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Abstract The paper contributes to unveil how
drivers—either humanor not—may lose control of road
vehicles after a disturbance. First, a simple vehicle-
and-driver model is considered: Its motion is charac-
terized by the existence of limit cycleswhose amplitude
depend on vehicle forward velocity (both oversteering
and understeering vehicles may exibit this property).
Such limit cycles are originated by a Hopf bifurcation
occurring at a relatively high vehicle forward velocity.
Amathematical proof of the existence of Hopf bifurca-
tions is given. The existence of Hopf bifurcations and
saddle limit cycles is confirmed by experimental tests
performed by a dynamic driving simulator with a com-
plex vehicle model and human in the loop. By a Zubov
method, a Lyapunov function is derived to compute the
region of asymptotic stability for the simple vehicle-
and-driver model. A necessary and sufficient condition
is derived for global asymptotic stability. Such a condi-
tion refers to the variation of the kinetic energy which
must vanish at the end of the disturbed motion. This
occurrence has been detected at the driving simulator
too. Just a single stable equilibrium has been found
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inside the domain of attraction in all of the examined
cases.
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1 Introduction

The global stability of the motion of road vehicles is
currently not studied with much detail. Nonetheless
understanding how drivers lose control is of crucial
importance to prevent road accidents [1]. According to
World Health Organization [2] “Every year the lives
of approximately 1.3 million people are cut short as a
result of a road traffic crash. Between 20 and 50 mil-
lion more people suffer non-fatal injuries, with many
incurring a disability as a result of their injury. Road
traffic crashes cost most countries 3% of their gross
domestic product.”

Often, the stability of the motion of a road vehicle is
simply addressed as vehicle stability. Vehicle stability
inherently deals with the stability of the system com-
posed by the vehicle and the driver (either human or
not). In the literature many different expressions are
used to address vehicle stability, namely active safety,
handling behavior, running safety, running stability,
safe running, stability margin, drifting and even “fun-
to-drive.”
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In academic books [1,3–10], the road vehicle stabil-
ity is studied mostly using linearization. Additionally,
the driver is hardly introduced in the loop, and, in any
case, a linearized vehicle-and-driver system is stud-
ied. A comprehensive analysis of the global stability
of vehicle-and-driver system has just started [11–15],
despite one billion road vehicles run on the streets of
the globe.

The generic topic of stability is being dealt with by
many authors, (see, e.g., [16–20]). They often study
how to cope with vehicle-and-driver instability, with-
out focusing on the ontological problem of what is
it exactly vehicle-and-driver stability. The comprehen-
sive and fundamental topic of global stability needs
a substantial contribution that this paper aims to start
providing.

Abe [5] has given a good early investigation on the
stability of the motion of car and driver. The stabil-
ity was studied referring to a simplified linear vehicle
model.

In 1972, Pacejka pioneered the study of stability of
nonlinear road vehicle models. He could not exploit
all the potentials of Bifurcation Theory, due to limited
computer power available at that time. Nonetheless, he
showed the existence of multiple equilibria of different
type, e.g., stable foci and saddles [7], rising the problem
of global stability of a vehicle and fostering further
subsequent research in the field.

In 1991, Tousi, Bajaj and Soedel [21] produced an
early attempt to study vehicle and driver considering
non linear models.

In 1996, Liu, Payre and Bourassa [22] produced
another milestone contribution. They highlighted that a
vehicle driven by a humanmay exhibit a number of typ-
ical nonlinear behaviors. They used a simple theoretical
model (5 state variables, simple driver included), and
they did discover even chaos. The paper was theoretical
only.

In 2012, some of the authors of this paper [23] pro-
duced a complete portrait of nonlinear behaviors of dif-
ferent vehicles with fixed control. Bifurcation theory
was exploited. The wealth of different unstable vehicle
behaviors depended exclusively on tyre characteristics
(not on driver control). A number of different bifur-
cations were found, namely: homoclinic, heteroclinic,
saddle-node, transcritical, Hopf (sub- or super-critical),
Korazov-Takens. Again, the paperwas theoretical only.
Similar but more specific analyses were carried on in
[24,25]. These results can be summarized as follows

• For usual vehicle forward velocities, the bare vehi-
cle is always stable even after strong disturbances,
provided it is understeering at any lateral accelera-
tion level, i.e., tyre characteristics are properly cho-
sen (this is accomplished always by carmakers),

• Unstablemotionmaybegenerated,without driver’s
control, if a certain combination of initial condi-
tions (i.e., disturbances) are applied.

Note that these studies did not take into account the
active control by the driver.

To study the stability of the motion of vehicle and
driver, an accurate driver model is needed. Unfortu-
nately,we have rough not validated drivermodels avail-
able today [26]. This prevents accurate nonlinear math-
ematical stability analyses dealing with vehicle and
driver.Moreover, drivermodels have been developed—
and are still being developed—to mimic the driver fol-
lowing a given path. Current driver models seem not so
efficient to react to a disturbance or to control a drifting
vehicle.

Recently, theoretical and experimental research has
been undertaken to understand vehicle-and-driver non-
linear behavior. Ploechl and Edelmann [26] studied the
drifting (i.e. powerslide) of cars at high lateral acceler-
ation. They demonstrated the existence of highly non-
linear behaviors in the real world.

Since humans seem reluctant to let their behavior be
described by deterministic mathematical models [26],
driving simulator technology is needed for studying
vehicle motion stability [27]. An attempt to find bifur-
cations with a human driver in the loop was performed
in [11]. By using a validated driving simulator, a sta-
ble understeering vehicle was considered. The driver
was able to make the motion unstable, actually unsta-
ble limit cycles were detected. Increasing the forward
velocity of the vehicle, the amplitude of such unstable
limit cycles did reduce, until a subcritical Hopf bifurca-
tion was reached. Increasing the vehicle forward veloc-
ity, after the bifurcation, the motion was chaotic. A
doubt existed on whether limit cycles could be reputed
as certainly real and whether the knowledge of their
existence could beuseful in the actual engineeringprac-
tice. This paper aims to answer these questions.

The accurate mathematical description of the stabil-
ity of vehicle-and-driver motion is still under develop-
ment. Nowadays the development of anti-spin controls
is performed by a trial-and-error approach: Cars, either
virtual or real, are driven on low friction surfaces (e.g.,
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iced lakes duringwinter time) and, after comprehensive
tests, a final judgment is taken on safety. In [28], the first
and successful anti-spin controlled systems like ESP
were conceived by considering basic phase portraits,
fostering new kinds of control systems for anti-spin
[29] based on phase portraits and bifurcation analysis.

In the literature, just one contribution has been found
to study the stability of the motion of vehicle and
driver by deriving a Lyapunov function [30]. The driver
was very simple and no experimental activity was per-
formed.

Despite bifurcation theory is being used since some
time to study the behavior of vehicles [31], it seems that
much effort should be devoted in the future to analyze
the dynamic behavior of vehicle and driver. Relevant
contribution in this field is being provided in [30,32]
looking at automated vehicles. A comprehensive status
of research for connected and automated vehicles is
given in [33].

In this study, we first use bifurcation analysis and
Lyapunov theory to highlight the stability properties of
a vehicle-and-driver model, then we validate our the-
oretical results experimentally via experiments with a
human in the loop. Therefore, while the paper deals
principally on human driver control, the results we
obtain can be extended also for automated vehicles.
There are three important hypotheses that have been
assumed for sake of simplicity.

1. The path tracking of the driver is rectilinear;
2. The forward velocity of the vehicle is constant. We

will provide evidence that such an assumption leads
to a reasonable accuracy of the results.

3. No controls are assumed to act [34], in a future study
the effects of controls on global stability of vehicle
and driver may be discussed.

The paper is organized as follows. At first, a new
simple vehicle-and-driver model that captures reason-
ably the stability issues, is introduced. Then such a sim-
plemodel is comparedwith the corresponding complex
vehicle model running on a driving simulator with an
actual human driver in the loop. Finally a necessary and
sufficient condition is provided to explain the global
stability of the motion of vehicle and driver.

2 Vehicle simple model and driver simple model

Referring to Fig. 1, the equations of motion can be
derived as follows. A moving reference system with

origin fixed at the center of gravity G of the vehicle
is used. The longitudinal axis x is parallel to the cen-
terline of the vehicle; the vertical axis is perpendicu-
lar to the ground and directed towards the ground (not
shown in the figure); the lateral axis y is congruent with
a right-hand reference system. The degrees of freedom
are the lateralmotion and the yaw rotation. The longitu-
dinal motion is not considered as a degree of freedom
because the forward (longitudinal) velocity u is con-
sidered constant. The longitudinal forces, either front
(Fx f ) or rear (Fxr ), which are needed to keep constant
the forward velocity, are considered small. The lateral
axle forces, either front (Fy f ) or rear (Fyr ) refer to the
so-called Axle characteristics [7] and can be modeled
byusing thewell-knownPacejkaMagicFormulawhich
was adapted and reads

Fyi = Di sin

(
Ci arctan

(
Biαi

− Ei (Biαi − arctan (Biαi ]))
))

(1)

for i = { f, r}. The total axle lateral force depends on
the slip angle αi (i = { f, r}) defined as

α f = δ −
(

v + ra

u

)
, αr = −

(
v − rb

u

)
(2)

where v is the lateral speed, r the yaw rate, δ the steering
angle, and a and b are the distance of the front and rear
axle from the center of mass, respectively(see Fig. 1).
The equations of motion of the single-track model can
be derived by using D’Alembert’s principle

v̇ = 1

m

(
Fy f + Fyr +F

) − ur (3)

ṙ = 1

J

(
aFy f − bFyr +M

)
, (4)

wherem and J are the vehicle mass and inertia, respec-
tively, and F and M are external generalized forces
acting as disturbances, thus, generically, not present.
In particular, F is an external force acting at the center
of gravity G, orthogonal to the longitudinal axis of the
vehicle, and M is a moment orthogonal with respect to
the ground.

The driver model is developed according to [26].
The driver controls the steering wheel to place a point
P on the reference trajectory, bold in Fig. 1. The steer-
ing action is proportional to the path error computed at a
certain distance L in front of the vehicle. This distance
is proportional to the forward velocity u by setting a
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Fig. 1 Simple mechanical model of a vehicle and driver moving
in the horizontal plane. The forces acting at the four wheels are
substituted by the resultants acting at the axle centers. The vehicle
body, shaded in gray, is simply a rigid body moving in the (X, Y )

plane. The rectilinear reference path is depicted in bold and taken,
without loss of generality, at Y = Yref. Parameter values used in
the numerical and experimental settings are reported inAppendix
A

fixed preview time Tprev, so L = Tprevu. The coordi-
nates of the preview point in the global reference sys-
tem and its speed components can be computed start-
ing from the coordinates of the center of gravity in the
global reference system as follows

P = (xP ) i0 + (yP ) j0 = (xG + L cosψ) i0
+ (yG + L sinψ) j0

The speed of point P reads

VP = (ẋP ) i0 + (ẏP ) j0 = (
ẋG − ψ̇ L sinψ

)
i0

+ (
ẏG + ψ̇ L cosψ

)
j0

Without loss of generality, we fix the rectilinear desired
path parallel to the X axis at Yref = 0. So doing, the
path error is

e = (Yref − yP ) = −yP = −yG − L sinψ (5)

and its derivative reads

ė = −ẏG − Lr cosψ (6)

Fig. 2 Comparison of different transfer functions for approxi-
mating the delay of the steering action δ(t + τ), τ = 0.2s, as
function of the steering angle actuation frequency

The steering angle is applied by the driver with a delay
τ

δ(t + τ) = ke(t) + kd ė(t) (�)

To further simplify the driver model, we now
approximate the delayed Eq. � with a suitable ordinary
differential equation. Since the typical driver delay τ

is around 0.2s [1,4,26] we can expand the equation (�)
in Taylor series around t , obtaining

δ(t + τ) = δ(t) + δ̇(t)τ + 1

2
δ̈(t)τ 2 + 1

6

...
δ (t)τ 3 + . . .

By applying the Laplace transform to the above equa-
tion at both left and right sides, we can compare the
following different transfer functions G(s) (s is the
Laplace variable)

• Infinite-order Taylor approximation: G0(s) = esτ

• First-order Taylor approximation: G1(s) = 1+ sτ
• Second-order Taylor approximation: G1(s) = 1 +

sτ + 1
2 s2τ

2

• Third-order Taylor approximation: G3(s) = 1 +
sτ + 1

2 s2τ
2 + 1

6 s3τ 3

• Fourth-order Taylor approximation: G4(s) = 1 +
sτ + 1

2 s2τ
2 + 1

6 s3τ 3 + 1
24 s4τ 4

• Third-order Padé approximation: G5(s) =
−s3τ 3+12s2τ

2−60sτ+120
s3τ 3+12s2τ 2+60sτ+120

The frequency responses of the transfer functions
Gi (s) (i = 0, 5) are reported in Fig. 2, in the range
[0−2Hz] of steering angle frequency actuation, the typ-
ical range exploited by human drivers. Comparing the
different frequency responses, one notices that the error
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is not acceptable for an expansion of Taylor’s series
lower than the third order. Padé approximation is a cor-
rect estimate for the modulus of the transfer function
(left panel of Fig. 2), but gives the worst approximation
of the phase delay. It is well known [35] that approxi-
mating the delayvia aTaylor expansion changes the sta-
bility properties of the system. In particular, by increas-
ing the order of Taylor approximation, the maximum
value of the delay τ reduces. We have found that the
third-order Taylor approximation is a good compro-
mise between precision and complexity. Interestingly,
we will see that with this approximation a sort of a
physical interpretation of the steering action delay is
possible (see (12)).

Summarizing, we propose to approximate the
delayed steering dynamics � with

δ(t) + δ̇(t)τ + 1

2
δ̈(t)τ 2 + 1

6

...
δ (t)τ 3 = ke(t) + kd ė(t).

By adding two extra state variables, we write this last
third-order ODE as

δ̇ = δ1 (7)

δ̇1 = δ2 (8)

δ̇2 = 6

τ 3

(
−δ− τδ1− τ 2

2
δ2+ ke+ kd ė

)
(9)

In conclusion, the mathematical model that defines
the dynamic behavior of the simple vehicle-and-driver
model in Fig. 1 has 7 states, z = (v, r, δ2, δ1, δ, yG , ψ),
governed by Eqs. (3–9) and

ẏG = v + uψ (10)

ψ̇ = r (11)

3 Any vehicle is made unstable by driver action for
a sufficiently high forward velocity

According with [5,11,12,21,22], simple vehicle-and-
driver models undergo a Hopf bifurcation at a cer-
tain forward velocity. The vehicle may be either over-
steering or understeering (for the definition of over-
steer or understeer see [1]). The driver model used in
[5,11,21,22] referred to the first-order Taylor approx-
imation, as introduced in the previous section. In what
follows, we show that also the model referring the
third-order Taylor approximation (defined by Eqs. (3–
11) displays the same property, i.e., a sufficiently high
forward velocity exists for which a Hopf bifurcation
occurs at z = (v, r, δ2, δ1, δ, yG , ψ) = 0.

Let us linearize the equations of motion (3–11)
around z = 0, obtaining that, for small z,

ż � J z

with

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− F f +Fr
mu − aF f −bFr +mu2

mu 0 0
F f
m 0 0

− aF f −bFr
Ju − aF f −bFr

Ju 0 0 a
F f
J 0 0

− 6
τ 3

kd − 6
τ 3

kd L − 3
τ

− 6
τ 2

− 6
τ 3

− 6
τ 3

k − 6u(kTprev+kd)
τ 3

0 0 1 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 u

0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where Fi = Bi Ci Di for i = { f, r}. The characteristic
polynomial of J reads

λ7 + α1λ
6 + α2λ

5 + α3λ
4 + α4λ

3

+α5λ
2 + α6λ + α7 = 0

with

α1 = 3

τ
+ τ F f

(
a2m + J

) + τ Fr
(
b2m + J

)
Jmτu

α2 = −amτ 2F f + bmτ 2Fr + 6Jm

Jmτ 2

+3a2mτ F f + 3b2mτ Fr + 3Jτ F f + 3Jτ Fr

Jmτ 2u

+ (a + b)2F f Fr

Jmu2

α3 = 3
(−amτ 2F f + bmτ 2Fr + 2Jm

)
Jmτ 3

+3
(
2a2mτ F f + 2b2mτ Fr + 2Jτ F f + 2Jτ Fr

)
Jmτ 3u

+3(a + b)2F f Fr

Jmτu2

α4 = 6
(
F f

(
τ(a + b)2Fr + u

(
ukd

(
amuTprev + J

) + am(a − τu) + J
)) + uFr (bm(b + τu) + J )

)
Jmτ 3u2

α5 = 6
(
F f

(
(a + b)Fr

(
a + ukd

(
b + uTprev

) + b
) + u2

(
akmuTprev − am + Jk

)) + bmu2Fr
)

Jmτ 3u2

α6 = 6F f Fr (a + b)
(
bk + kdu + Tprevku

)
Jmτ 3u

α7 = 6F f Fr k(a + b)

Jmτ 3

To analyze the stability of z = 0, we apply the Hur-
witz criterion and construct the table

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α3 α5 α7 0 0 0
1 α2 α4 α6 0 0 0
0 α1 α3 α5 α7 0 0
0 1 α2 α4 α6 0 0
0 0 α1 α3 α5 α7 0
0 0 1 α2 α4 α6 0
0 0 0 α1 α3 α5 α7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Asymptotical stability occurs if and only if all the
determinants of the leading principal minors of H are
positive. Therefore, to show that a forward velocity
u always exists such that the controlled equilibrium
becomes unstable, it is sufficient to show that the Hur-
witz criterion is not satisfied for u → ∞.

The condition on the first principal minor is

lim
u→∞ α1 = 3

τ

and is always satisfied. The condition on the second
minor is

lim
u→∞ det

[
α1 α3

1 α2

]
= lim

u→∞ α1α2 − α3 = 12

τ 3
,

is again always satisfied. From the third minor (this
and the following expressions are too involved and,
therefore, not reported), we find

lim
u→∞ det

⎡
⎣α1 α3 α5

1 α2 α4

0 α1 α3

⎤
⎦ > 0 iff 3kd > kτ

Looking at the fourth, the fifth, the sixth and the
seventh minors, stability is achieved for the opposite
condition, i.e. 3kd < kτ . This means that if u is suffi-
ciently large the equilibrium is unstable.

By inspection of the characteristic polynomial, since
α7 > 0 (independently from u), none of the eigenval-
ues can be zero. This implies that, as u is increased,
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Fig. 3 A Bifurcation diagram for an oversteering vehicle (OV)
(data inAppendixA). Simple vehicle-and-drivermodel. The pro-
jection of the unstable limit cycles on the (v, r) plane as func-
tion of vehicle forward velocity u (km/h) is reported in orange.
The limit cycle shrinks on the controlled equilibrium (thick line)
changing its stability (green: stable equilibrium, red: unstable
equilibrium) at a subcritical Hopf bifurcation (at u = 122 km/h).
B andCProjection of the saddle-type limit cycle (black line) onto
the (ψ, v, r) subspace at u = 90 km/h (B) and u = 120 km/h

(C). The red surface is the projection on the 3D subspace of the
6D stable manifold of the limit cycle, whose intersection with
each plane is reported in blue, while the black closed curve is
the projection of the limit cycle on each plane. The closed blue
lines on the (v, r) planes are called ISMaVeR (Intersection of the
Stable Manifold with the lateral-Velocity/yaw-Rate plane) and
define the basin of attraction of the controlled equilibrium when
ψ = yG = δ = δ1 = δ2 = 0

the eigenvalues that become unstable cross the imagi-
nary axis not passing through zero, so they are complex
conjugate. Thus the bifurcation that causes the stability
loss is a Hopf bifurcation.

It is important to notice that an understeering vehi-
cle -with fixed steering wheel control- is stable at any
forward velocity [1,3–10], i.e., a limit velocity does
not exist at which the vehicle becomes unstable. Here
we show that, with driver’s control, this situation is not
true.

4 Existence of a saddle-type limit cycle

In Fig. 3A the bifurcation diagram of the simple
vehicle-and-driver model referring to an oversteer-
ing vehicle is reported (the diagram has been com-
puted using MatCont [36], parameter values are in
Appendix A). The system undergoes a Hopf bifurca-
tion as the velocity increases, as expected: it occurs
at (u = 122 km/h) (where the color of the straight
line changes from green to red). The Hopf bifurca-
tion is subcritical: at the bifurcation, a saddle-type limit
cycle (its projection on the (v, r) plane is reported in
orange) shrinks on the controlled equilibrium, chang-
ing its stability. In Fig. 3B and C the limit cycle is pro-
jected onto three planes at forward velocity u = 90km/h
and u = 120 km/h (black line in the figure). The limit

cycle appears to be saddle-type, thus unstable. A two-
dimensional unstable manifold is present together with
a six-dimensional stable manifold, and the saddle-type
limit cycle is at the intersection of such two manifolds.
We computed the intersection of the six-dimensional
stable manifold of the saddle-type limit cycle with the
iper-surface δ = δ1 = δ2 = yG = 0 by selecting the
possible initial conditions in the (v, r, ψ)-space with a
sufficiently fine mesh and looking for the one that con-
verge to the saddle-type limit cycle. The result of this
procedure is a surface in the three-dimensional space
(v, r, ψ), that we report in red in each panel. The sur-
face delimits the basin of attraction of the desired equi-
librium: the points inside the stable manifold converge
to the controlled equilibrium, the ones outside the sta-
ble manifold diverge or go on another attractor. We
consider of particular interest the intersection of the
stable manifold on the (v,r) plane. We propose to call
it ISMaVeR (Intersection of the Stable Manifold with
the lateral-Velocity/yaw-Rate plane). Any disturbance
that generates a yaw rate r and a lateral speed v (with
ψ = yG = δ = δ1 = δ2 = 0) can be identified by
a point in the plane v, r . If the point lies inside the
ISMaVeR, the motion is stable, if the point lies out-
side, the motion is unstable. The state variables v and
r are important because are related to the linear kinetic
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Fig. 4 ABifurcation diagram for an understeering vehicle (UN)
(data inAppendixA). Simple vehicle-and-drivermodel. The pro-
jection of unstable and stable limit cycles as function of vehicle
forward velocity on the (v, r) plane are reported as an orange
and green surface, respectively. A Hopf bifurcation occurs at
u = 177 km/h, and a limit point of cycle bifurcation occurs at
u = 78 km/h. B and C Projection of the unstable limit cycle

(black line) onto the (ψ, v, r) subspace at u = 90 km/h (B) and
u = 120 km/h (C). The red surface is the projection on the 3D
subspace of the 6D stable manifold of the limit cycle, whose
intersection with each plane is reported in blue (we call the one
on the (v, r)-plane ISMaVeR) together with the projection on the
plane of the limit cycle, in black

energy and to the yaw kinetic energy, as we will detail
at the beginning of Sect. 7.

In Fig. 4A the bifurcation diagram of the sim-
ple vehicle-and-driver model referring to an under-
steering vehicle is reported (see parameter values in
Appendix A). The system undergoes a Hopf bifurca-
tion as the velocity increase, as expected: it occurs at
u = 177 km/h (where the color of the straight line
changes from green to red). The Hopf bifurcation is
subcritical: at the bifurcation the equilibrium loses its
stability property and a saddle-type limit cycle shrinks
on it. The saddle-type limit cycle originates from a limit
point of cycle bifurcation at u = 78 km/h. At that bifur-
cation, it collapse on a stable limit cycle, that exists for
higher forward velocity. For smaller velocities, the only
possible attractor is the steady state equilibrium, i.e., in
this case any reasonable perturbation can be absorbed
by the system. Between 78 and 177 km/h the system is
bistable, i.e., it can go on the steady state as well on a
stable periodic solution. However, this solution, that is
present also for higher forward velocity, may have big
excursion (in yaw rate, as well as in lateral velocity),
so that this stable solution of the model is not realistic.

In Fig. 4B and C the unstable limit cycle is projected
onto three planes at forward velocity u = 90 km/h and u
= 120km/h (black lines in the figure). The limit cycle is
of saddle-type, with a two-dimensional unstable man-
ifold and a six-dimensional stable manifold. The inter-
section of the stable manifold of the saddle-type limit

cycle with the iper-surface δ = δ1 = δ2 = yG = 0
is shown in the (v, r, ψ) three-dimensional space, in
red. It delimits the basin of attraction of the controlled
equilibrium: the points inside the stable manifold con-
verge to it, the ones outside the stable manifold go on
the stable (unrealistic) limit cycle.

5 Driving simulator and complex vehicle model

In order to check whether the theoretical forecasts pro-
videdwith the simplemodel inFig. 1. couldbe trusted, a
driving simulator has been used. Testing unsafemaneu-
vers in an actual track is very dangerous. Driving sim-
ulator technology is nowadays considered quite close
to reality [27].

In a driving simulator, an actual human driver is in
the loop with a mathematical model of the vehicle. The
driving simulator at Politecnico di Milano, shown in
Fig. 5, is a DIM400 manufactured by VI-Grade and
is cable driven [37]. The vehicle mathematical model,
that we refer as complex model, is a experimentally val-
idated [11,37] 14 degrees-of-freedom model, whose
main configuration data are reported in Appendix A.
The complex vehicle model has detailed sub-models
of tyres, suspension, steering systems, power-train and
bodywork. A complete description of the complex
vehiclemodel can be found in [1,37] and is not reported
here. The parametrization of the simple model in Fig. 1
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Fig. 5 The driving simulator and the complex car model that
were used to validate the results coming frombifurcation analysis
of the model in Fig. 1 Data are reported in Appendix A

has been made referring to the complex vehicle model.
Such a model has been used in the driving simulator
experiments. Both the simple model and the complex
model have been tuned to effectively characterize the
same vehicle. Fundamental parameters, as the mass
properties (mass, location of the center of gravity, iner-
tia tensor) and the tyre characteristics, are the same for
the two vehicle models.

Sincemotion cueingmay influence considerably the
response of the machine driven by a human [27], no
motion cueing (or reduced motion cueing) has been
adopted for experiments at the driving simulator. This
provides a considerable immersive feeling by the driver
[38].

5.1 Disturbance application

At the driving simulator, a disturbed straight running
condition is reproduced by applying an external force
F and an external moment M acting for a short time
Td . The force F acts at the center of gravity G of the
vehicle, the moment M is orthogonal with respect to
the ground, as presented in Sect. 2 and in Fig. 1. More
precisely, we first let the complex vehicle model with
humandriver run at steady state, i.e., the humandriver is
driving the simulator at a given forward velocity along a

straight line. Then, the external force F and the external
moment M are applied according to a time function of
the type 1 − cos(2π t/Td), with Td = 0.1 s.

In the simple model, if we apply the force F =
mv0/Td (resp. M = Jr0/Td ) and we let the time Td

tend to zero, we move the system from z = 0 to a
condition in which all the state variables are 0 with
the exception of v (resp. r ) that takes value v0 (resp.
r0). Applying our disturbance to the complex model,
since we selected a very small Td , we found v and r
at a prescribed value, and we found that the other state
variables are very small. In all the experiments we did,
we got |δ1| < 1 deg/s, δ < 1/20 deg, yG < 10 mm
and ψ < 1 deg just after the disturbance.

Since the reaction time of the driver is much higher
than Td (at least twice) and the driver is not aware of the
arrival of the disturbance, the disturbance set the initial
conditions of the system at a desired point of the (v, r)-
plane in a fully reproducible way. In other words, since
the driver has not the time to react, the application of
the same external force F and same moment M always
leads to the same initial conditions.

6 Validation of the simple vehicle-and-driver
model

In this Section, we will try to establish a relationship
between the dynamic behavior of the simple system of
Fig. 1 and the dynamic behavior of the complex vehicle
model controlled by a human driver at the driving sim-
ulator. The aim is to allow a quick understanding of the
behavior of the vehicle with human driver by resorting
to the features of the nonlinear behavior of the simple
vehicle-and-driver model. The validation is obviously
qualitative since the simple vehicle-and-drivermodel is
too simplified to capture the extremely complex behav-
ior of both the complex vehicle system and the human
driver.

6.1 Existence of Hopf bifurcations

First, we look for the existence of Hopf bifurcations
like the ones depicted in Figs. 3 and 4 at the driving
simulator. To do so, we increased the forward velocity
of the vehicle at the driving simulator up to the point
the driver is not able to keep the straight path trajectory,
without applying any disturbance. The results of this
experiment are reported in Table 1.
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Table 1 Forward velocities at which the driver at the driving
simulator is not capable of running straight ahead. A Hopf bifur-
cation is thought to occur. Data in Appendix A

Vehicle Forward velocity at Hopf bifurcation

Complex vehicle
model and human
driver

Simple vehicle-
and-driver model

OV 136 km/h 122 km/h

UN > 250 km/h 177 km/h

6.2 Extent of the domain of attraction

To evaluate the extent of the basin of attraction of
the controlled equilibrium (the regions bounded by the
ISMaVeR in Figs. 3 and 4), we apply at the driving
simulator a disturbance as described in Sect. 5. Then,
we measure the obtained initial condition in the (v, r)

plane, and we evaluate if the human driver is capable to

get back to the initial straight trajectory. The results of
this experiment, together with the ISMaVeR predicted
by the simple vehicle-and-driver model, are reported
in Fig. 6. We repeated the experiment at two differ-
ent velocities, for the oversteering configuration at
65 km/h (Fig. 6A) and 90 km/h (Fig. 6B), while for the
understeering configuration at 90 km/h (Fig. 6C) and
126 km/h (Fig. 6D). A reasonable agreement is found
between the results predicted by the simple vehicle-
and-driver model and the corresponding results obtain-
ing at the driving simulator. The main differences can
be traced back to the rollover motion, that is modeled
in the complex model only.

6.3 Existence of a saddle-type limit cycle

Finally, we tried to detect the existence of a limit cycle.
Obviously, the existence of an unstable limit cycle can
be detected in an approximated way only. However,

Fig. 6 Comparison between the ISMaVeR computed with the
simple vehicle-and-driver model and the smallest initial condi-
tions at the driving simulator which cause instability. Dots refer
to initial conditions of the complex vehicle model driven -at the
driving simulator- by a human driver. The dots are green if the

driver can return to the desired path after the disturbance, red
otherwise. Top and bottom rows report, respectively, the results
for the oversteering (OV) and the understeering (UN) vehicle.
Data are reported in Appendix A
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Fig. 7 Projection of two trajectories in the (v−r)–plane depart-
ing in the neighborhood of the ISMaVeR, obtained with the com-
plex vehicle model controlled by a human driver at the driving
simulator (top panels) and with the simple vehicle-and-driver

model (bottom panels) for the oversteering (left panels) and
the understeering (right panels) vehicle configuration. Forward
speed u = 90 km/h. Data are reported in Appendix A

being of saddle type, it is possible to detect it by look-
ing for an initial condition that is in the neighborhood
of the stable manifold. In fact, initial conditions out-
side but near to the ISMaVeR should produce a motion
that evolves towards the saddle-type limit cycle and
then diverges, while conditions inside the ISMaVeR
produce a motion that evolves towards the limit cycle

and then to the controlled trajectory z = 0. We there-
fore calibrated the disturbance in order to get these two
initial conditions (very close each other) for the com-
plex vehicle model controlled by a human driver at the
driving simulator: Fig. 7 reports the projection of the
obtained trajectories on the (v, r)–plane both for the
oversteering vehicle (panel (A)) and the for the under-
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steering vehicle (panel (B)). The forward velocity u is
kept at 90 km/h as far at it is possible (even when the
motion becomes unstable). In the bottom panels, we
report the corresponding trajectories obtained with the
simple vehicle-and-driver model. Again, a good quali-
tative correspondence is found.

7 Computation of the domain of attraction of the
controlled trajectory

A Lyapunov function is now introduced for the simple
vehicle-and-driver model. Lyapunov functions can be
used to define the exact region of asymptotic stabil-
ity (domain of attraction) of a specific equilibrium in
a nonlinear system [39–41] by Zubov’s methods. Fol-
lowing the procedure proposed in [41], we select the
Lyapunov functionV by first defining its first derivative
V̇ .

V̇ is defined as minus the variation of the kinetic
energy Ek of the vehicle plus the energy associated to
the steering action Es

V̇ = − (	Ek + Es) .

The variation of the kinetic energy is due to the lat-
eral motion of the vehicle which runs at a constant for-
ward velocity. Let us name Ek(t) the kinetic energy at
the time t and Ek(∞) the kinetic energy at steady state.
Bymeans of the König’s theorem [42], such a variation
is composed by two terms, namely, the kinetic energy
associated to the vehicle velocity

√
v2 + u2 (composed

by the two orthogonal vectors v and u) and the kinetic
energy associated to yaw rate r . Therefore

	Ek(t) = Ek(t) − Ek(0)

= (Ek(t) − Ek(0))linear + (Ek(t) − Ek(0))rotational

= 1

2
m

(
u2(t) + v2(t) − u2(0) − v2(0)

)

+1

2
J

(
r2(t) − r2(0)

)
.

Considering that at t = 0 we are at steady state, v(0) =
r(0) = 0, and that the forward velocity is kept constant,
so u(0) = u(t) = u, ∀t , we finally obtain

	Ek(t) = 1

2
mv2(t) + 1

2
Jr2(t).

The energy associated to the steering action Es can
be computed as

Es =
∫ δ

0
ξτ 2δ̈dδ +

∫ δ

0
ξτ δ̇dδ +

∫ δ

0
ξδdδ (12)

where ξδ(t) represents an elastic torque, internal with
respect to the mechanical model in Fig.1, the rotational
stiffness is ξ = 1 [Nm/rad], ξτ δ̇(t) represents a vis-
cous torque whose viscous parameter is ξτ [Nms/rad],
and ξτ 2δ̈(t) represents an inertial torque whose rota-
tional inertial parameter is ξτ 2 [Nms2/rad] = [kgm2].

We have verified in our experiments that Es � 	Ek

(by several orders of magnitude), thus

V̇ ∼ −
(
1

2
mv2 + 1

2
Jr2

)
(13)

Note now that the variationof the kinetic energy is equal
to the work of all active forces acting on the system,
i.e.

	Ek =
∫ y f

0
Fy f dy f +

∫ yr

0
Fyr dyr

+
∫ x

0
mvrdx +

∫ yG

0
FdyG +

∫ ψ

0
Mdψ

(14)

where we used the symbols reported in Fig. 1 and, in
particular

• Fy f and Fyr are the lateral axle forces acting at
tyres, front or rear, respectively, while y f and
yr are the corresponding displacements along the
directions of the forces. They can be computed as∫ t
0 Fyi vidt , i = { f, r}, where v f = v + ra and

vr = v − rb.
• The energy term

∫ x
0 mvrdx refers to an inertial

force acting along the longitudinal axis x of the
non-inertial local coordinate system that we have
used, see Fig. 1. It can be computed as

∫ x
0 mvrdx =∫ t

0 mvr udt and is needed to keep the forward veloc-
ity u constant. Please notice that mvr = Fx f + Fxr .
This energy is given by the work of the longitudinal
forces at the tyres Fx f and Fxr , i.e.:∫ x f

0
Fx f dx f +

∫ xr

0
Fxr dxr =

∫ x

0
mvrdx .

• F and M are the external disturbances that we
have applied to reach the desired initial conditions,
as described in Sect. 5. Note that

∫ yG
0 FdyG =∫ Td

0 Fvdt , and
∫ ψ

0 Mdψ = ∫ Td
0 Mrdt .

The variation of the kinetic energy, therefore, contains
information on all of the acting forces and all of the
state variables, and is thus a meaningful quantity.

According to the Lyapunov criterion, a necessary
and sufficient condition for asymptotic stability is that
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a positive function V (z) > 0 exists such that it van-
ishes at the equilibrium z0 with negative time-derivative
V̇ (z) < 0, ∀z ∈ � 
= z0, where � is an open set that
contains z0. Moreover, if V̇ (z) > 0, ∀z /∈ � then � is
the basin of attraction of the equilibrium z0. Our choice
of V̇ (Eq. (13)) is negative if v and r are not 0. Since the
unique equilibrium of model (3–11) with v = r = 0 is
z = 0, it fulfills the Lyapunov’s requirement. To com-
pute the Lyapunov function for a generic point z(0) of
the state space we can therefore use the Fundamental
Theorem of calculus as

V (z(t̄)) − V (z(0)) =
∫ t̄

0
V̇ (z(t))dt.

If z(0) belongs to the basin of attraction of z = 0, then
limt→∞ z(t) = 0, so we can take t̄ sufficiently large so
that V (z(t̄)) ∼ 0. As a result

V (z(0)) = −
∫ t̄

0
V̇ (z(t))dt > 0

since V̇ (z) < 0, ∀z. On the contrary, if z(0) is outside
the basin of attraction of z = 0, V (z(t)) → ∞ as t
increases, thus V (z(0)) can be defined as any negative
function. As a result, by applying the Lyapunov crite-
rion, the exact basin of attraction of z = 0 (in particu-
lar, the ISMaVeR) can be estimated with this Lyapunov
function. This suggests a necessary and sufficient con-
dition for the stability of the vehicle-and-driver system,
which states:

In a vehicle-and-driver system, an initial distur-
bance is controlled if and only if the variation of kinetic
energy (13) goes to zero along the trajectory, i.e.

lim
t→∞ 	Ek(t) = 1

2
mv(t)2 + 1

2
Jr(t)2 = 0.

A formal proof of the condition is reported inAppendix
B.

This condition has a twofold practical utility:

• Studying the stability of a vehicle and driver by the
system model in Fig. 1 can be made referring to
two main state variables only, namely v and r . The
comparison of the performance of different control
systems can be made in the (v, r)-plane, as antici-
pated by Horiuchi [25].

• Monitoring the decay of the value of the kinetic
energy might be useful to assess whether the
vehicle-and-driver approaches a stable motion.
Practically the fact that the decay is rather slow,
or, in the worst case, oscillatory, is a useful for
advanced control algorithms based on Artificial
Intelligence, see e.g. [20].

Fig. 8 Evolution of the variation of kinetic energy 	Ek(t) of
the complex vehicle driven by a human in controlled (green)
and uncontrolled (red) maneuvers. At time t = 0 the dis-
turbance described in Sect. 5 is applied. (OV/UN: oversteer-
ing/understeering configuration). Data are reported in Appendix
A

7.1 Validation of the necessary and sufficient
condition for stability of vehicle-and-driver
systems

A theoretical extension of this last theorem to the more
complex vehicle model, driven by a human is practi-
cally unfeasible. Actually, to compute the total energy
belonging to the vehicle we should consider not only
the kinetic energy but also the potential energy related
to mass level and elastic elements, as well as the pres-
ence of dissipating components like dampers.We there-
fore checked at the driving simulator whether the nec-
essary and sufficient condition derived in the preced-
ing section holds true, in an engineering sense. Figure8
reports the evolution of the variation of kinetic energy
	Ek(t) in four experiments in the driving simulator. As
expected, independently from the fact that the consid-
ered vehicle is oversteering (panel (A)) or understeer-
ing (panel (B)), the variation of kinetic energy vanishes
if the driver is able to control the vehicle (green lines)
while diverges if the driver loses the vehicle control.

7.2 A note on the role of energy associated to the
drivers’ action

The variation of kinetic energy of the vehicle plays
a fundamental role on asymptotic stability. As we
already stated, referring to the simple vehicle-and-
driver model, at the end of the disturbance, the total
energy of the vehicle-and-driver system is substan-
tially the variation of the kinetic energy of the vehicle.
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Such an energy must be dissipated for the system to be
asymptotically stable and it cannot be dissipated by the
driver, but only by tyres. The driver’s control is there-
fore just devoted to let tyres dissipate the kinetic energy
of the disturbance. On the other hand, the energy that
is used to make the vehicle-and-driver system unsta-
ble is taken, by the drivers’ action, from the forward
motion, precisely during the lateral motions. Looking
at Eq. (14), the increase of kinetic energy in the unstable
case is essentially due to the inertial force acting along
the longitudinal axis

∫ x
0 mvrdx ,as correctly assessed

by Edelmann and Ploechl [43]. No relevant potential
energy is “stored” by the driver, as can be assessed
both considering our experiments and by inspection of
the terms of Eq. (12).

8 Discussion and conclusion

The aim of the paper was to suggest a basic theory for
understanding how drivers lose control of road vehicles
after a disturbance has acted. Two vehicle-and-driver
systems have been considered to study the global sta-
bility of the motion of road vehicles driven by humans.

The first vehicle-and-driver system is composed by
a simple vehicle nonlinearmodel and by a simple driver
model. To obtain a simple model, the delay of the steer-
ing response by the driver has beenmodeled by aTaylor
series expansion up to the third order. Using thismodel,
we present two main results in terms of mathematical
proofs.

The first result is that the controlled trajectory by the
vehicle-and-driver model may become unstable inde-
pendently from the characteristics of the car, either
oversteering or understeering, by undergoing a Hopf
bifurcation (at a certain forward velocity). To substan-
tiate this result we presented two examples, referring
either to an oversteering car or to an understeering
car, in which we found two subcritical Hopf bifur-
cations. We cannot exclude that stability is lost due
to supercritical Hopf bifurcations, even if we have
not experienced such a bifurcation in our research. In
our cases, at the Hopf bifurcation a saddle-type limit
cycle occurs, whose six-dimensional stable manifold
delimits the basin of attraction of the controlled trajec-
tory.

The second result is a necessary and sufficient con-
dition for which a given disturbance can be rejected
or not by the vehicle-and-driver system. In particu-

lar, the disturbance is rejected if and only if the varia-
tion of the kinetic energy of the vehicle should even-
tually vanish. This result allows one to to focus on
lateral speed and yaw rate if stability has to be stud-
ied.

The second vehicle-and-driver system is composed
by a complex vehicle model and by a real human
driver, controlling the vehicle model at a dynamic
driving simulator. The nonlinear dynamic behavior of
the simple vehicle-and-driver model has been com-
pared with the behavior of the corresponding com-
plex vehicle model controlled by the human driver
at the driving simulator, obtaining a good qualitative
agreement. In particular, theHopf bifurcations featured
by the simple vehicle-and-driver model were found at
the driving simulator, too. The saddle-type limit cycle
featured by the simple vehicle-and-driver model was
found at the driving simulator too. The extent of the
domain of attraction referring to the simple vehicle-
and-driver model is comparable with the correspond-
ing domain of attraction of the complex vehicle driven
by a human. As a result, we can say that the assump-
tion that a simple vehicle-and-driver model can pro-
vide a qualitative explanation of the dynamic behav-
ior of the complex vehicle model controlled by a real
human driver is validated, and therefore we now have
new keys for the interpretation of the dynamics of
the complex vehicle model and human driver. With-
out exploiting the simple vehicle-and-driver model, the
understanding of the behavior of the complex vehicle
model controlled by a human would have been hardly
achieved.

The research has clarified that a domain of attraction
may exist that depends on both the vehicle parameters
and driver parameters. The main restriction is that the
tracked path is rectilinear. Future researcher will have
to be extended to curved path or transient (lane change)
maneuvers.

Although the driving simulator technology is often
reputed rather fair in representing extreme maneuvers,
further experiments on track are needed for an ultimate
validation of the results of this research. Assuming that
the experiments at the driving simulator can be trusted,
the following conclusions may be drawn for real road
vehicles driven by real humans.

There is a domain of attraction for any combina-
tion of vehicle and driver. The domain of attraction
shrinks with increasing vehicle forward velocity. The
amplitude of the domain of attraction is related to at
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least one limit cycle. The problem of estimating such
a domain of attraction becomes crucial for any vehi-
cle either conventional or automated. This estimation
will be the topic of future research work. Non-human
drivers (automated vehicles) might also be addressed
by our research provided that their behavior can be
modeled as that of a human. In particular, the presence
of delays is common both to humans and automated
vehicles, and the order of magnitude of the two delays
is similar, even if their nature is different [44]. The
delay of a human refer both to cognitive process and
actuation of themechanical action through neurons and
muscles. The delay of an automated vehicle refers to
the sense-plan-act scheme [45,46] and is due to the
time needed for measurement of physical phenomena,
computing for control action, and actuate one or more
devices.
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Appendix A: Models’ parameters

Vehicle

Mass m 1938 kg
Inertia J 4063 kg m2

a 1.444 m
b 1.529 m

Oversteering configuration
Tyres Driver

B f 14.5 rad−1 Br 13.5 rad−1 τ 0.2 s
C f 1.89 Cr 1.45 k 0.025
E f 0.29 Er 0.31 kd 0.004
D f 9778 N Dr 9234 N Tprev 0.5 s

Understeering configuration
Tyres Driver

B f 9.86 rad−1 Br 18.75 rad−1 τ 0.2 s
C f 1.87 Cr 1.53 k 0.01
E f 0.28 Er 0.30 kd 0.008
D f 9778 N Dr 9234 N Tprev 0.5 s

Appendix B: Necessary and sufficient condition for
global stability of vehicle and driver

In this Appendix, we give a proof of the theorem pro-
posed in Sect. 7 that can be formally presented as:

Given the vehicle-and-driver model shown in Fig. 1
and described by Eqs. (3–11), where tyre forces are not
vanishing, mass properties and vehicle geometry cor-
respond to those of standard vehicles (i.e., limit cases
like Fx f = 0 of J = 0 are excluded), the necessary and
sufficient condition for the vehicle-and-driver system to
be asymptotically stable is

lim
t→∞ 	Ek(t) = 1

2
mv(t)2 + 1

2
Jr(t)2 = 0.
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The condition is necessary.Let usmake the hypothesis
that the system is stable and show that

lim
t→∞ 	Ek(t) = 1

2
mv(t)2 + 1

2
Jr(t)2 = 0.

Since, for the asymptotic stability hypothesis we have

lim
t→∞ z(t) = lim

t→∞[v, r, δ2, δ1, δ, yG , ψ] = 0

and, in particular

lim
t→∞ v(t) = lim

t→∞ r(t) = 0

thus

lim
t→∞ 	Ek(t) = 1

2
mv(t)2 + 1

2
Jr(t)2 = 0.

The condition is sufficient. Let us make the hypothesis

lim
t→∞ 	Ek(t) = 1

2
mv(t)2 + 1

2
Jr(t)2 = 0

and show that the system, is stable. First we choose

V̇ = −
(
1

2
mv(t)2 + 1

2
Jr(t)2

)
.

Given that the region of asymptotic stability is around
the origin, by definition

V (z(t)) − V (z(0)) =
∫ t

0
V̇ (z(t))dt.

If z(t) converges to z = 0, then

lim
t→∞ z(t) = 0,

so

V (z(0)) = −
∫ ∞

0
V̇ (z(t))dt.

Thus, the Lyapunov function for a generic point z(t) is

V (z(t)) =
∫ t

0
V̇ (z(t))d||t + V (z(0))

=
∫ t

0
V̇ (z(t))dt −

∫ ∞

0
V̇ (z(t))dt.

Now, V (z(t)) > 0, since
∫ t
0 V̇ (z(t))dt >

∫ ∞
0 V̇ (z(t))

dt , being V̇ (z) < 0 ∀z. Moreover, V (z(t)) = 0 only
if z(t) = 0, so the system is stable for the Lyapunov
theorem. Finally, if z(t) does not converge to z = 0,
then

lim
t→∞

1

2
mv(t)2 + 1

2
Jr(t)2 
= 0

or

lim
t→∞

1

2
mv(t)2 + 1

2
Jr(t)2 = 0

butwith unacceptable conditions. In fact, the only equi-
libria of system (3–11) with v = r = 0 different from 0
haveψ = π (the vehicle is running with the rear point-
ing ahead), or ψ = 2π (the vehicle has undergone a
full spin). In the other conditions, Eq. (5) does not van-
ish, so that δ 
= 0. Note that running with yG 
= 0
with δ 
= 0 are excluded since such condition can be
reached if tyre forces are null which has been excluded
by hypothesis.
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