 3ξwxtv2x

+ 3ξvxtw2x + ξv3xt )

= 2∂t [Yt (v,w) + γYz(v,w) + βYy(v,w)

+ αYx (v,w) + ξY3x (v,w)] + h(v,w)

= 0,

(12)

where

h(v,w) = 6ξ(wxtv2x − vxw2xt − v2xvxt ). (13)

To obtain the bilinear Bäcklund transformation of Eq.
(4), we introduce the following restrictions

wxt + vxvt + μvx = 0, (14)

whereμ is an arbitrary parameter, on account of which,
we have

h(v,w) = 0, (15)

basedonexpressions (12),(14) and (15), the doubleBell
polynomial Bäcklund transformation of Eq. (4) can be
obtained

∂t [Yt (v,w) + γYz(v,w) + βYy(v,w)

+ αYx (v,w) + ξY3x (v,w)] = 0,

Yxt (v,w) + μYx (v,w) = 0.

(16)

From the relationship betweendoubleBell polynomials
and Hirota bilinear operators

Yn1x1,··· ,nl xl (v = ln
F

G
, w = ln FG) = (FG)−1Dn1

x1

· · · Dnl
xl F · G (17)

and expression (16), the following bilinear Bäcklund
transformation for Eq. (4) is obtained

(Dt + βDy + γ Dz + αDx + ξD3
x )F · G = 0,

(Dx Dt + μDx )F · G = 0.
(18)

To obtain the Lax pair of Eq. (4), we introduce the
Hopf-Cole transform

v = ln φ,w = q + ln φ, (19)

substituting expression (19) into expression (16), we
have

φt + βφy + γφz + (α + 3ξq2x )φx + ξφ3x = 0,

φxt + qxtφ + μφx = 0, (20)

from expression u = qx (x, y, z, t) + κ(y, z) + ζ(y) +

(z), the Lax pair of Eq. (4) is obtained

φt + βφy + γφz + (α + 3ξux )φx + ξφ3x = 0,

φxt + utφ + μφx = 0.
(21)
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The expression (21) obtained above can also be
rewritten as

Lφ = 0φ, φt = Aφ, (22)

where

A = −γ ∂z − β∂y − (α + 3ξux )∂x − ξ∂3x ,

L = ∂x∂t + ut + μ∂x , (23)

under condition Lt = [A, L], Eq. (4) can be obtained,
and then Eq. (4) is integrable in the Lax sense.

4 Infinite conservation laws

Next, we construct the infinite conservation laws of Eq.
(4). Firstly, introducing the function η = η(x, y, z, t),
we set

η = q ′
x − qx
2

, (24)

from expression (11), we can obtain

vx = η,wx = η + qx , (25)

substituting expression (25) into expression (16), we
have

∂t {∂−1
x ηt + γ ∂−1

x ηz + β∂−1
x ηy

+ αη + ξ [η3 + 3η(ηx + qxx ) + ηxx ]} = 0,

ηt + qxt + η∂−1
x ηt + μη = 0.

(26)

Setting

μ = ε−2, η = ε +
∞∑

i=1

In(q, qx , · · · )ε−n, (27)

and substituting expression (27) into the second expres-
sion of expression (26), so that the power coefficients
of ε are zero, we have

I1 = −ux , I2 = −I1,x ,
In = −∂−1

t In−2 − ∂−1
t (∂−1

x In+1,t )

− ∂−1
t

(
n−1∑

k=1

Ik∂−1
x In−k,t

)

, n = 3, 4, · · · ,

(28)

similarly, substituting expression (27) into the first
expression of expression (26), so that the power coeffi-
cients of ε are zero, the following infinite conservation
laws are obtained

Fn,t + Hn,x + Kn,y + Vn,z = 0, n = 1, 2, · · · , (29)

where

Kn = β∂−1
x In,t ,Vn = γ ∂−1

x In,t ,

Hn = 3ξIn+1,t + ξIn,x,t , n = 1, 2, · · · , (30)

F1 = ∂−1
x I1,t + αI1 + 3ξI2

1 + 3ξI3 + 3ξI1ux ,
(31)

F2 = ∂−1
x I2,t + αI2 + 6ξI1I2 + 3ξI4

+ 3ξI1I1,x + 3ξI2ux , (32)

F3 = ∂−1
x I3,t + ξI3

1 + 3ξI2
2 + αI3 + 6ξI1I3

+ 3ξI5 + 3ξI2I1,x + 3ξI1I2,x + 3ξI3ux ,
(33)

. . .Fn = ∂−1
x In,t + αIn + 3ξIn+2 + 3ξInux

+ 3ξ
n−1∑

k=1

IkIn−k,x + 3ξ
n∑

k=1

IkIn+1−k

+ 3ξ
∑

l+h+p=n,l=h �=p

IlIhIp + ξ
∑

3k=n

I3
k

+ 6ξ
∑

m+o+r=n,m<o<r

ImIoIr , n = 4, 5, · · · ,

(34)

among them l, h, p, k,m, o and r are all positive inte-
gers.

5 Bilinear auto-Bäcklund transformations

In this section, we will use the Hirota bilinear method
to construct the bilinear auto-Bäcklund transformations
for Eq. (4). Assuming g(x, y, z, t) is another solution
for bilinear equation (9), then we have
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(D2
t + ξD3

x Dt + αDx Dt + βDyDt

+ γ DzDt )g · g = 0, (35)

setting

U = [(D2
t + ξD3

x Dt + αDx Dt + βDyDt

+ γ DzDt ) f · f ]g2 − f 2[(D2
t + ξD3

x Dt

+ αDx Dt + βDyDt + γ DzDt )g · g],
(36)

and using the commutative identity of the Hirota bilin-
ear operator [40], we will obtain the bilinear auto-
Bäcklund transformations of Eq. (4).

(DyDt f · f )g2 − f 2(DyDt g · g)
= 2Dy(Dt f · g) · ( f g) = 2Dt (Dy f · g) · ( f g),

(DzDt f · f )g2 − f 2(DzDt g · g)
= 2Dz(Dt f · g) · ( f g) = 2Dt (Dz f · g) · ( f g),

(Dx Dt f · f )g2 − f 2(Dx Dt g · g)
= 2Dx (Dt f · g) · ( f g) = 2Dt (Dx f · g) · ( f g),

(D2
t f · f )g2 − f 2(D2

t g · g) = 2Dt (Dt f · g) · ( f g),
(37)

(D3
x Dt f · f )g2 − f 2(D3

x Dt g · g)
= 2Dt [(D3

x f · g) · ( f g)]
− 6Dx [(Dx Dt f · g) · (Dx f · g)], (38)

(D3
x Dt f · f )g2 − f 2(D3

x Dt g · g)
= 3Dx [(D2

x Dt f · g) · ( f g)]
− Dt [(D3

x f · g) · ( f g)] − 3Dx

[(D2
x f · g) · (Dt f · g)]

− 3Dt [(D2
x f · g) · (Dx f · g)], (39)

(D3
x Dt f · f )g2 − f 2(D3

x Dt g · g)
= 2Dx [(D2

x Dt f · g) · ( f g)]
− 2Dt [(D2

x f · g) · (Dx f · g)] − 2Dx

[(Dx Dt f · g) · (Dx f · g)]
− 2Dx [(D2

x f · g) · (Dt f · g)]. (40)

Case I:
Setting

Dx Dt f · g = ϑ1 f g, (41)

where ϑ1 is a real constant.

Substituting expressions (37), (38) and (41) together
into expression (36) yields

U1 = 2Dt {[(Dt + βDy + γ Dz + ξD3
x ) f · g] · ( f g)}

+ 2Dx {[(αDt + 3ξϑ1Dx ) f · g] · ( f g)}, (42)

taking U1 = 0, a bilinear auto-Bäcklund transforma-
tion for Eq. (4) is obtained

(Dx Dt − ϑ1) f · g = 0,

(Dt + βDy + γ Dz + ξD3
x ) f · g = 0,

(αDt + 3ξϑ1Dx ) f · g = 0.

(43)

Case II:
Setting

D2
x f · g = ϑ2 f g, (44)

where ϑ2 is a real constant.
Substituting expressions (37), (39) and (44) together

into expression (36) yields

U2 = Dt {[(2Dt + 2βDy + 2γ Dz + 3ϑ2ξDx

− ξD3
x ) f · g] · ( f g)} + Dx {[(3ξD2

x Dt

+ 3ξϑ2Dt + 2αDt ) f · g] · ( f g)},
(45)

taking U2 = 0, a bilinear auto-Bäcklund transforma-
tion for Eq. (4) is obtained

(D2
x − ϑ2) f · g = 0,

(2Dt + 2βDy + 2γ Dz + 3ϑ2ξDx

− ξD3
x ) f · g = 0,

(3ξD2
x Dt + 3ξϑ2Dt + 2αDt ) f · g = 0.

(46)

Case III:
Setting

Dx f · g = ϑ3 f g, Dt f · g = ϑ4 f g, (47)

where ϑ3 and ϑ4 being all the real constants.
Substituting expressions (37), (40) and (47) together

into expression (36) yields

U3 = Dt {[(2Dt + 2βDy + 2γ Dz − 2ϑ3ξD
2
x ) f · g]·

( f g)} + Dx {[(2ξD2
x Dt − 2ξϑ3Dx Dt

− 2ξϑ4D
2
x + 2αDt ) f · g] · ( f g)}, (48)
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taking U3 = 0, a bilinear auto-Bäcklund transforma-
tion for Eq. (4) is obtained

(Dx − ϑ3) f · g = 0,

(Dt − ϑ4) f · g = 0,

(Dt + βDy + γ Dz − ϑ3ξD
2
x ) f · g = 0,

(ξD2
x Dt − ξϑ3Dx Dt − ξϑ4D

2
x + αDt ) f · g = 0.

(49)

Thebilinear auto-Bäcklund transformations obtained
above are of great significance for solving the equation.
When a known solution of Eq. (4) is known, the above
bilinear auto-Bäcklund transformations can be itera-
tively applied to obtain an infinite sequence solution of
Eq. (4).

6 N-Soliton and Interaction Solutions of Eq. (4)

6.1 One-soliton solution

Based on the perturbation method [40], it is assumed
that Eq. (4) has a one-soliton solution of the following
form

f = 1 + eη1 , (50)

where η1 = a1x + b1y + c1z + d1t + η01, a1, b1, c1, d1
and η01 are all the real constants.

Substituting expression (50) into bilinear equation
(9), we have

d1 = −(a1α + b1β + c1γ + a31ξ), (51)

therefore, we obtain the following solution for Eq. (4)

u = 2[ln(1 + eη1)]x + κ(y, z) + ζ(y) + 
(z), (52)

when κ(y, z) = 0, ζ(y) = 0,
(z) = 0, solution (52)
is transformed into a one-soliton solution

u = 2[ln(1 + eη1)]x . (53)

6.1.1 One-soliton solution and interaction solutions

Due to the arbitrariness of κ(y, z),ζ(y) and 
(z) in
expression (52), various forms of analytical solutions to

Eq. (4) can be obtained by selecting different arbitrary y
functions, z functions and y, z functions.We obtain the
interaction solutions between the one-soliton solution
of Eq. (4) and the solutions of different functions by
selecting different types of functions.
Case 1.1: Take parameters a1 = η01 = 1, b1 = 3, c1 =
2 in solution (53) to obtain images of one-soliton solu-
tion in different spaces, their features are shown in
Fig. 1. As can be seen from the figure, during the trans-
mission process, the amplitude of the one-soliton solu-
tion remains unchanged, and the transmission process
in different spaces is almost unchanged.
Case 1.2: Under the premise of the parameters taken
in Case 1.1, when expression (52) takes κ(y, z) =
cos(−y + z), ζ(y) = cos(2y),
(z) = cos(−z), the
interaction solution between the one-soliton solution
and the trigonometric function solution of Eq. (4) are
obtained, the interaction phenomenon between solu-
tions is shown in Fig. 2a.
Case 1.3: Under the premise of the parameters taken
in Case 1.1, when expression (52) takes κ(y, z) =
tanh(yz), ζ(y) = cosh(−2y)−1,
(z) = sinh(z +
1)−1, the interaction solution between the one-soliton
solution and the hyperbolic function solution of Eq.
(4) are obtained, the interaction phenomenon between
solutions is shown in Fig. 2b.
Case 1.4: Under the premise of the parameters taken
in Case 1.1, when expression (52) takes κ(y, z) =
cn(y + z, 0.7), ζ(y) = cn(y2 − 3, 0.4),
(z) =
sn(2z + 1, 0.5), the interaction solution between the
one-soliton solution of Eq. (4) and the Jacobian ellip-
tic function solution are obtained, the interaction phe-
nomenon between solutions is shown in Fig. 2c.
Case 1.5: Under the premise of the parameters taken
in Case 1.1, when expression (52) takes κ(y, z) =
cn(z2+y, 0.2), ζ(y) = cos(2y+1),
(z) = z sin(4z)
+ cosh(−z)−1, the interaction solution between the
one-soliton solution of Eq. (4) and multiple functional
solutions are obtained, the interaction phenomenon
between solutions is shown in Fig. 2d.

6.2 Two-soliton solutions

In order to obtain the two-soliton solutions of Eq. (4),
we set

f = 1 + eη1 + eη2 + A12e
η1+η2 , (54)
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Fig. 1 (Color online) The 3D plots of one-soliton solutions in different spaces. a x = t = 0, b z = t = 0, and c y = t = 0

Fig. 2 (Color online) The 3D plots of interaction solutions
between different functional solutions and one-soliton solution
with x = t = 0. a Interaction solution between one-soliton solu-
tion and trigonometric function solution, b interaction solution

between one-soliton solution and hyperbolic function solution,
c interaction solution between one-soliton solution and Jacobi
elliptic function solution, and d interaction solution between one-
soliton solution and multiple functional solutions

where ηi = ai x + bi y + ci z + di t + η0i (i = 1, 2),
ai , bi , ci , di , η0i and A12 are all the real constants.
Substituting expression (54) into bilinear equation (9),
we obtain the following solution for Eq. (4)

u = 2[ln(1 + eη1 + eη2 + A12e
η1+η2)]x + κ(y, z)

+ ζ(y) + 
(z), (55)

where

di = −(aiα + biβ + ciγ + a3i ξ), (i = 1, 2),

A12 = (a1 − a2)[α(a1 − a2) + β(b1 − b2) + γ (c1 − c2) + ξ(a31 − a32)]
(a1 + a2)[α(a1 + a2) + β(b1 + b2) + γ (c1 + c2) + ξ(a31 + a32)]

, (56)

when κ(y, z) = 0, ζ(y) = 0,
(z) = 0, solution (55)
is transformed into a two-soliton solutions

u = 2[ln(1 + eη1 + eη2 + A12e
η1+η2)]x . (57)

6.2.1 Two-soliton solutions and interaction solutions

We obtain the interaction solutions between the two-
soliton solutions of Eq. (4) and the different functional
solutions by selecting different arbitrary y functions, z
functions and y, z functions.
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Fig. 3 (Color online) The 3D plots and contour plots of two-soliton solutions. a, d x = 0, t = −2, b, e x = t = 0, and c, f x = 0, t = 2

Fig. 4 (Color online) The 3D plots of interaction solutions
between different functional solutions and two-soliton solutions
with x = t = 0. a Interaction solution between two-soliton solu-
tions and trigonometric function solution, b interaction solution

between two-soliton solutions and hyperbolic function solution,
c interaction solution between two-soliton solutions and Jacobi
elliptic function solution, and d interaction solution between two-
soliton solutions and multiple functional solutions
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Case 2.1: Take parameters a1 = b1 = ξ = η01 =
η02 = 1, a2 = 1.2, b2 = c1 = 3, c2 = 0.5, α = β =
2, γ = 0.8 in solution (57) to obtain the two-soliton
solutions of Eq. (4), it is shown in Fig. 3. It shows the
collision process of two-soliton solutions in the (y, z)
plane. As time t increases, the two-soliton solutions
moves along the positive half axis of the y-axis and
the positive half axis of the z-axis, and the velocity,
amplitude and interaction mode of the solitons do not
change.
Case 2.2: Under the premise of taking the parame-
ters in Case 2.1, when κ(y, z) = sin(y − z), ζ(y) =
sin(y),
(z) = sin(z) are taken in the expression (55),
the interaction solution between the two-soliton solu-
tions and the trigonometric function solution of Eq.
(4) are obtained, the interaction phenomenon between
solutions is shown in Fig. 4a.
Case 2.3: Under the premise of taking the parameters
in Case 2.1, when κ(y, z) = tanh(2y + z), ζ(y) =
sinh(3y)−1,
(z) = cosh(4z − 1)−2 are taken in the
expression (55), the interaction solution between the
two-soliton solutions and the hyperbolic function solu-
tionofEq. (4) are obtained, the interactionphenomenon
between solutions is shown in Fig. 4b.
Case 2.4: Under the premise of taking the parameters
in Case 2.1, when κ(y, z) = cn(−2yz, 0.1), ζ(y) =
sn(y − 1, 0.8),
(z) = sn(z + 3, 0.25) are taken in
the expression (55), the interaction solution between
the two-soliton solutions of Eq. (4) and the Jacobian
elliptic function solution are obtained, the interaction
phenomenon between solutions is shown in Fig. 4c.
Case 2.5: Under the premise of taking the parameters
in Case 2.1, when κ(y, z) = cosh(yz − 1)−1, ζ(y) =
sin(2y + 2),
(z) = zcn(z + 1, 0.2) + z−1 are taken
in the expression (55), the interaction solution between
the two-soliton solutions and multiple functional solu-
tions of Eq. (4) are obtained, the interaction phe-
nomenon between solutions is shown in Fig. 4d.

6.2.2 One-order breather wave solution and
interaction solutions

Next, we obtain the breather wave solution of Eq. (4)
through the complex conjugate method, and study the
interaction between the breather wave solution and
other functional solutions.
Case 3.1: Take parameters a1 = a∗

2 = 0.1+0.5i, b1 =
b∗
2 = 0.2 + 2i, c1 = c2 = η01 = η02 = 1, α = 0.8, β =

−0.2, γ = −0.6, ξ = −1 in solution (57) and con-

vert the two-soliton solutions of Eq. (4) into one-order
breather wave solution, it is shown in Fig. 5. As can
be clearly seen from the figure, with the increase of
x and the decrease of t , the one-order breather wave
solution moves along the positive half axis direction of
the z-axis.
Case 3.2: Under the premise of the parameters taken in
Case 3.1,whenκ(y, z) = cos(y+z), ζ(y) = cos(−y+
1)2,
(z) = sin(z−2) are taken in the expression (55),
the interaction solution between the one-order breather
wave solution and the trigonometric function solution
of Eq. (4) are obtained, the interaction phenomenon
between solutions is shown in Fig. 6a.
Case 3.3: Under the premise of the parameters taken in
Case 3.1, when κ(y, z) = tanh(yz), ζ(y) = cosh(4y−
1)−3,
(z) = sinh(2z + 1)−1 are taken in the expres-
sion (55), the interaction solution between the one-
order breather wave solution and the hyperbolic func-
tion solution of Eq. (4) are obtained, the interaction
phenomenon between solutions is shown in Fig. 6b.
Case 3.4: Under the premise of the parameters taken
in Case 3.1, when κ(y, z) = sn(yz + 3y, 0.5), ζ(y) =
cn(y2, 0.2),
(z) = cn(z − 2, 0.6) are taken in the
expression (55), the interaction solution between the
one-order breather wave solution and the Jacobi elliptic
function solution of Eq. (4) are obtained, the interaction
phenomenon between solutions is shown in Fig. 6c.
Case 3.5: Under the premise of the parameters taken
in Case 3.1, when κ(y, z) = sn(e2yz, 0.4), ζ(y) =
sin(−y),
(z) = cosh(z + 2)−1 are taken in the
expression (55), the interaction solution between the
one-order breather wave solution of Eq. (4) and var-
ious functional solutions are obtained, the interaction
phenomenon between solutions is shown in Fig. 6d.

6.3 Three-soliton solutions

In order to obtain the three-soliton solutions of Eq. (4),
we set

f = 1 + eη1 + eη2 + eη3 + B12e
η1+η2 + B13e

η1+η3

+ B23e
η2+η3 + C123e

η1+η2+η3 ,

(58)

where ηi = ai x + bi y + ci z + di t + η0i (i = 1, 2, 3),
ai , bi , ci , di , η0i , B12, B13, B23 andC123 are all the real
constants.
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Fig. 5 (Color online) The 3D plots and contour plots of one-order breather wave solutions. a, d x = −6, t = 6, b, e x = t = 0, and c,
f x = 6, t = −6

Fig. 6 (Color online) The 3D plots of interaction solutions
between different functional solutions and one-order breather
wave solution with x = t = 0. a interaction solution between
one-order breather wave solution and trigonometric function
solution, b interaction solution between one-order breather wave

solution and hyperbolic function solution, c interaction solution
between one-order breather wave solution and Jacobi elliptic
function solution, and d interaction solution between one-order
breather wave solution and multiple functional solutions
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Fig. 7 (Color online) The 3D plots and contour plots of three-soliton solutions. a, d x = 0, t = −2, b, e x = t = 0, and c, f x = 0, t = 2

Fig. 8 (Color online) The 3D plots of interaction solutions
between different functional solutions and three-soliton solu-
tions with x = t = 0. a Interaction solution between three-
soliton solutions and trigonometric function solution, b inter-
action solution between three-soliton solutions and hyperbolic

function solution, c interaction solution between three-soliton
solutions and Jacobi elliptic function solution, and d interaction
solution between three-soliton solutions and multiple functional
solutions
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Fig. 9 (Color online) The 3D plots of interaction solutions
between different functions with x = t = 0. a interaction
solution between one-soliton solution and one-order breather
wave solution, b interaction solution between one-soliton solu-
tion, one-order breather wave solution and trigonometric func-
tion solution, c interaction solution between one-soliton solution,

one-order breather wave solution and hyperbolic function solu-
tion, d interaction solution between one-soliton solution, one-
order breather wave solution and Jacobi elliptic function solu-
tion, and e interaction solution between one-soliton solution,
one-order breather wave solution and multiple functional solu-
tions

Substituting expression (58) into bilinear equation
(9), we obtain the following solution for Eq. (4)

u =2[ln(1 + eη1 + eη2 + eη3 + B12e
η1+η2

+ B13e
η1+η3 + B23e

η2+η3

+ C123e
η1+η2+η3)]x + κ(y, z) + ζ(y) + 
(z),

(59)

where

di = −(aiα + biβ + ciγ + a3i ξ), (i = 1, 2, 3),

C123 = B12B13B23,

Bi j = (ai − a j )[α(ai − a j ) + β(bi − b j ) + γ (ci − c j ) + ξ(a3i − a3j )]
(ai + a j )[α(ai + a j ) + β(bi + b j ) + γ (ci + c j ) + ξ(a3i + a3j )]

.

(60)

here i, j = 1, 2, 3, and i < j , when κ(y, z) =
0, ζ(y) = 0,
(z) = 0, solution (59) is transformed
into a three-soliton solutions

u = 2[ln(1 + eη1 + eη2 + eη3 + B12e
η1+η2

+ B13e
η1+η3 + B23e

η2+η3 + C123e
η1+η2+η3)]x .

(61)

6.3.1 Three-soliton solutions and interaction
solutions

Next,wewill construct the interaction solutions between
the three-soliton solutions of Eq. (4) and different func-
tional solutions, selecting different κ(y, z), ζ(y) and
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(a) (b) (c)

(d) (e) (f)

Fig. 10 (Color online) The 3D plots and contour plots of Lump-Type solutions with parameters x = 0, a0 = b5 = b3 = c2 = 2, a1 =
a3 = c4 = 0.5, b4 = α = 1, a4 = 0.3, a5 = 1.2, c1 = 1.7, c3 = 0.4, c5 = 1.5, γ = 0.2. a, d t = −10, b, e t = 0, and c, f t = 10

Fig. 11 (Color online) The 3D plots of interaction solutions
between different functional solutions and Lump-Type. a inter-
action solution between Lump-Type and trigonometric function
solution, b interaction solution between Lump-Type and hyper-

bolic function solution, c interaction solution between Lump-
Type and Jacobi elliptic function solution, and d interaction solu-
tion between Lump-Type and multiple functional solutions
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(z) in expression (59), we obtain various forms of
analytical solutions of Eq. (4).
Case 4.1: Take parameters a1 = 2.6, a2 = 2.5, a3 =
b3 = 3, b1 = c3 = 0.5, b2 = 2, c1 = 4, c2 =
3.2, α = β = γ = ξ = η01 = η02 = η03 = 1 in solution
(61) to obtain the three-soliton solutions of Eq. (4), it is
shown in Fig. 7. It shows the collision process of three-
soliton solutions in the y-plane. As time t increases, the
three-soliton solutions moves along the y-axis positive
half axis and z-axis positive half axis directions.
Case 4.2: Under the premise of taking the parameters
in case 4.1, when κ(y, z) = −4 sin(y − z), ζ(y) =
sin(y),
(z) = cos(z + 1) are taken in the expression
(59), the interaction solution between the three-soliton
solutions and the trigonometric function solution of Eq.
(4) are obtained, the interaction phenomenon between
solutions is shown in Fig. 8a.
Case 4.3: Under the premise of taking the parameters
in case 4.1, when κ(y, z) = −4 tanh(−y + z), ζ(y) =
sinh(3y + 4)−1,
(z) = 3 cosh(−2z)−1 are taken in
the expression (59), the interaction solution between
the three-soliton solutions and the hyperbolic function
solution of Eq. (4) are obtained, the interaction phe-
nomenon between solutions is shown in Fig. 8b.
Case 4.4: Under the premise of taking the param-
eters in case 4.1, when κ(y, z) = sn(y + 3z +
y−2z, 0.5), ζ(y) = cn(y, 0.2),
(z) = sn(−z +
5, 0.25) are taken in the expression (59), the inter-
action solution between the three-soliton solutions of
Eq. (4) and the Jacobi elliptic function solution are
obtained, the interaction phenomenon between solu-
tions is shown in Fig. 8c.
Case 4.5: Under the premise of taking the parameters
in case 4.1, when κ(y, z) = cosh(3yz − 1)−1, ζ(y) =
cn(ey, 0.55),
(z) = cos(z + 2) are taken in the
expression (59), the interaction solution between the
three-soliton solutions of Eq. (4) and multiple func-
tional solutions are obtained, the interaction phe-
nomenon between solutions is shown in Fig. 8d.

6.3.2 One-order breather wave solution, one-soliton
solution and interaction solutions

Next, we obtain the interaction solution between the
one-order breather wave solution and the one-soliton
solution of Eq. (4) through the complex conjugate
method, and study the interaction between this solu-
tion and other functional solutions.

Case 5.1: Taking parameters a1 = a∗
2 = 0.1 +

0.5i, a3 = −2.5, c1 = c2 = c3 = η01 = η02 = η03 =
1, b1 = b∗

2 = −1 + 3i, b3 = 0.5, α = −3.2, β =
0.7, γ = −2, ξ = −1 in solution (61), the three-soliton
solutions of Eq. (4) are transformed into an interaction
solution between the one-order breather wave solution
and the one-soliton solution, it is shown in Fig. 9a.
Case 5.2: Under the premise of the parameters taken in
Case 5.1, when κ(y, z) = sin(y + z), ζ(y) = sin(y) +
cos(2y),
(z) = cos(−z) + sin(z + 2) are taken in
the expression (59), the interaction solution between
the one-order breather wave solution, the one-soliton
solution and the trigonometric function solution of Eq.
(4) are obtained, the interaction phenomenon between
solutions is shown in Fig. 9b.
Case 5.3: Under the premise of the parameters taken
in Case 5.1, when κ(y, z) = cosh(2z + y)−1, ζ(y) =
tanh(2y2),
(z) = sinh(−2z + 1)−1 are taken in the
expression (59), the interaction solution between the
one-order breather wave solution, the one-soliton solu-
tion and the hyperbolic function solution of Eq. (4) are
obtained, the interaction phenomenon between solu-
tions is shown in Fig. 9c.
Case 5.4: Under the premise of the parameters taken
in Case 5.1, when κ(y, z) = cn(yz, 0.6), ζ(y) =
sn(y, 0.3),
(z) = sn(2z, 0.2) are taken in the expres-
sion (59), the interaction solution between the one-
order breather wave solution, one-soliton solution
and Jacobi elliptic function solution of Eq. (4) are
obtained, the interaction phenomenon between solu-
tions is shown in Fig. 9d.
Case 5.5: Under the premise of the parameters taken
in Case 5.1, when κ(y, z) = z tanh(yz + 1), ζ(y) =
cn[sin(−y), 0.4],
(z) = ecos(z−2) are taken in the
expression (59), the interaction solution between the
one-order breather wave solution, one-soliton solu-
tion and multiple functional solutions of Eq. (4) are
obtained, the interaction phenomenon between solu-
tions is shown in Fig. 9e.

6.4 N-soliton solutions

TheN-soliton solutions of Eq. (4) can be obtained from
the soliton solutions obtained above

u = 2(ln f )x , (62)
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where

f =
∑

μ=0,1

exp

⎛

⎝
N∑

i=1

μiηi +
∑

1≤i≤ j

Ai jμiμ j

⎞

⎠ ,

eAi j = (ai − a j )[α(ai − a j ) + β(bi − b j ) + γ (ci − c j ) + ξ(a3i − a3j )]
(ai + a j )[α(ai + a j ) + β(bi + b j ) + γ (ci + c j ) + ξ(a3i + a3j )]

,

ηi = ai x + bi y + ci z + di t + η0i ,

di = −(aiα + biβ + ciγ + a3i ξ), (i, j = 1, 2, · · · , N ), (63)

here, μi and μ j are taken through 0, 1.

7 Lump-Type solution of Eq. (4)

In this section, we will construct the exact solution of
the generalized (3+1) dimensional Ito equation through
its bilinear form. Assuming Eq. (4) has the following
form of Lump-Type solution

f =a0 + (a1x + a2y + a3z + a4t + a5)
2

+ (b1x + b2y + b3z + b4t + b5)
2

+ (c1x + c2y + c3z + c4t + c5)
2,

(64)

where ai (i = 0, 1, · · · , 5), bi , ci (i = 1, · · · , 5) are all
the undetermined constant.

Substituting expression (64) into bilinear form (9) to
obtain a set of nonlinear algebraic equation (not listed).
With mathematical calculation software Mathematica,
the following solutions can be obtained
Case 6.1:

b1 = − a1a4 + c1c4
b4

, a2 = c2(a4 + a1α + a3γ )

c4 + c1α + c3γ
,

β = − c4 + c1α + c3γ

c2
,

b2 =c2[b24 − (a1a4 + c1c4)α + b3b4γ ]
b4(c4 + c1α + c3γ )

.

(65)

Case 6.2:

α =b4c2 − b2c4 + γ (b3c2 − b2c3)

b2c1 − b1c2
,

β = − c1(b4 + b3γ ) − b1(c4 + c3γ )

b2c1 − b1c2
,

a4 = − b1b4 + c1c4
a1

,

a3 = 1

a1γ (b2c1 − b1c2)
{(b2c1 − b1c2)(b1b4 + c1c4)

+ a1a2[c1(b4 + b3γ ) − b1(c4 + c3γ )]
+ a21[−c2(b4 + b3γ ) + b2(c4 + c3γ )]}. (66)

Case 6.3:

b1 = −a1a4 + c1c4
b4

,

a2 = −c1(a4 + a3γ ) + a1(c4 + c2β + c3γ )

c1β
,

α = − c4 + c2β + c3γ

c1
,

b2

= − c1b4(b4 + b3γ ) + (a1a4 + c1c4)(c4 + c2β + c3γ )

b4c1β
.

(67)

Case 6.4:

a3 = b3[a24 − α(b1b4 + c1c4) + a2a4β]
a4(b4 + b1α + b2β)

,

γ = −b4 + b1α + b2β

b3
,

c2 = b4c3 − b3(c4 + c1α) + c3(b1α + b2β)

b3β
,

a1 = −b1b4 + c1c4
a4

.

(68)

Substituting expression (65) into expression (64),
we have

f =a0 +
(
a1x + c2(a4 + a1α + a3γ )

c4 + c1α + c3γ
y + a3z

+ a4t + a5

)2

+
(

− a1a4 + c1c4
b4

x

+ c2[b24 − (a1a4 + c1c4)α + b3b4γ ]
b4(c4 + c1α + c3γ )

y + b3z

+ b4t + b5

)2

+ (c1x + c2y + c3z + c4t + c5)
2,

(69)

where b4(c4 + c1α + c3γ ) �= 0.
Therefore, we obtain the following solution for Eq.

(4)

u =2(ln f )x + κ(y, z) + ζ(y) + 
(z), (70)
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when κ(y, z) = 0, ζ(y) = 0,
(z) = 0, solution (70)
is transformed into a Lump-Type solution

u = 2(ln f )x . (71)

The three-dimensional and contour plots of solution
(71) are shown in Fig. 10. By selecting different values
of t , the image of the variation of the Lump-Type solu-
tion with time is obtained. The Lump-Type solution
consists of an upward peak and a downward valley. As
time t increases, the Lump-Type solution moves along
the negative half axis of the y-axis and the negative half
axis of the z-axis, and the amplitude does not change
during the movement.

7.1 The interaction solutions between Lump-Type
solution and different function solutions

We obtain the interaction solutions between the Lump-
Type solution of Eq. (4) and different function solutions
by selecting different functions κ(y, z), ζ(y) and
(z).
Case 7.1: Take parameters a0 = a4 = γ = 1, a1 =
b3 = 1.5, a3 = −1, a5 = −0.5, b4 = 0.4, b5 =
c1 = 0.5, c2 = c3 = α = 2, c4 = 0.6, c5 =
3, κ(y, z) = sin(−y + z)2, ζ(y) = cos(2y),
(z) =
cos(z + 1) sin(2z) in solution (70) to obtain the inter-
action solution between the Lump-Type solution of
Eq. (4) and the trigonometric function solution. the
interaction phenomenon between solutions is shown
in Fig. 11a.
Case 7.2: Take parameters a1 = b5 = b3 = a5 =
c5 = c4 = 2, a0 = a4 = a3 = b4 = c2 =
c3 = γ = 1, c1 = 5, α = 1.5, κ(y, z) = tanh(y) +
tanh(z), ζ(y) = cosh(y+2)−1−cosh(−y)−1,
(z) =
sinh(z)−1 + sinh(3z)−1 in solution (70) to obtain the
interaction solution between the Lump-Type solution
of Eq. (4) and the hyperbolic function solution, the
interaction phenomenon between solutions is shown
in Fig. 11b.
Case 7.3: Take parameters b3 = c5 = c1 = b4 = c2 =
α = 2, a0 = 0.3, a1 = a4 = b5 = a3 = c3 = γ =
1, c4 = a5 = 1.5, κ(y, z) = sn(y + 2z, 0.45), ζ(y) =
sn(y2, 0.5),
(z) = cn(z3, 0.2) in solution (70) to
obtain the interaction solution between the Lump-Type
solution of Eq. (4) and the Jacobi elliptic function solu-
tion, the interaction phenomenon between solutions is
shown in Fig. 11c.

Case 7.4: Take parameters a1 = a0 = b5 = γ =
1, a4 = b3 = a5 = c5 = c2 = 2, c1 = 5, α =
a3 = 1.5, b4 = 3, c3 = 0.5, c4 = 2.5, κ(y, z) =
cn(yz, 0.2), ζ(y) = sin(y),
(z) = cosh(z + 2)−1 in
solution (70) to obtain the interaction solution between
the Lump-Type solution of Eq. (4) and various func-
tional solutions, the interaction phenomenon between
solutions is shown in Fig. 11d.

8 Conclusion

This article investigates a new generalized (3+1)
dimensional Ito equation. This equation is extended
from the equation in reference [39]. The soliton solu-
tions (one-soliton solution, two-soliton solutions and
three-soliton solutions) and Lump solution of Eq. (3)
are obtained in reference [39], and the integrability
of Eq. (3) in the Painlevé sense is studied. When
κ(y, z) = 0, ζ(y) = 0,
(z) = 0, ξ = 1, λ = 6,
obtain the solution in reference [39]. When κ(y, z) =
0, ζ(y) = 0,
(z) = 0, ξ = 1, λ = 3, γ = a3 =
b3 = ci = 0(i = 1, · · · , 5), the Lump-Type solution
obtained in this paper can be transformed into theLump
solution in reference [35].

In this paper, the bilinear form of the equation is
obtained by means of Bell polynomial method, and
its double Bell polynomial Bäcklund transformation,
bilinear Bäcklund transformation and bilinear auto-
Bäcklund transformation are obtained. TheseBäcklund
transformations help to construct more abundant accu-
rate solutions of the equation. In addition, the Lax inte-
grability of the equation is studied and an infinite con-
servation laws is constructed. With the help of mathe-
matical calculation softwareMathematica, the dynamic
characteristics of the obtained solution can be seen intu-
itively through the 3D map and Contour line map. We
find that when the solution of the equation interacts
with the Trigonometric functions solution, the shape
of the solution presents periodic changes, as shown in
Fig. 2a, 4a, 6a, 8a, 9b, 11a; When the solution of the
equation interacts with the solution of the Hyperbolic
functions, the solution of fracture shape will appear, as
shown in Fig. 2b, 4b, 6b, 8b, 9c, 11b;When the solution
of the equation interacts with the solution of the Ellip-
tic function, it presents solutions of different forms, as
shown in Fig. 2c, 4c, 6c, 8c, 9d, 11c; When the solu-
tion of the equation interacts with multiple functional
solutions, the shape of the solution will show differ-
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ent forms due to the influence of Elliptic function, and
the characteristics of the solution will not show mor-
phological regularity, as shown in Fig. 2d, 4d, 6d, 8d,
9e, 11d; When the breather wave solution (Lump-Type
solution) interacts with Trigonometric functions solu-
tion, Hyperbolic functions solution, Elliptic function
solution and multiple function solutions, the morphol-
ogy of the breather wave solution (Lump-Type solu-
tion) will not be affected by these functions, that is, the
original breather wave solution (Lump-Type solution)
interacts with different waves.

Using the arbitrariness of κ(y, z), ζ(y) and 
(z)
in hypothesis (5), we can obtain a large number of
analytical expression of the equation, which is also
the innovation of this paper and has strong flexibil-
ity. The infinite conservation laws studied in this arti-
cle, the transformations made (5), and the interaction
solutions between Lump-Type solution, breather wave
solution, soliton solutions, and various functional solu-
tions obtained have not been obtained in previous lit-
erature. The research methods for the Bäcklund trans-
formation, Lax integrability and infinite conservation
laws of equation in this article can be systematically
used to discuss other equations. When discussing the
exact solution of the equation, the introduced transfor-
mation is flexible. Because not all equations can be
reduced when they are converted into bilinear form,
the added arbitrary function term is not applicable to
all equations. We hope that the results obtained in this
article can be experimentally observed in nature and
applied to nonlinear science. This new (3+1) dimen-
sional model and its research may help open up a new
perspective for future nonlinear evolutionary systems.

Acknowledgements The authors deeply appreciate the anony-
mous reviewers for their helpful and constructive suggestions,
which can help improve this paper further. Thiswork is supported
by the National Natural Science Foundation of China (Grant No.
11361040), the Natural Science Foundation of Inner Mongo-
lia Autonomous Region, China (Grant No. 2020LH01008), the
Graduate Students’s Scientific Research Innovation Fund Pro-
gram of Inner Mongolia Normal University, China (Grant No.
CXJJS20089), and theFundamentalResearchFunds for the Inner
Mongolia Normal University, China (Grant No. 2022JBZD011).

Funding The authors have not disclosed any funding.

Data availability All data generated or analyzed during this
paper are included in this published article.

Declarations

Conflict of interest The authors declare that there is no conflict
of interests regarding the research effort and the publication of
this study.

References

1. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of
the incubation period of COVID-19 based on the doubly
interval-censored datamodel.NonlinearDyn.106(2), 1347–
1358 (2021)

2. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal
control strategies for a novel epidemic model of COVID-19.
Nonlinear Dyn. 106(2), 1491–1507 (2021)

3. Lukasz, P.: Derivation of the nonlocal pressure form of the
fractional porous medium equation in the hydrological set-
ting. Commun. Nonlinear Sci. Numer. Simul. 76(9), 66–70
(2019)
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