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Abstract Two different approaches to incorporate
environmental perturbations in stochastic systems are
compared analytically and computationally. Then we
present a stochastic model for COVID-19 that con-
siders susceptible, exposed, infected, and recovered
individuals, in which the contact rate between sus-
ceptible and infected individuals is governed by the
Ornstein–Uhlenbeck process. We establish criteria for
the existence of a stationary distribution of the system
by constructing a suitable Lyapunov function. Next, we
derive the analytical expression of the probability den-
sity function of the model near the quasi-equilibrium.
Additionally, we establish sufficient conditions for the
extinction of disease. Finally, we analyze the effect
of the Ornstein–Uhlenbeck process on the dynamic
behavior of the stochastic model in the numerical sim-
ulation section. Overall, our findings shed light on the
underlying mechanisms of COVID-19 dynamics and
the influence of environmental factors on the spread
of the disease, which can inform policy decisions and
public health interventions.
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1 Introduction

1.1 Background

COVID-19 is a respiratory illness caused by the novel
coronavirus SARS-CoV-2. Since its emergence in late
2019, COVID-19 has had a significant impact on
human health, as well as social and economic well-
being worldwide. The effects of COVID-19 on humans
can range from mild to severe, with the most severe
cases resulting in hospitalization, long-term disabil-
ity, and even death. The symptoms of COVID-19 can
include fever, cough, shortness of breath, fatigue, body
aches, loss of taste or smell, and gastrointestinal symp-
toms [1]. In severe cases, the virus can lead to res-
piratory failure, septic shock, and multi-organ failure.
While COVID-19 is most commonly associated with
respiratory symptoms, the virus has also been shown
to affect other systems of the body, including the car-
diovascular, nervous, and gastrointestinal systems.

Studying the effects ofCOVID-19 on humans is nec-
essary for several reasons. First and foremost, under-
standing the mechanisms by which the virus causes
illness can help healthcare professionals develop effec-
tive treatments and vaccines. Additionally, studying the
long-term effects of COVID-19 can help researchers
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understand the potential impact of the virus on the
health and well-being of individuals who have recov-
ered from the illness. In summary, studying the effects
of COVID-19 on humans is critical for developing
effective treatments and vaccines, understanding the
long-term impact of the virus on health and well-being,
and developing policies and interventions to mitigate
the social and economic impacts of the pandemic.

Mathematical models have become essential tools
for studying the spread of infectious diseases, includ-
ing COVID-19 [2–5]. For instance, Ndaïrou et al. [6]
proposed a deterministic model for the spread of the
COVID-19 disease with special focus on the transmis-
sibility of super-spreaders individuals. Biswas et al.
[7] investigated a compartmental model to study the
dynamics and future trend of COVID-19 outbreak in
India. Khan and Atangana [8] developed an infectious
disease model for omicron.They analyzed the equilib-
ria of the model and the local asymptotic stability of
disease-free equilibrium. Raza et al. [9] developed a
SIVR epidemic model to study crowding effects of
coronavirus.

Nonstandard finite difference methods, particu-
larly in the realm of fractional modeling, offer dis-
tinct advantages when it comes to capturing phenom-
ena characterized by anomalous diffusion and other
fractional-order dynamics [10]. By incorporating con-
cepts from fractional calculus, such as fractional deriva-
tives or integrals, these methods excel at representing
intricate dynamics that possessmemory and long-range
dependencies. Furthermore, adopting spatio-temporal
modeling approaches provides valuable insights into
the spatial dynamics of epidemics [11]. This spatial per-
spective aids in identifying high-risk areas, optimizing
resource allocation, and evaluating the effectiveness of
targeted interventions, ultimately enhancing the ability
to control andmanage the spread of infectious diseases.

Tilahun and Alemneh [12] formulated the follow-
ing deterministic mathematical model for COVID-19
transmission in Ethiopia by a SEIR model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
=�+ηR(t)−β(σ1 I (t)+σ2E(t))S(t)−μS(t),

dE(t)

dt
= β(σ1 I (t) + σ2E(t))S(t) − (δ + μ)E(t),

dI (t)

dt
= τδE(t) − (ε + ρ + μ)I (t),

dR(t)

dt
= (1 − τ)δE(t) + ε I (t) − (μ + η)R(t),

(1.1)

where themeanings of the variables and parameters are
given in Table 1.

The analysis of the model (1.1) includes qualitative
examination of major factors such as the disease-free
equilibrium, basic reproduction number, stability anal-
ysis of equilibria. According to [12], the basic repro-
duction number of the model is

R0 = β�(σ1τδ + σ2(ε + ρ + μ))

μ(δ + μ)(ε + ρ + μ)
.

They further analyzed and obtained that the disease-
free equilibrium of the model is locally asymptotically
stable and globally asymptotically stablewhen R0 < 1.

However, the existence and stability of endemic
equilibrium was not discussed. In the “Appendix”, we
give the endemic equilibrium of the equivalent model
of deterministic model (1.1) and prove its local asymp-
totic stability when R0 > 1.

1.2 Stochastic model formulation

Stochasticmathematicalmodels are valuable for study-
ing infectious diseases because they allow researchers
to account for the inherent randomness and uncertainty
associated with disease transmission [13,14]. Raza et
al. [15] proposed a stochastic nonstandard finite differ-
ence model to investigate the spread of Nipah virus.
Hamam et al. [16] utilized an evolutionary approach
to study the stochastic modeling of Lassa Fever, a viral
hemorrhagic fever. By considering stochasticity in their
model, they were able to capture the inherent uncer-
tainty and variability in the transmission dynamics of
this disease. Furthermore, a stochastic cancer virother-
apy model incorporating immune responses has been
developed to analyze the dynamics of cell populations
in cancer treatment [17]. This model explores the com-
plex interactions between viruses, cancer cells, and
the immune system, providing insights into the effi-
cacy and limitations of virotherapy as a potential can-
cer treatment approach. In the case of COVID-19, this
uncertainty is particularly significant given the rapidly
changing nature of the pandemic and the evolving
understanding of how the disease spreads.

One of the primary benefits of stochastic mathemat-
ical models is that they can provide more realistic and
accurate predictions of the course of the pandemic com-
pared to deterministic models [18–21]. Deterministic
models assume that the epidemicunfold in a predictable
way based on a set of fixed parameters, while stochastic
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Table 1 Variables and
parameters used in model
(1.1)

Variable Description

S(t) Number of susceptible individuals at time t

E(t) Number of exposed individuals at time t

I (t) Number of infected individuals at time t

R(t) Number of recovered individuals at time t

Parameter Description

� Input rate of susceptible individuals

β Contact rate of susceptible individuals

σ1 Probability of infection in susceptible individuals due to the contact with infected
individuals

σ2 Probability of infection in susceptible individuals due to the contact with exposed
individuals

δ ∈ (0, 1) Proportion of exposed individuals leaving the compartment

μ Natural death rate

ρ Disease causing death rate

τ ∈ (0, 1) Proportion of exposed individuals who contacted infected individuals

ε Recovery rate of individuals from the disease

η ∈ (0, 1) Proportion of recovered individuals to be susceptible

models account for the inherent randomness of disease
transmission and the impact of random events, such
as superspreader events or localized outbreaks, on the
spread of the disease.

Another benefit of stochastic models is their abil-
ity to provide probabilistic forecasts of the course
of the pandemic. Probabilistic forecasts are important
because they allow policymakers to assess the likeli-
hood of various outcomes andmake informeddecisions
based on the potential risks and benefits associatedwith
different interventions.

Additionally, stochastic models can be used to esti-
mate important parameters related to the disease, such
as the transmission rate, the basic reproductive number,
and the effectiveness of various interventions. These
estimates can help inform public health policies and
interventions aimed at controlling the spread of the dis-
ease.

In conclusion, the benefits of using stochastic math-
ematical models to study COVID-19 are significant.
Thesemodels provide amore realistic and accurate rep-
resentation of disease transmission and can be used to
provide probabilistic forecasts of the course of the pan-
demic. They also provide estimates of important dis-
ease parameters, which can inform public health poli-
cies and interventions aimed at controlling the spread
of the disease.

The concept of environmental perturbations in the
stochastic model has been introduced by May [22] to
capture the effect of uncertainties in the real world. To
achieve this, all the parameters in the model have been
assumed to be prone to random fluctuations, which
can be effectively described using Brownian motion.
In particular, the contact rate β is highly sensitive to
environmental disturbances. Therefore, we have con-
sidered β as a random variable, which is denoted by
β(t). There are two commonly used methods for mod-
eling the effect of environmental perturbations. The
first method involves the assumption that the random
variable is perturbed by Gaussian linear white noise
[23], while the second approach considers the scenario
where disease transmission rates are influenced by ran-
dom factors in the environment and tend towards the
mean value over time. In this approach, the parameter
β(t) is assumed to follow a separate stochastic differ-
ential equation (SDE), which is forced to be around the
asymptotic mean [24]. This process is also known as a
mean-reverting process, where the classical type is the
Ornstein–Uhlenbeck (OU) process [25].

Taking inspiration from the method proposed in
[26], we have discussed and compared two methods
for perturbing β(t) and present the analytical compari-
son below. The first method involves assuming that the
random variables β(t) can be accurately modeled by
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linear functions of white noise. In such a scenario, it
follows that

β → β̄ + ρ
dB(t)

dt
, (1.2)

where β̄ is the long-run mean level of the contact rate,
ρ2 denotes the intensity of the white noise and B(t) is
a standard Brownian motion defined on this complete
probability space. Upon direct integration of equation
(1.2), the average disease contact rate over an interval
[0, t] is
1

t

∫ t

0
β(τ)dτ = β̄ + ρ

B(t)

dt
∼ N

(

β̄,
ρ2

t

)

.

Indeed, it is apparent that as the time interval approaches
zero, the average contact rate tends towards infinity.
This behavior is problematic because it implies that
the average value of parameters, such as the disease
contact rate, becomes increasingly unstable as the time
interval decreases. Such instability is unrealistic and
impractical for modeling purposes.

These observations suggest that the use of white
noise to model environmental changes may have inher-
ent limitations. Recent research has highlighted these
limitations, particularly in the context of disease trans-
mission. It has been shown that considering uncertainty
as white noise underestimates the severity of major dis-
ease outbreaks. On the other hand, the OU model has
been shown to accurately predict the process of dis-
ease propagation [27]. This model incorporates tem-
poral correlations and persistence, providing a more
realistic representation of uncertainty in disease trans-
mission dynamics.

To address the issue of potential negative values for
β(t) when directly utilizing the OU process, we intro-
duce a modification. Instead of modeling β(t) directly,
we consider the natural logarithm of β(t), denoted as
ln β(t), and apply a mean-reverting SDE to this trans-
formed variable:

d ln β(t) = θ
(
ln β̄ − ln β(t)

)
dt + ξdB(t),

where θ denotes the speed of reversion and ξ is noise
intensity. Letting x(t) = ln β(t) and x̄ = ln β̄, then
x(t) satisfies the OU SDE:

dx(t) = θ (x̄ − x(t)) dt + ξdB(t), (1.3)

Assuming that x(0) = ln β̄, form [28], it follows that

x(t) ∼ N

(
ln β̄,

ξ2

2θ (1 − e−2θ t )
)
. Thus the probability

density ofβ(t) approaches a stationary log-normal den-

sity with mean β̄e
ξ2

4θ and variance β̄2(e
ξ2

θ
(1−e−2θ t ) −

e
ξ2

2θ (1−e−2θ t )). As the time interval decreases suffi-
ciently, it becomes apparent that the variance, which
indicates the level of variability in the disease contact
rate, gradually tends towards zero. This suggests a sta-
ble and consistent disease contact rate over time. As
a result, this modeling approach appears more reason-
able.

By employing the mean-reverting SDE for ln β(t),
we ensure that the resulting process remains within
realistic and non-negative values. This modification
preserves the inherent properties of the OU process,
such as temporal correlations and persistence, while
preventing the occurrence of negative transmission
rates. This approach allows us to capture the stochastic
nature of disease transmission and the impact of envi-
ronmental fluctuations, while maintaining the realism
and feasibility of themodel. Bymodeling the logarithm
of β(t)with a mean-reverting SDE, we strike a balance
between incorporating realistic dynamics and avoiding
unrealistic scenarios with negative transmission rates.

Taken together, these findings emphasize the impor-
tance of using appropriate modeling approaches that
account for the temporal nature of environmental
changes and capture the complex dynamics of disease
transmission. The use of the OU model offers a more
accurate and reliable framework for understanding and
predicting the spread of diseases, addressing the limi-
tations associated with modeling uncertainty as white
noise.

Therefore, we obtain the following stochastic
COVID-19 model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = θ (x̄ − x(t)) dt + ξdB(t),

dS(t)=(�+ηR(t)−ex(t)(σ1 I (t)+σ2E(t))S(t)−μS(t))dt,

dE(t)=(ex(t)(σ1 I (t)+σ2E(t))S(t)−(δ+μ)E(t))dt,

dI (t) = (τδE(t) − (ε + ρ + μ)I (t))dt,

dR(t) = ((1 − τ)δE(t) + ε I − (μ + η)R(t))dt.

(1.4)

By comparing our research with existing results, we
have made the following significant contributions:

• Addressing the limitations of white noise models:
Recent study has demonstrated that stochasticmod-
els constructed with white noise tend to underes-
timate the severity of disease outbreaks. In con-
trast, our research incorporates the OU process as a
suitable tool for modeling uncertainty in transmis-
sion rate [27]. This approach allows for more accu-
rate predictions of the severity and progression of
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the COVID-19 pandemic. Notably, our stochastic
SEIRS epidemic model (1.4) with a log OU pro-
cess introduces a more realistic and biologically
meaningful framework for studying the spread of
COVID-19.

• NovelLyapunov function construction and stochas-
tic analysis: We contribute to the field by develop-
ing a novel approach that combines Lyapunov func-
tion construction methods with stochastic process
theory. By doing so, we derive sufficient conditions
for the existence of a stationary distribution and the
extinction of the disease within the model. Specif-
ically, we demonstrate that the model exhibits a
stationary distribution when Rs

0 > 1, while disease
extinction occurs when Re

0 < 1.
• Exact expression for the probability density func-
tion: By defining the quasi-epidemic equilibrium
E�, we provide an exact expression for the prob-
ability density function of a stable distribution in
the vicinity of E�. This contribution enhances our
understanding of the distributional characteristics
and behavior of the model near the quasi-epidemic
equilibrium.

• Comprehensive numerical simulations and real
case data analysis:We conducted various numerical
simulations to illustrate the impact of environmen-
tal noise on the dynamics of the stochastic model.
Furthermore, we validated our findings by compar-
ing the outcomes of our stochastic model with real
case data from Ethiopia, covering the period from
March 2020 to July 2021. This comparison high-
lights the practical relevance and applicability of
our stochastic model in analyzing and understand-
ing real-world epidemic dynamics.

In summary, our research provides valuable insights
into the limitations of white noise models, introduces
a more realistic stochastic framework for modeling the
spread of COVID-19, establishes conditions for the
existence of stationary distributions and disease extinc-
tion, and incorporates numerical simulations and real
case data analysis for validation and practical applica-
bility.

In this paper, we will explore the benefits of using
mathematical models, particularly stochastic mathe-
matical model (1.4), to study COVID-19. The paper is
structured as follows: Sect. 2 presents the preliminaries
and investigates the existence of the unique global solu-
tion. Sections3 and 4 explore the stationary distribution

and the probability density function of the stochastic
model, respectively. Section5 discusses the sufficient
conditions for the extinction of disease. In Sect. 6, we
perform several numerical simulations to demonstrate
the theoretical findings presented in this paper. Finally,
we provide a comprehensive conclusion to the paper.

2 Preliminaries

2.1 Useful lemmas

Throughout this paper, let (,F , {Ft }t≥0,P) be a
complete probability space with a filtration {Ft }t≥0

satisfying the usual conditions (i.e. it is increasing and
right continuous whileF0 contains all P-null sets). We
also let Rn+ = {x = (x1, . . . , xn) ∈ R

n : xi > 0, i =
1, . . . , n}. If M is a matrix, its transpose is denoted by
MT . Let Nk denote a k-dimensional normal distribu-
tion, for k is a positive integer.

Lemma 2.1 [29–31] If there exists a bounded closed
domainD ∈ R

d with a regular boundary, for any initial
value X (0) ∈ R

d , if

lim inf
t→+∞

1

t

∫ t

0
P(τ, X (0),D)dτ > 0, a.s.,

where P(τ, X (0),D) is the transition probability of
X (t). Then system (1.4)will possesses a solution which
has the Feller property. In addition, system (1.4) admits
at least one invariant probabilitymeasure onRd , which
means system (1.4) has at least one ergodic stationary
distribution on R

d .

Lemma 2.2 For a stochastic equation

d(ln β(t)) = θ(ln β̄ − ln β(t)) + ξ B(t), (2.1)

where ln β̄ and ξ are positive constants and B(t) is a
standard Brownian motion. Then,

(i)

lim
t→∞

1

t

∫ t

0

∣
∣β(s) − β̄

∣
∣ ds ≤ ex̄

(

1 + e
ξ2

θ − 2e
ξ2

4θ

) 1
2

.

(ii) For n > 0,

lim
t→∞

1

t

∫ t

0
βn(s)ds = (β̄)ne

n2ξ2

4θ .
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Proof (i) According to the ergodicity of z1, z2 and the
strong law of large numbers, we obtain

lim
t→∞

1

t

∫ t

0

∣
∣
∣ex(s)−β̄

∣
∣
∣ ds=

∫ +∞

−∞

∣
∣
∣ex(ν) − ex̄

∣
∣
∣ ρ(ν)dν

≤
(∫ +∞

−∞

(
ex(ν)−ex̄

)2
ρ(ν)dν

) 1
2
(∫ +∞

−∞
12ρ(ν)

) 1
2

=
(∫ +∞

−∞

(
ex(ν) − ex̄

)2
ρ(ν)dν

) 1
2

=
(

e2x̄+
ξ2

θ + e2x̄ − 2e2x̄+
ξ2

4θ

) 1
2

= ex̄
(

1 + e
ξ2

θ − 2e
ξ2

4θ

) 1
2

,

where

ρ(ν) =
√

θ√
πξ

e
− r(ν−x̄)2

ξ2 .

(ii) Denote x(t) = ln β(t) and x̄ = ln β̄. Then (2.1)
becomes

dx(t) = θ(x̄ − ln x(t)) + ξ B(t). (2.2)

Then we have

lim
t→∞

1

t

∫ t

0
βn(s)ds = lim

t→∞
1

t

∫ t

0
enx(s)ds

= lim
t→∞

1

t

∫ t

0
e

√
2r(x(s)−x̄)

ξ
nξ√
2θ ex̄nds.

Let v(t) =
√
2θ(x(t)−x̄)

ξ
, then it is obvious that the sta-

tionary distribution of v(t) obeys N(0, 1). Therefore,
we have

lim
t→∞

1

t

∫ t

0
βn(s)ds = (β̄)n

∫ +∞

−∞
1√
2π

e− v2
2 e

nξ√
2θ

v
dv

= (β̄)n
∫ +∞

−∞
1√
2π

e−
(

v− nξ√
2θ

)2

2 e
n2ξ2

4θ dv

= (β̄)ne
n2ξ2

4θ .

	

Next, we give a lemma on five-dimensional positive
definite matrix.

Lemma 2.3 [32] For a symmetric matrix 0, if 0

satisfies �2
0 + A00 + 0AT

0 = 0, where

�0 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

A0 =

⎛

⎜
⎜
⎜
⎜
⎝

−ϑ1 −ϑ2 −ϑ3 −ϑ4 −ϑ5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

with

ϑ1, ϑ2, ϑ3, ϑ4, ϑ5 > 0, ϑ1ϑ2 − ϑ3 > 0, ϑ3ϑ4

−ϑ2ϑ5 > 0, ϑ3(ϑ1ϑ2−ϑ3)−ϑ1(ϑ1ϑ4−ϑ5) > 0,

(ϑ1ϑ2 − ϑ3)(ϑ3ϑ4 − ϑ2ϑ5) − (ϑ1ϑ4 − ϑ5)
2 > 0.

Then

0 =

⎛

⎜
⎜
⎜
⎜
⎝

ϑ11 0 −ϑ22 0 ϑ33

0 ϑ22 0 −ϑ33 0
−ϑ22 0 ϑ33 0 −ϑ44

0 −ϑ33 0 ϑ44 0
ϑ33 0 −ϑ44 0 ϑ55

⎞

⎟
⎟
⎟
⎟
⎠

.

is a positive definite matrix, where

ϑ11 = ϑ2(ϑ3ϑ4 − ϑ2ϑ5) − ϑ4(ϑ1ϑ4 − ϑ5)

2[(ϑ1ϑ2 − ϑ3)(ϑ3ϑ4 − ϑ2ϑ5) − (ϑ1ϑ4 − ϑ5)2] ,

ϑ22 = ϑ3ϑ4 − ϑ2ϑ5

2[(ϑ1ϑ2 − ϑ3)(ϑ3ϑ4 − ϑ2ϑ5) − (ϑ1ϑ4 − ϑ5)2] ,

ϑ33 = ϑ1ϑ4 − ϑ5

2[(ϑ1ϑ2 − ϑ3)(ϑ3ϑ4 − ϑ2ϑ5) − (ϑ1ϑ4 − ϑ5)2] ,

ϑ44 = ϑ1ϑ2 − ϑ3

2[(ϑ1ϑ2 − ϑ3)(ϑ3ϑ4 − ϑ2ϑ5) − (ϑ1ϑ4 − ϑ5)2] ,

ϑ55 = ϑ3(ϑ1ϑ2 − ϑ3) − ϑ1(ϑ1ϑ4 − ϑ5)

2[(ϑ1ϑ2 − ϑ3)(ϑ3ϑ4 − ϑ2ϑ5) − (ϑ1ϑ4 − ϑ5)2] .

2.2 Existence and uniqueness of the global solution

Firstly, we give the following fundamental theorem
with respect to a unique global solution of stochastic
model (1.4).

Theorem 2.1 For any initial value (x(0), S(0), E(0),
I (0), R(0)) ∈ R × R

4+, there exists a unique solution
(x(t), S(t), E(t), I (t), R(t)) of model (1.4) on t ≥ 0,
and the solution will remain inR×R

4+ with probability
one almost surely (a.s.).

Proof The beginning and the end of the proof are sim-
ilar to [33], thus we omit them here. Here, we only
present the most crucial Lyapunov function. Define a
C2-function as follows
U0 = (ex − x − 1) + (S − 1 − ln S)

+(E1 − 1 − ln E) + (I − 1 − ln I )

+(R − 1 − ln R),
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where the non-negativity ofU0 can be obtained through
the inequality z − 1 − ln z ≥ 0 for z > 0. Applying
Itô’s formula to U0, we have

LU0 = θ(ex − 1)(x̄ − x) + ξ2

2
ex +

(

1 − 1

S

)

(
� + ηR − ex (σ1 I + σ2E)S − μS

)

+
(

1 − 1

E

)
(
ex (σ1 I + σ2E)S − (δ + μ)E

)

+
(

1 − 1

I

)

(τδE − (ε + ρ + μ)I )

+
(

1 − 1

R

)

((1 − τ)δE + ε I − (μ + η)R)

≤ θ(ex − 1)(x̄ − x) + ξ2

2
ex + ex (σ1 I

+σ2E) + � + δ + ε + ρ + ρ + 3μ.

Notice that

(S + E + I + R)′ = � − μ(S + E + I + R)

−ρ I ≤ � − μ(S+E+I+R),

Thus

S + E + I + R ≤ N0 �

⎧
⎪⎪⎨

⎪⎪⎩

�

μ
, if S(0)+E(0)+I (0)+R(0)≤�

μ
,

S(0) + E(0) + I (0) + R(0), if S(0) + E(0) + I (0) + R(0) >
�

μ
.

(2.3)

Therefore, combining (2.3), one gets

LU0 ≤ θ(ex − 1)(x̄ − x) + ξ2

2
ex + ex (σ1 I + σ2E)

+� + δ + ε + ρ + ρ + 3μ

= f0(x) + � + δ + ε + ρ + ρ + 3μ,

where

f0(x) = θ(ex − 1)(x̄ − x) +
(

ξ2

2
+ �(σ1 + σ2)

μ

)

ex .

Note that f0(x) is tending to negative infinity when x
tends to negative infinity or positive infinity. Therefore,
on the real number domain, the functions f0(x) have a
upper bound. Then we have

LU0 ≤ sup
x∈R

{ f0(x)} + � + δ + ε + ρ + ρ + 3μ ≤ K0,

where K0 is a positive constant. A similar proof of
Theorem 3.1 of Yang et al. [33], thus the rest of the
proof is omitted here. This completes the proof. 	


Remark 2.1 Theorem2.1 demonstrates that for any ini-
tial value (x(0), S(0), E(0), I (0), R(0)) ∈ R × R

4+,
there exists a unique global solution (x(t), S(t), E(t),
I (t), R(t)) ∈ R × R

4+ a.s. of system (1.4).
Since

(S + E + I + R)′ ≤ � − μ(S + E + I + R),

one gets

S(t) + E(t) + I (t) + R(t) ≤ �

μ

+e−μt
(

S(0) + E(0) + I (0) + R(0) − �

μ

)

,

Thus if S(0) + E(0) + I (0) + R(0) < �
μ
, then S(t) +

E(t) + I (t) + R(t) < �
μ
a.s.. Hence, the region

� =
{
(x, S, E, I, R) ∈ R × R

4+ :

S + E + I + R <
�

μ

}

is a positively invariant set of system (1.4). From
now on, we always assume that the initial value
(x(0), S(0), E(0), I (0), R(0)) ∈ �.

3 Ergodic property and stationary distribution

Deterministic COVID-19 epidemic model (1.1) in
which the stability of the endemic equilibrium can
reflect the long-term spread of the disease. The persis-
tence and ergodicity of the disease in model (1.4) are
obtained from stationary distributions by considering
stochastic factors.

Define

Rs
0 =

β̄�

(

σ1τδe
ξ2

12θ + σ2e
ξ2

8θ (ε + ρ + μ)

)

μ(δ + μ)(ε + ρ + μ)
.

Theorem 3.1 Assume that Rs
0 > 1, then the stochas-

tic system (1.4) admits at least one ergodic stationary
distribution.

Proof We divide the proof into three steps: first we
construct suitable stochastic Lyapunov functions, then
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we construct a compact set, and finally we verify its
ergodicity using above Lyapunov functions and the set.
Consider

L(− ln E) = −σ1 I ex (N − E − I − R)

E
−σ2e

x (N − E − I − R) + δ + μ,

L(− ln(N − E − I − R)) ≤ − �

N − E − I − R
+ex (σ1 I + σ2E) + μ,

L(− ln I ) = −τδE

I
+ ε + ρ + μ.

Then define

U1 = − ln E − (a1 + a2) ln

(N − E − I − R) − a2 ln I,

where ai (i = 1, 2, 3) are determined later.

LU1 ≤ −σ1 I ex (N−E−I−R)

E
− a1�

N−E−I−R

−a3τδE

I
− σ2e

x (N − E − I − R)

− a2�

N − E − I − R
+δ + μ + (a1 + a2)μ + a3(ε + ρ + μ)

+(a1 + a2)e
x (σ1 I + σ2E)

≤ − 3
√
a1a3�σ1τδex

−√
a2�σ2ex + δ + μ + (a1 + a2)μ

+a3(ε + ρ + μ) + (a1 + a2)e
x (σ1 I + σ2E)

= − 3
√

a1a3�σ1τδβ̄e
ξ2
12θ

−
√

a2�σ2β̄e
ξ2
8θ + δ

+μ + (a1 + a2)μ + a3(ε + ρ + μ)

+(a1 + a2)e
x (σ1 I + σ2E) + f1(x),

where

f1(x) = 3
√
a1a3�σ1τδ

(

β̄
1
3 e

ξ2

36θ − e
x
3

)

+√
a2�σ2

(

β̄
1
2 e

ξ2

16θ − e
x
2

)

.

Choose

a1 = �σ1τδβ̄e
ξ2
12θ

μ2(ε+ρ+μ)
, a2 = �σ2β̄e

ξ2
8θ

μ2 ,

a3 = �σ1τδβ̄e
ξ2
12θ

μ(ε+ρ+μ)2
.

Then we have

LU1 ≤ − �σ1τδβ̄e
ξ2

12θ

μ(ε + ρ + μ)
− �σ2β̄e

ξ2

8θ

μ

+δ + μ + (a1 + a2)e
x (σ1 I + σ2E) + f1(x)

= −(Rs
0 − 1)(δ + μ) + (a1 + a2)

ex (σ1 I + σ2E) + f1(x).

Note that

ex ≤ a4e
2x + 1

4a4
, ex ≤ a5e

2x + 1

4a5
.

Then

LU1 ≤ −(Rs
0−1)(δ+μ)+σ1(a1+a2)

(

a4e
2x+ 1

4a4

)

I + σ2(a1 + a2)

(

a5e
2x + 1

4a5

)

E + f1(x)

≤ −(Rs
0 − 1)(δ + μ) + �(a1 + a2)(σ1a4 + σ2a5)e2x

μ

+σ1(a1 + a2)

4a4
I + σ2(a1 + a2)

4a5
E + f1(x)

= −(Rs
0 − 1)(δ + μ)

+�σ1a4(a1 + a2)(σ1a4 + σ2a5)

μ
β̄2e

ξ2

θ

+σ1(a1 + a2)

4a4
I + σ2(a1 + a2)

4a5
E

+ f1(x) + f2(x),

where

f2(x) = �(a1 + a2)(σ1a4 + σ2a5)

μ

(

e2x − β̄2e
ξ2

θ

)

.

Choose

a4 = μ(Rs
0 − 1)(δ + μ)

4�σ1β̄2e
ξ2
θ (a1 + a2)

,

a5 = μ(Rs
0 − 1)(δ + μ)

4�σ2β̄2e
ξ2
θ (a1 + a2)

,

such that

LU1 ≤ −1

2
(Rs

0 − 1)(δ + μ) + σ1(a1 + a2)

4a4

I + σ2(a1 + a2)

4a5
E + f1(x) + f2(x).

Define

U2 = U1 + σ1(a1 + a2)

4a4(ε + ρ + μ)
I.
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LU2 ≤ −1

2
(Rs

0 − 1)(δ + μ)

+
(

σ2(a1 + a2)

4a5
+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E + f1(x) + f2(x).

Next define

U3 = − ln S − ln I − ln R − ln
(

�

μ
− S − E − I − R

)

+ ex − x − 1,

we have

LU3 ≤ −�

S
− τδE

I
− (1 − τδ)E

R

+� − μ(S + E + I + R) − ρ I
�
μ − S − E − I − R

+ε + ρ + η + 2μ

+ex (σ1 I + σ2E) + θ(x̄ − x)(ex − 1) + ξ2ex

2

≤ −�

S
− τδE

I

− (1 − τδ)E

R
− ρ I

�
μ − S − E − I − R

+θ(x̄ − x)(ex − 1) +
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ.

Finally define

U4 = M0U2 +U3,

where M0 is a sufficiently large constant satisfying

−M0

2
(Rs

0 − 1)(δ + μ) + sup
x∈R

{
θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex
}

+ ε + ρ + η + 2μ

≤ −2. (3.1)

Then we have

LU4 ≤ −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5
+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E + M0 f1(x) + M0 f2(x)

−�

S
− τδE

I
− (1 − τδ)E

R
− ρ I

�
μ − S − E − I − R

+θ(x̄ − x)(ex − 1) +
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex

+ε + ρ + η + 3μ

= f3(x, S, E, I, R) + M0 f1(x) + M0 f2(x),

where

f3(x, S, E, I, R) = −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E − �

S
− τδE

I
− (1 − τδ)E

R

− ρ I
�
μ

−S−E−I−R

+θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ. (3.2)

Then, we construct a compact set D ⊂ � as follows

D =
{

(x, N , E, I, R) ∈ � : κ ≤ ex ≤ 1

κ
, κ2 ≤ E,

κ4 ≤ I, κ4 ≤ R, S + E + I + R ≤ �

μ
− κ3

}

such that f3(U ) ≤ −1 for any (x, N , E, I, R) ∈
�\D := D

c. Then let Dc = ⋃7
i=1 D

c
i , where

D
c
1 = {(x, N , E, I, R) ∈ � : 0 < ex < κ},

D
c
2 = {(x, N , E, I, R) ∈ � : 1

κ
< ex },

D
c
3 = {(x, N , E, I, R) ∈ � : 0 < E < κ},

D
c
4 = {(x, N , E, I, R) ∈ � : κ ≤ E, 0 < I < κ2},

D
c
5 = {(x, N , E, I, R) ∈ � : κ ≤ E, 0 < R < κ2},

D
c
6 = {(x, N , E, I, R) ∈ � : 0 < S < κ},

D
c
7 =

{
(x, N , E, I, R) ∈ � : κ2 ≤ I,

S + E + I + R <
�

μ
− κ3

}

,

with κ ∈ (0, 1) is a small enough constant satisfying
the following inequalities

θ

2
(1 − κ)(ln κ − x̄) + sup

x∈R
{ f4(x)} ≤ −1, (3.3)

with

f4(x) =
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex
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+M0

(
σ2(a1 + a2)

4a5
+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

�

μ
+ ε + ρ + η + 3μ,

θ

2

(
1

κ
− 1

)

(ln κ + x̄) + sup
x∈R

{ f4(x)} ≤ −1,

(3.4)

M0

(
σ2(a1 + a2)

4a5
+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

κ ≤ 1,

(3.5)

M0

(
σ1(a1 + a2)

κ
+ σ2τδ(a1 + a2)

4a4(ε + ρ + μ)

)
�

μ
− τδ

κ
≤ 1,

(3.6)

M0

(
σ1(a1+a2)

κ
+σ2τδ(a1+a2)

4a4(ε+ρ+μ)

)
�

μ
−1−τδ

κ
≤ 1,

(3.7)

M0

(
σ1(a1 + a2)

κ
+ σ2τδ(a1 + a2)

4a4(ε + ρ + μ)

)
�

μ
− �

κ
≤ 1,

(3.8)

M0

(
σ1(a1 + a2)

κ
+ σ2τδ(a1 + a2)

4a4(ε + ρ + μ)

)
�

μ
− ρ

κ
≤ 1.

(3.9)

Case 1 If (x, N , E, I, R) ∈ D
c
1, i.e. x ∈ (−∞, ln κ),

from (3.2) and (3.3), we have

f3(x, N , E, I, R) ≤ θ

2
(x̄ − x)(ex − 1) + f4(x)

≤ θ

2
(1 − κ)(ln κ − x̄)

+ sup
x∈R

{ f4(x)} ≤ −1.

Case2 If (x, N , E, I, R) ∈ D
c
2, i.e. x ∈ (− ln κ,∞),

from (3.2) and (3.4), we have

f3(x, N , E, I, R) ≤ θ

2
(x̄ − x)(ex − 1) + f4(x)

≤ θ

2

(
1

κ
− 1

)

(ln κ + x̄)

+ sup
x∈R

{ f4(x)} ≤ −1.

Case 3 If (x, N , E, I, R) ∈ D
c
3. From (3.1), (3.2)

and (3.5), we have

f3(x, N , E, I, R) ≤ −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E

+θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ

≤ M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

κ − 2

≤ −1.

Case 4 If (x, N , E, I, R) ∈ D
c
4. From (3.1), (3.2)

and (3.6), we have

f3(x, N , E, I, R) ≤ −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E − τδE

I

+θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ

≤ M0

(
σ1(a1 + a2)

κ

+ σ2τδ(a1+a2)

4a4(ε+ρ+μ)

)
�

μ
−τδ

κ
−2

≤ −1.

Case 5 If (x, N , E, I, R) ∈ D
c
5, from (3.1), (3.2)

and (3.7), we have

f3(x, N , E, I, R) ≤ −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E

− (1 − τδ)E

R
+ θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ

≤ M0

(
σ1(a1 + a2)

κ

+ σ2τδ(a1+a2)

4a4(ε+ρ+μ)

)
�

μ
−1−τδ

κ
−2

≤ −1.
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Case 6 If (x, N , E, I, R) ∈ D
c
6, from (3.1), (3.2)

and (3.8), we have

f3(x, N , E, I, R) ≤ −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E − �

S

+θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ

≤ M0

(
σ1(a1 + a2)

κ

+ σ2τδ(a1 + a2)

4a4(ε + ρ + μ)

)
�

μ
− �

κ
− 2

≤ −1.

Case 7 If (x, N , E, I, R) ∈ D
c
7, from (3.1), (3.2)

and (3.9), we have

f3(x, N , E, I, R) ≤ −M0

2
(Rs

0 − 1)(δ + μ)

+M0

(
σ2(a1 + a2)

4a5

+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E − ρ I
�
μ

− S − E − I − R

+θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ

≤ M0

(
σ1(a1 + a2)

κ

+ σ2τδ(a1 + a2)

4a4(ε + ρ + μ)

)
�

μ
− ρ

κ
− 2

≤ −1.

In summary, we have f3(x, N , E, I, R) ≤ −1 for all
(x, N , E, I, R) ∈ D

c.
Step 3. (The existence and ergodicity of the solu-

tion of system (1.4)): Since the functionU4(x, N , E, I, R)

tends to ∞ as x , S, E , I , R or S+ E + I + R approach
the boundary ofR×R

4+ or as ||(x, N , E, I, R)|| → ∞.
Thus, there exists a point (x̃, S̃, Ẽ, Ĩ , R̃) in the interior
of� whichmakesU4(x̃, S̃, Ẽ, Ĩ , R̃) take theminimum
value.

Therefore U = U4 − U4(x̃, S̃, Ẽ, Ĩ , R̃) is a non-
negativeC2-function. Applying the Itô’s formula toU ,
we have

LU ≤ f3(x, N , E, I, R) + M0 f1(x) + M0 f2(x).

For any initial value (x(0), S(0), E(0), I (0), R(0)) ∈
� and a interval [0, t], applying Itô’s integral andmath-
ematical expectation to U , we get

0 ≤ EU (x(t), S(t), E(t), I (t), R(t))

t

= EU (x(0), S(0), E(0), I (0), R(0))

t

+1

t

∫ t

0
E(LU (x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))dτ

≤ EU (x(0), S(0), E(0), I (0), R(0))

t

+1

t

∫ t

0
E( f3(x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))dτ

+M0
3
√
a1a3�σ1τδ

(

β̄
1
3 e

ξ2

36θ − E

(
1

t

∫ t

0
e

x(τ )
3 dτ

))

+M0

√
a2�σ2

(

β̄
1
2 e

ξ2

16θ − E

(
1

t

∫ t

0
e

x(τ )
2 dτ

))

+M0�(a1 + a2)(σ1a4 + σ2a5)

μ
(

E

(
1

t

∫ t

0
e2x(τ )dτ

)

− β̄2e
ξ2

θ

)

. (3.10)

According to Lemma 2.2, we have

lim
t→∞

1

t

∫ t

0
e
x(τ )
3 dτ = β̄

1
3 e

ξ2

36θ ,

lim
t→∞

1

t

∫ t

0
e
x(τ )
2 dτ = β̄

1
2 e

ξ2

16θ ,

lim
t→∞

1

t

∫ t

0
e2x(τ )dτ = β̄2e

ξ2

θ . (3.11)

Thus allowing t → ∞ and substituting (3.11) into
(3.10), we have

0 ≤ lim inf
t→∞

EU (x(0), S(0), E(0), I (0), R(0))

t

+ lim inf
t→∞

1

t

∫ t

0
E( f3(x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))dτ

= lim inf
t→∞

1

t

∫ t

0
E( f3(x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))

dτ, a.s..

On the other hand, note that

f3(x, S, E, I, R) ≤ M1, ∀(x, S, E, I, R) ∈ �,
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where

M1 = sup
(x,S,E,I,R)∈�

{

M0

(
σ2(a1 + a2)

4a5
+ σ1τδ(a1 + a2)

4a4(ε + ρ + μ)

)

E − �

S
− τδE

I
− (1 − τδ)E

R

− ρ I
�
μ

− S − E − I − R
+ θ(x̄ − x)(ex − 1)

+
(

�(σ1 + σ2)

μ
+ ξ2

2

)

ex + ε + ρ + η + 3μ

}

< +∞.

Hence we have

lim inf
t→∞

1

t

∫ t

0
E( f3(x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))dτ

= lim inf
t→∞

1

t

∫ t

0
E( f3(x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))

1{(x(τ ),S(τ ),E(τ ),I (τ ),R(τ ))∈D}dτ

+ lim inf
t→∞

1

t

∫ t

0
E( f3(x(τ ), S(τ ), E(τ ), I (τ ), R(τ )))

1{(x(τ ),S(τ ),E(τ ),I (τ ),R(τ ))∈Dc}dτ

≤ M1 lim inf
t→∞

1

t

∫ t

0

1{(x(τ ),S(τ ),E(τ ),I (τ ),R(τ ))∈D}dτ

− lim inf
t→∞

1

t

∫ t

0
1{(x(τ ),S(τ ),E(τ ),I (τ ),R(τ ))∈Dc}dτ

= (M1 + 1) lim inf
t→∞

1

t

∫ t

0
1{(x(τ ),S(τ ),E(τ ),I (τ ),R(τ ))∈D}

dτ − 1.

This implies that

lim inf
t→∞

1

t

∫ t

0
1{(x(τ ),S(τ ),E(τ ),I (τ ),R(τ ))∈D}

dτ ≥ 1

M1 + 1
> 0, a.s.. (3.12)

LetP(t, (x(t), S(t), E(t), I (t), R(t)),) as the transi-
tionprobability of (x(t), S(t), E(t), I (t), R(t))belongs
to the set. Making the use of Fatou’s lemma [29], we
have

lim inf
t→∞

1

t

∫ t

0
P(τ, (x(τ ), S(τ ), E(τ ), I (τ ), R(τ )),D)

dτ ≥ 1

M1 + 1
> 0, a.s.. (3.13)

According to Lemma 2.1, system (1.4) has at least one
stationary distribution η(·) on � which has the Feller
and ergodic property. This completes the proof. 	


4 Probability density function

With the purpose of obtaining more information about
the dynamics and statistical properties of the stochas-
tic model (1.4), in this section, we concentrate on the
analysis of the probability density function. First, we
let N (t) = S(t) + E(t) + I (t) + R(t) to obtain the
equivalent model of stochastic model (1.4) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx(t) = θ (x̄ − x(t)) dt + ξdB(t),

dN (t) = (� − μN (t) − ρ I (t))dt,

dE(t) = (ex(t)(σ1 I (t) + σ2E(t))(N (t) − E(t) − I (t) − R(t)) − (δ + μ)E(t))dt,

dI (t) = (τδE(t) − (ε + ρ + μ)I (t))dt,

dR(t) = ((1 − τ)δE(t) + ε I − (μ + η)R(t))dt.

(4.1)

Similar to the analysis in “Appendix”, if

Rp
0 = β̄� (σ1τδ + σ2(ε + ρ + μ))

μ(δ + μ)(ε + ρ + μ)
> 1, (4.2)

we can obtain that the stochastic model (4.1) has a
unique quasi-infected equilibrium �� = (ln β̄, N �,

E�, I �, R�), where

(N�, E�, I �, R�)

=
(

�

μ
− ρ I �

μ
,
ε + ρ + μ

τδ
I �, I �,

(1 − τ)(ρ + μ) + ε

(μ + η)τ
I �
)

,

I � =
�
μ

(

1 − 1
Rp
0

)

1 + ρ
μ + ε + ρ + μ

τδ
+ (1−τ)(ρ+μ)+ε

τ(μ+η)

> 0.

Then let Y = (y1, y2, y3, y4, y5)T = (x − x̄, E −
E�, I − I �, R − R�, N − N �)T . Applying Itô’s inte-
gral, we obtain the corresponding linearized system of
model (4.1):
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dy1 = −θy1dt + ξdB(t),

dy2=(p21y1−p22y2−p23y3−p24y4+p24y5)dt,

dy3 = (p32y2 − p33y3)dt,

dy4 = (p42y2 + p43y3 − p44y4)dt,

dy5 = (−p53y3 − p55y5)dt,

(4.3)

where

p21 = β̄(σ1 I
� + σ2E

�)(N � − E� − I � − R�),

p22 = β̄(σ1 I
� − σ2(N

� − I � − R�)) + δ + μ,

p23 = β̄(σ2E
� − σ1(N

� − E� − R�)),

p24 = β̄(σ1 I
� + σ2E

�), p32 = τδ, p33 = ε + ρ + μ,

p42 = (1 − τ)δ, p43 = ε, p44 = μ + η,

p53 = ρ, p55 = μ.

The model (4.3) can be equivalently written as

dY (t) = PY (t)dt + �dB(t),

where

P =

⎛

⎜
⎜
⎜
⎜
⎝

−θ 0 0 0 0
p21 −p22 −p23 −p24 p24
0 p32 −p33 0 0
0 p42 p43 −p44 0
0 0 −p53 0 −p55

⎞

⎟
⎟
⎟
⎟
⎠

, � =

⎛

⎜
⎜
⎜
⎜
⎝

ξ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Theorem 4.1 If R p
0 > 1 and τε+(1−τ)(ε+η−ρ) �=

0, then the stationary solution (x(t), E(t), I (t), R(t),
N (t)) to system (4.1)around�� = (ln β̄, N �, E�, I �, R�)

follows the normal distribution N5(�
�,�), where

� = (ξτδρηβ̄(σ1 I
� + σ2E

�)(N � − E� − I � − R�))2

(T3T2T1)
−1[(T3T2T1)−1]T ,

and matrices T1, T2, T3 and  are defined in the fol-
lowing proof.

Proof The local probability density function has been
widely studied in recent years. According to the theo-
retical analysis in [33–35], covariance matrix� can be
determined by

�2 + P� + �PT = 0.

Let

T1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 − p42

p32
1 0

0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

such that

P1 = T1PT
−1
1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−θ 0 0 0 0
p21 −p22 −p23 − p24 p42

p32
−p24 p24

0 p32 −p33 0 0
0 0 p32 p43+p33 p42−p42 p44

p32
−p44 0

0 0 −p53 0 −p55.

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Note that p32 p43 + p33 p42 − p42 p44 = δ(τε + (1 −
τ)(ε + η − ρ)) �= 0. Then let

T2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 p32 p53

p32 p43+p33 p42−p42 p44
1

⎞

⎟
⎟
⎟
⎟
⎠

such that

P2 = T2P1T
−1
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−θ 0 0 0 0

p21 −p22 −p23 − p24 p42
p32

−p24
(
1 + p32 p53

p32 p43+p33 p42−p42 p44

)
p24

0 p32 −p33 0 0
0 0 p32 p43+p33 p42−p42 p44

p32
−p44 0

0 0 0 p32 p53(p44−p55)
p32 p43+p33 p42−p42 p44

−p55,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where p44 − p55 = η �= 0. Then we denote Q =
(0, 0, 0, 0, 1) and T3 = (QP4

2 , QP3
2 , QP2

2 , QP2, Q)T

such that
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18572 Z. Shi, D. Jiang

P3 = T3P2T
−1
3 =

⎛

⎜
⎜
⎜
⎜
⎝

−p1 −p2 −p3 −p4 −p5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

where

p1 = θ + �1, p2 = �1θ + �2, p3 = �2θ + �3,

p4 = �3θ + �4, p5 = �4θ,

�1 = p22 + p33 + p44 + p55 > 0,

�2 = p22 p33 + p22 p44 + p22 p55 + p33 p44 + p34 p43

+ p32 p53 + p33 p55 + p44 p55,

�3 = p22 p33 p44 + p22 p34 p43 + p24 p32 p43

+ p22 p32 p53 + p22 p33 p55 + p22 p44 p55

+ p32 p43 p54 + p32 p44 p53

+ p33 p44 p55 + p34 p43 p55,

�4 = p22 p32 p43 p54 + p22 p32 p44 p53

+ p22 p33 p44 p55 + p22 p34 p43 p55

+ p24 p32 p43 p55.

Assume that the characteristic polynomial of P3 is
assumed as

|λI − P3| = (λ + θ)ψ(λ),

where ψ(λ) = λ4 +�1λ
3 +�2λ

2 +�3λ+�4. Next we
shall prove that the matrix P satisfies the conditions in
Lemma 2.3.

Based on the proof in “Appendix”, it is not difficult
to obtain the following model,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN

dt
= � − μN − ρ I,

dE

dt
= β̄(σ1 I + σ2E)(N − E − I − R)−(δ + μ)E,

dI

dt
= τδE − (ε + ρ + μ)I,

dR

dt
= (1 − τ)δE + ε I − (μ + η)R.

(4.4)

which has a unique locally asymptotically stable
endemic equilibrium (N �, E�, I �, R�).

The Jacobian matrix of system (4.4) at (N �, E�, I �,

R�) is:

J(N �,E�,I �,R�) =

⎛

⎜
⎜
⎝

−p22 −p23 −p24 p24
p32 −p33 0 0
p42 p43 −p44 0
0 −p53 0 −p55

⎞

⎟
⎟
⎠

Then we obtain

|λI − J(N �,E�,I �,R�)| = λ4

+p1λ
3 + p2λ

2 + p3λ + p4 = 0.

Thus, it is clear that ψ(λ) has four negative real roots.
This implies that (λ + θ)ψ(λ) has five negative real
roots. According to Routh–Hurwitz criterion, one has

p1, p2, p3, p4, p5 > 0, p1 p2 − p3 > 0,

p3 p4 − p2 p5 > 0,

p3(p1 p2 − p3) − p1(p1 p4 − p5) > 0,

� = (p1 p2 − p3)(p3 p4 − p2 p5)

− (p1 p4 − p5)
2 > 0.

Denote

ω11 = p2(p3 p4 − p2 p5) − p4(p1 p4 − p5)

2�
,

ω22 = p3 p4 − p2 p5
2�

, ω33 = p1 p4 − p5
2�

,

ω44 = p1 p2 − p3
2�

,

ω55 = p3(p1 p2 − p3) − p1(p1 p4 − p5)

2�
,

and

 =

⎛

⎜
⎜
⎜
⎜
⎝

ω11 0 −ω22 0 ω33

0 ω22 0 −ω33 0
−ω22 0 ω33 0 −ω44

0 −ω33 0 ω44 0
ω33 0 −ω44 0 ω55

⎞

⎟
⎟
⎟
⎟
⎠

.

Therefore, we obtain

(T3T2T1)�
2
1(T3T2T1)

T + P3[(T3T2T1)�(T3T2T1)
T ]

+[(T3T2T1)�(T3T2T1)
T ]PT

3 = 0.

FromLemma2.3,weobtain that (T3T2T1)�(T3T2T1)T =
(ξp21 p32 p53(p44 − p55))2 is a positive definite
matrix. Hence

� = (ξτδρηβ̄(σ1 I
� + σ2E

�)(N � − E� − I � − R�))2

(T3T2T1)
−1[(T3T2T1)−1]T

is also positive definite. 	
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5 Extinction exponentially of the disease

Denote

Re
0 = Rp

0

+
β̄

(

1+e
ξ2

θ −2e
ξ2

4θ

) 1
2

max

{
Rp
0 (ε+ρ+μ)

β̄
,
σ2�

μ

}

min

{
�β̄σ2

Rp
0 μ

, ε + ρ + μ

} ,

where Rp
0 is defined in (4.2).

Theorem 5.1 If Re
0 < 1, then

lim sup
t→∞

1

t
ln

(

Rp
0 E(t)+ �β̄σ1

μ(ε+ρ+μ)
I (t)

)

<0, a.s.,

which implies that the exposed individuals E and dis-
eased individuals I in the system (1.4) will go extinct
in the long term.

Proof First we define a C2-function

P = b1E + b2 I,

where b1 and b2 are positive constants to be determined
later. Then applying Itô’s formula to ln P , we have

L(ln P) ≤ 1

b1E + b2 I

[
b1�exσ1

μ
I + b1�exσ2

μ
E

−(b1(δ + μ) − b2τδ)E − b2(ε + ρ + μ)I ]

= 1

b1E + b2 I

[
b1�β̄σ1

μ
I + b1�β̄σ2

μ
E

−(b1(δ + μ) − b2τδ)E − b2(ε + ρ + μ)I ]

+ 1

b1E + b2 I

[
b1�σ1(ex − β̄)

μ
I

+b1�σ2(ex − β̄)

μ
E

]

≤ 1

b1E + b2 I

[
b1�β̄σ1

μ
I + b1�β̄σ2

μ
E

−(b1(δ + μ) − b2τδ)E − b2(ε + ρ + μ)I ]

+ max

{
b1σ1�

b2μ
,
σ2�

μ

}

|ex − β̄|.

Choose

b1 = Rp
0 = �β̄ (σ1τδ + σ2(ε + ρ + μ))

μ(δ + μ)(ε + ρ + μ)
,

b2 = �β̄σ1

μ(ε + ρ + μ)
,

such that

b1(δ + μ) − b2τδ = �β̄σ2

μ
, b2(ε + ρ + μ) = �β̄σ1

μ
.

Then we have

L(ln P) ≤ 1

Rp
0 E + b2 I

[
�β̄σ2

μ

(Rp
0 − 1)E + �β̄σ1

μ
(Rp

0 − 1)I

]

+max

{
Rp
0 σ1�

b2μ
,
σ2�

μ

}

|ex − β̄|

= min

{
�β̄σ2

Rp
0 μ

,
�β̄σ1

b2μ

}

(Rp
0 − 1)I{Rp

0 <1}

+max

{
�β̄σ2

Rp
0 μ

,
�β̄σ1

b2μ

}

(Rp
0 − 1)I{Rp

0 ≥1}

+max

{
Rp
0 σ1�

b2μ
,
σ2�

μ

}

|ex − β̄|.

(5.1)

Integrating (5.1) from 0 to t and dividing by t on both
sides. It can be seen that if Re

0 < 1, Rp
0 must be less

than 1. Then one gets

ln P(t) − ln P(0)

t
≤ min

{
�β̄σ2

Rp
0 μ

,
�β̄σ1

b2μ

}

(Rp
0 − 1)

+max

{
Rp
0 σ1�

b2μ
,
σ2�

μ

}

×
(
1

t

∫ t

0

∣
∣
∣ex(τ ) − β̄

∣
∣
∣ dτ

)

.

(5.2)

From Lemma 2.2, we have

lim
t→∞

1

t

∫ t

0

∣
∣
∣ex(τ ) − β̄

∣
∣
∣ dτ ≤ ex̄

(

1 + e
ξ2

θ − 2e
ξ2

4θ

) 1
2

,

(5.3)

Taking the superior limit of t on both sides of (5.2)
and combining (5.3), then we have

lim sup
t→∞

ln P(t)

t
≤ −min

{
�β̄σ2

Rp
0 μ

,
�β̄σ1

b2μ

}

(1 − Rp
0 )

+max

{
Rp
0 (ε + ρ+μ)

β̄
,
σ2�

μ

}

ex̄
(

1 + e
ξ2

θ − 2e
ξ2

4θ

) 1
2

= −min

{
�β̄σ2

Rp
0 μ

, ε+ρ+μ

}

(1−Re
0).
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Table 2 Value of parameters in (6.1)

Parameters Description Value Source

� Input rate of susceptible individuals 13.5 [12]

σ1 Probability of infection in susceptible individuals due to contact with infected individuals 0.0001 [12]

σ2 Probability of infection in susceptible individuals due to contact with exposed individuals 0.02 [12]

δ Proportion of exposed individuals leaving the compartment 0.07 [12]

μ Natural death rate 0.016 [12]

ρ Disease causing death rate 0.0004 [12]

τ Proportion of exposed individuals who join infected individuals 0.7 [12]

ε Recovery rate of individuals from the disease 0.15 [12]

η Proportion of recovered individuals to be susceptible 0.15 [12]

θ Reversion speed 0.3 [26]

β̄ Long-run mean level of contact rate of susceptible individuals 0.0143 [12]

ξ Noise intensity 0.1 [26]

6 Numerical simulations

In this section, we have performed a comprehen-
sive numerical evaluation of the stochastic COVID-
19 model. Our main objective was to investigate the
impact of the OU process on disease transmission,
and to achieve this, we utilized Milstein’s higher-order
method [36]. The parameters in Table 2 were used for
the purpose of numerical simulations, ensuring that our
findings were consistent with the theoretical frame-
work established in the literature. By leveraging these
advanced numerical techniques, we were able to obtain
valuable insights into the transmission dynamics of
COVID-19, which can guide public health interven-
tions to mitigate its spread. Firstly, we derive the fol-
lowing discretization equation:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xi+1 =xi − θ(ln β̄ − xi )�t + ξχi
√

�t,

Si+1 =Si + (
� + ηRi − exi (σ1 Ii + σ2Ei )Si − μSi

)
�t,

Ei+1 =Ei + (
exi (σ1 Ii + σ2Ei )Si − (δ + μ)Ei

)
�t,

Ii+1 =Ii + (τδEi − (ε + ρ + μ)Ii ) �t,

Ri+1 =Ri + ((1 − τ)δEi + ε Ii − (μ + η)Ri )�t,

(6.1)

where (xi , Si , Ei , Ii , Ri ) denotes the corresponding
value of the i-th iteration of the discretization equa-
tion; the time increment is depicted by �t > 0;
χi (i = 1, 2 . . . , n) are independent random vari-
ables that follow the standard normal distribution, and
the other parameters are shown in Table 2. Choose
the initial value as (x(0), S(0), E(0), I (0), R(0)) =
(ln β̄, 200, 20, 10, 10).

Example 6.1 (Stationary distribution) To analyze the
stationary distribution of model (1.4), we select the
parameter values as presented in Table 2. By calcu-
lation, we determined that

Rs
0 =

β̄�

(

σ1τδe
ξ2

12θ + σ2e
ξ2

8θ (ε + ρ + μ)

)

μ(δ + μ)(ε + ρ + μ)

= 2.8218 > 1.

This indicates that the potential for sustained disease
transmission. Based on Theorem 3.1, it can be con-
cluded that system (1.4) possesses at least one station-
ary distribution.

In Fig. 1, we provide phase diagrams and frequency
histograms for the variables S(t), E(t), I (t), and R(t)
in accordance with the stochastic model. These dia-
grams visually represent the dynamics and distribution
of these variables over time. Additionally, to facilitate
comparison, we include simulations of the determinis-
tic model (1.1) in Fig. 1. The parameter values for the
deterministic model are identical to those specified in
Table 2.

This side-by-side representation allows for a com-
prehensive comparison between the stochastic and
deterministic models, providing insights into the simi-
larities and differences in their behavior and outcomes.
By examining both the phase diagrams and frequency
histograms, we can gain a deeper understanding of the
dynamics, variability, and stationary distribution asso-
ciated with model (1.4).
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Fig. 1 The left column displays the numbers of susceptible indi-
viduals S, exposed individuals E , infected individuals I , and
recovered individuals R in both the deterministicmodel (1.1) and

stochastic model (1.4). On the right column, the corresponding
frequency histograms of the stochastic solutions are presented

Example 6.2 (Probability density function) In this exam-
ple, we aim to investigate the probability density func-
tion of the model near the quasi-endemic equilibrium.
To achieve this, we utilize the same set of parameters
as in Example 6.1, resulting in a basic reproduction
number

Rp
0 = β̄�(σ1τδ + σ2(ε + ρ + μ))

μ(δ + μ)(ε + ρ + μ)

= 2.8101 > 1, τε + (1 − τ)(ε + η − ρ)

= 0.1949 �= 0.

According to Theorem 4.1, the solution (x(t), E(t),
I (t), R(t), N (t)) follows a normal density function

�(x, E, I, R, N ) ∼ N5(�
�,�),

where �� = (ln β̄, E�, I �, R�, N �) = (ln 0.0143,
320.7531, 94.4525, 125.9259, 841.3887) and

� =

⎛

⎜
⎜
⎜
⎜
⎝

0.016667 1.1245 0.11813 0.088699 −0.00014954
1.1245 244.61 48.249 44.567 −0.090838
0.11813 48.249 14.208 16.03 −0.055561
0.088699 44.567 16.03 20.122 −0.091503

−0.00014954 −0.090838 −0.055561 −0.091503 0.001389

⎞

⎟
⎟
⎟
⎟
⎠

.

Since x ∼ N(ln β̄,
ξ2

2θ ), here we focus on the
marginal density functions of E(t), I (t), R(t), and
N (t):
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Fig. 2 The left column displays the quantities of exposed indi-
viduals E , infected individuals I , recovered individuals R and
total individuals N in system (1.4). The corresponding frequency
histograms and marginal density functions are shown in the mid-

dle column. The right column displays the fitted plots of the
corresponding frequency histograms and marginal density func-
tions

∂�(x, E, I, R, N )

∂E
∼ N(320.7531, 244.61),

∂�(x, E, I, R, N )

∂ I
∼ N(94.4525, 14.208),

∂�(x, E, I, R, N )

∂R
∼ N(125.9259, 20.122),

∂�(x, E, I, R, N )

∂N
∼ N(841.3887, 0.001389).

In Fig. 2, the middle and right columns illustrate
the corresponding marginal density functions and fre-
quency histograms, respectively, based on a total of
9,000,000 iteration points. By examining the marginal
density functions, we gain insights into the distribution
patterns and variability of the variables of interest. The
frequency histograms provide a visual representation
of the occurrence frequencies of different values for
the variables, complementing the analysis of the prob-
ability density function.

This comprehensive analysis of the probability den-
sity function and frequency histograms enables a
detailed examination of the distributional characteris-
tics of E(t), I (t), R(t), and N (t) in the vicinity of the
quasi-endemic equilibrium. These findings contribute
to a better understanding of the dynamics and variabil-

ity of the model, providing valuable insights into the
probabilistic nature of the system’s behavior.

Example 6.3 (Extinction of the disease) In this exam-
ple, we investigate the potential extinction of COVID-
19 within the stochastic model. We select the values
β̄ = 0.0044 and ξ = 0.2, while the remaining param-
eters are specified in Table 2. Then we have Choose
β̄ = 0.0044, ξ = 0.2, and the other parameters are
shown in Table 2, Then we have

Re
0 = Rp

0

+
β̄

(

1+e
ξ2

θ −2e
ξ2

4θ

) 1
2

max

{
Rp
0 (ε+ρ+μ)

β̄
,
σ2�

μ

}

min

{
�β̄σ2

Rp
0 μ

, ε + ρ + μ

}

= 0.9900 < 1,

According to Theorem 5.1, this implies that the dis-
ease compartments E and I will eventually go extinct in
the long term. To visually demonstrate this extinction
phenomenon, we present Fig. 3. The figure provides
graphical evidence supporting the theoretical conclu-
sions by showcasing the dynamics of the compartments
E and I over time. The results highlight the eventual
decline and eventual elimination of these infectious
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Fig. 3 Computer simulations for the stochastic solutions of exposed individuals E and diseased individuals I under the parameter
conditions in Example 6.3

compartments, confirming the extinction of COVID-
19 within the stochastic model.

Through this analysis, we provide insights into the
potential for disease extinction within the stochastic
model, emphasizing the significance of Re

0 as a suf-
ficient condition. The findings highlight the impor-
tance of understanding the underlying dynamics and
the impact of key parameters in predicting the long-
term of infectious diseases such as COVID-19.

Example 6.4 (Variation trends of Rs
0, R

p
0 and Re

2) Fig-
ure4 shows the trends of Rs

0, R
p
0 and Re

0 for different
β̄ ∈ [0.0045, 0.006]. According to Theorems 3.1, 4.1
and 5.1, choose the other parameters are shown in Table
2, and it can be found that

• At least one ergodic stationary distribution is admit-
ted when β ∈ [0.0050677, 0.06);

• Theglobal solution follows auniquenormal density
function when β ∈ [0.0050888, 0.06);

• The disease will go to extinction when β ∈
[0.0045, 0.0049147);

Example 6.5 In this example, we estimate the param-
eters of the stochastic model (1.4) based on real data
from COVID-19 infection cases in Ethiopia. Specifi-
cally, we considermonthly confirmedCOVID-19 cases

in Ethiopia from March 31, 2020, to July 31, 2021,
as provided in Table 3 of our study. The data source
is referenced as [37], and some model parameters are
estimated based on the literature.

Using the parameter values from Table 3, we calcu-
late that Rs

0 = 3.7315 > 1, which indicates that the
disease has the potential to sustain transmission in the
population. A comparison between the solutions of the
stochastic model and the actual case data is depicted in
Fig. 5, allowing us to visually assess the performance
and fitting of the model.

By incorporating real data and comparing the model
outputs with the observed cases, we can evaluate the
model’s ability to capture the underlying dynamics and
trends ofCOVID-19 inEthiopia. This analysis provides
insights into the model’s accuracy and its potential util-
ity for predicting and managing the spread of the dis-
ease.

7 Conclusion

This paper presents a novel stochastic model for
COVID-19 epidemics that is driven by the Ornstein–
Uhlenbeck (OU) process. The main objective is to
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Fig. 4 The variation trends of Rs
0, R

p
0 and Re

0 with different β̄ ∈ [0.0045, 0.006]. The other parameters are shown in Table 2

Table 3 COVID-19 total confirmed cases in Ethiopia and parameters used in Example 6.5

Months Total confirmed cases Source Parameters Value Source

March 31, 2020 26 [37] � 141302 [37]

April 30, 2020 131 [37] β̄ 0.2 Assumed

May 31, 2020 1172 [37] σ1 β̄/114963588 Assumed

June 30, 2020 5846 [37] σ2 β̄ × 1.9/114963588 Assumed

July 31, 2020 17530 [37] η 1/14 [37]

August 31, 2020 52131 [37] μ 0.001229 [37]

Sep 30, 2020 75368 [37] δ 0.9810 [37]

Oct 31, 2020 96169 [37] τ 0.7 [12]

Nov 30, 2020 110074 [37] ε 0.00787 [37]

Dec 31, 2020 124264 [37] ρ 0.00038 [37]

Jan 31, 2021 137650 [37] θ 0.3 [26]

Feb 28, 2021 137650 [37] ξ 0.08 Assumed

March 31, 2021 206589 [37] S(0) 114958062 [37]

Apr 30, 2021 257442 [37] E(0) 5000 [37]

May 31, 2021 271541 [37] I (0) 26 [37]

June 30, 2021 276174 [37] R(0) 500 [37]

July 31, 2021 280365 [37]
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Fig. 5 The fitted data to the reported cases using stochastic model (1.4) for Ethiopia from March 31, 2020 to July 31, 2021

explore the dynamic properties of COVID-19 transmis-
sion. Drawing on the theory of mean-reverting OU pro-
cesses, it becomes apparent that simulations of environ-
mental disturbanceswithmean-reverting properties are
more realistic than other approaches. Additionally, the
unique properties of OU processes enable us to build
models that more closely reflect reality and enable us
to explore the dynamic properties of epidemic models
in greater depth.

Despite the potential benefits of using the OU pro-
cess in thisway, there has been little research conducted
in this area, and the underlying theory is highly diver-
gent. As such, our primary focus in this paper is on
the methodology and theory of the dynamic behavior
of models driven by OU processes. Specifically, we
aim to analyze and demonstrate the dynamic proper-
ties of the stochastic model (1.4) through the following
results:

(i) For any initial value (x(0), S(0), E(0), I (0), R(0)) ∈
R × R

4+, then system (1.4) has a unique global
solution (x(t), S(t), E(t), I (t), R(t)) ∈ R × R

4+
a.s.. Moreover,

� =
{

(x, S, E, I, R) ∈ R × R
4+ :

S + E + I + R <
�

μ

}

is positive invariant for model (1.4).
(ii) If

Rs
0 =

β̄�

(

σ1τδe
ξ2

12θ + σ2e
ξ2

8θ (ε + ρ + μ)

)

μ(δ + μ)(ε + ρ + μ)
> 1,

then the stochastic system (1.4) admits at least one
ergodic stationary distribution.

(iii) If

Rp
0 = β̄� (σ1τδ + σ2(ε + ρ + μ))

μ(δ + μ)(ε + ρ + μ)
> 1

and τε + (1 − τ)(ε + η − ρ) �= 0, then the sta-
tionary solution (x(t), S(t), E(t), I (t), R(t)) to
system (1.4) around �� = (ln β̄, N �, E�, I �, R�)

follows five-dimensional normal distribution.
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(iv) If

Re
0 = Rp

0

+
β̄

(

1+e
ξ2

θ − 2e
ξ2

4θ

) 1
2

max

{
Rp
0 (ε+ρ+μ)

β̄
,
σ2�

μ

}

min

{
�β̄σ2

Rp
0 μ

, ε+ρ+μ

}

< 1,

then the disease of system (1.4) will tend to zero
exponentially with probability one.

Upon closer examination, we observe that when the
intensity of the random noise ξ is equal to zero, the
values of Rs

0, R
p
0 , and Re

0 are identical. This finding
implies that the stochastic model (1.4) and the deter-
ministic model (1.1) are equivalent under these specific
conditions. It is worth noting that our previously pre-
sented results, which focused on the dynamic proper-
ties of the stochastic model, are entirely inclusive of
the deterministic model results. As such, the insights
we have gained from our stochastic model analysis can
be applied directly to the deterministic model under
these specific conditions.

Furthermore, we found that the deterministic model
has a unique endemic equilibrium. Moreover, when it
exists, this equilibrium is locally asymptotically sta-
ble. This finding is noteworthy as it provides significant
insight into the behavior of SEIR models, particularly
in terms of their stability. Moreover, this gives a new
approach for researchers in the field, as it inspires fur-
ther investigation into the stability of similar epidemic
models.

The findings we have presented above can help to
deepen our understanding of the dynamics underlying
both deterministic and stochastic models. By gaining a
better understanding of the dynamics of these models,
we may be able to uncover new insights into the spread
and control of infectious diseases. These insights, in
turn, may have significant practical implications for
managing infectious diseases more effectively.

On the other hand, the utilization of nonstan-
dard finite difference methods, especially in fractional
modeling, allows us to effectively capture anomalous
diffusion and fractional-order phenomena. Addition-
ally, incorporating spatial considerations into epidemic
models offers important insights into the spatial dynam-
ics of epidemics, enabling more informed decision-

making and intervention strategies. It will be our future
research direction.
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Appendix (Local asymptotic stability of endemic
equilibrium in the deterministic model (1.1))

For the deterministic model (1.1), we rewrite it by let-
ting N (t) = S(t) + E(t) + I (t) + R(t) to obtain the
following equivalent model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN

dt
= � − μN − ρ I,

dE

dt
=β(σ1 I+σ2E)(N−E−I−R) − (δ + μ)E,

dI

dt
= τδE − (ε + ρ + μ)I,

dR

dt
= (1 − τ)δE + ε I − (μ + η)R.

(A.1)

It is not difficult to obtain that there exists a unique
endemic equilibrium for model (A.1) as follows:

�∗ = (N∗, E∗, I ∗, R∗)

=
(

�

μ
− ρ I ∗

μ
,
ε + ρ + μ

τδ
I ∗, I ∗, (1 − τ)(ρ + μ) + ε

(μ + η)τ
I ∗
)

,

I ∗ =
�
μ

(
1 − 1

R0

)

1 + ρ
μ

+ ε+ρ+μ
τδ

+ (1−τ)(ρ+μ)+ε
τ(μ+η)

> 0,

such that the following equations hold
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� − ρ I ∗ = μN∗,
β(σ1 I

∗ + σ2E
∗)S∗ = (δ + μ)E∗,

τδE∗ = (ε + ρ + μ)I ∗,
(1 − τ)δE∗ + ε I ∗ = (μ + η)R∗.

(A.2)

where S∗ = N∗ − E∗ − I ∗ − R∗.

Lemma A.1 If R0 > 1, then the endemic equilibrium
(N∗, E∗, I ∗, R∗) of the system (A.1) is locally asymp-
totically stable..
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Proof Consider

(E − E∗)′ = β(σ1 I
∗ + σ2E

∗)
[(N − N∗) − (E − E∗) − (I − I ∗)

−(R − R∗)] − βσ1S∗ I ∗

E∗
(E − E∗) + βσ1S

∗(I − I ∗).

In view of (A.2), we obtain

L

(
(E − E∗)2

2

)

= β(σ1 I
∗ + σ2E

∗)(E − E∗)

[(N − N∗) − (E − E∗)
−(I − I ∗) − (R − R∗)]
−βσ1S∗ I ∗

E∗ ((E − E∗)2)

+βσ1S
∗(E − E∗)(I − I ∗)

= β(σ1 I
∗ + σ2E

∗)(E − E∗)
[(N − N∗) − (E − E∗)
−(I − I ∗) − (R − R∗)]
+βσ1S

∗E∗ I ∗
[(

E

E∗ −1

)

(
I

I ∗ −1

)

−
(

E

E∗ − 1

)2
]

.

(A.3)

Note that
(

N − ρ

ε + ρ + μ
I

)′
= � − μN − τδρ

ε + ρ + μ
E .

Thus we have

L

(
1

2

(

(N − N∗) − ρ

ε + ρ + μ
(I − I ∗)

)2
)

=
(

−μ(N − N∗) − τδρ

ε + ρ + μ
(E − E∗)

)

(

(N − N∗) − ρ

ε + ρ + μ
(I − I ∗)

)

= −μ(N − N∗)2 − τδρ

ε + ρ + μ
(N − N∗)

(E − E∗) + ρμ

ε + ρ + μ
(N − N∗)(I − I ∗)

+ τδρ2

(ε + ρ + μ)2
(E − E∗)(I − I ∗).

Since

L

(
(N − N∗)2

2

)

= −μ(N − N∗)2 − ρ(N − N∗)(I − I ∗).

Denote

V1 = 1

2

(

(N − N∗) − ρ

ε + ρ + μ
(I − I ∗)

)2

+ μ

2(ε + ρ + μ)
(N − N∗)2.

Then we have

LV1 = −μ

(

1 + μ

ε + ρ + μ

)

(N − N∗)2

− τδρ

ε + ρ + μ

(N − N∗)(E − E∗) + τδρ2

(ε + ρ + μ)2

(E − E∗)(I − I ∗). (A.4)

Next define

V2 = (E − E∗)2

2
+ β(σ1 I ∗ + σ2E∗)(ε + ρ + μ)

τδρ
V1.

Combining (A.3) and (A.4), we have

LV2 = −β(σ1 I
∗ + σ2E

∗)(E − E∗)2

−β(σ1 I
∗ + σ2E

∗)(E − E∗)
(

μ + ε

ε + ρ + μ
(I − I ∗) + (R − R∗)

)

−μβ(σ1 I ∗ + σ2E∗)(ε + ρ + μ)

τδρ
(

1 + μ

ε + ρ + μ

)

(N − N∗)2

+βσ1S
∗E∗ I ∗

[(
E

E∗ − 1

)(
I

I ∗ − 1

)

−
(

E

E∗ − 1

)2
]

. (A.5)

Note that
(

μ + ε

ε + ρ + μ
I + R

)′
=
(

τ(μ + ε)

ε + ρ + μ
+ 1 − τ

)

δE − μI − (μ + η)R.

Then we have

L

(
1

2

(
μ + ε

ε + ρ + μ
(I − I ∗) + (R − R∗)

)2
)

=
(

δ

(
τ(μ + ε)

ε + ρ + μ
+ 1 − τ

)

(E − E∗)

−μ(I − I ∗) − (μ + η)(R − R∗)
)
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(
μ + ε

ε + ρ + μ
(I − I ∗) + (R − R∗)

)

= δ

(
τ(μ + ε)

ε + ρ + μ
+ 1 − τ

)

(E − E∗)
(

μ + ε

ε + ρ + μ
(I − I ∗) + (R − R∗)

)

− μ(μ + ε)

ε + ρ + μ

(I − I ∗)2 − (μ + η)(R − R∗)2

−
(

μ + (μ + ε)(μ + η)

ε + ρ + μ

)

(I − I ∗)(R − R∗).

(A.6)

In addition, we get

L

(
(I − I ∗)2

2

)

= (I − I ∗)[τδ(E − E∗) − (ε + ρ + μ)(I − I ∗)]

= τδE∗ I ∗
[(

E

E∗ − 1

)(
I

I ∗ − 1

)

−
(

I

I ∗ − 1

)2
]

.

(A.7)

Define

V3 = c1
2

(
μ + ε

ε + ρ + μ
(I − I ∗)

+(R − R∗)
)2 + βσ1S∗

2τδ
(I − I ∗)2.

with

c1 = β(σ1 I ∗ + σ2E∗)

δ
(

τ(μ+ε)
ε+ρ+μ

+ 1 − τ
) .

Combining (A.5), (A.6) and (A.7), we have

LV3 = −β(σ1 I
∗ + σ2E

∗)(E − E∗)2

−μβ(σ1 I ∗ + σ2E∗)(ε + ρ + μ)

τδρ
(

1 + μ

ε + ρ + μ

)

(N − N∗)2

−c1μ(μ+ε)

ε+ρ+μ
(I−I ∗)2−c1(μ+η)(R − R∗)2

−c1

(

μ+ (μ+ε)(μ+η)

ε+ρ+μ

)

(I−I ∗)(R − R∗)

+βσ1S
∗E∗ I ∗

[

2

(
E

E∗ − 1

)(
I

I ∗ − 1

)

−
(

E

E∗ − 1

)2

−
(

I

I ∗ − 1

)2
]

≤ −β(σ1 I
∗ + σ2E

∗)(E − E∗)2

−μβ(σ1 I ∗ + σ2E∗)(ε + ρ + μ)

τδρ

(

1 + μ

ε + ρ + μ

)

(N − N∗)2

−c1μ(μ+ε)

ε+ρ+μ
(I−I ∗)2−c1(μ + η)(R − R∗)2

−c1

(

μ+ (μ+ε)(μ+η)

ε+ρ+μ

)

(I − I ∗)(R − R∗).

(A.8)

Then from
(

I − τ

1 − τ
R

)′
= τ(μ + η)

1 − τ
R −

(

ρ + μ + ε

1 − τ

)

I.

We have

L

(
1

2

(

(I − I ∗) − τ

1 − τ
(R − R∗)

)2
)

=
(

τ(μ + η)

1 − τ
(R − R∗) −

(

ρ + μ + ε

1 − τ

)

(I − I ∗)
)

(

(I − I ∗) − τ

1 − τ
(R − R∗)

)

= −
(

ρ + μ + ε

1 − τ

)

(I − I ∗)2 − τ 2(μ + η)

(1 − τ)2
(R − R∗)2

+ τ

1 − τ

(

ρ + η + 2μ + ε

1 − τ

)

(I − I ∗)(R − R∗).

(A.9)

Then define

V = V2 + c2
2

(

(I − I ∗) − τ

1 − τ
(R − R∗)

)2

,

with

c2 =
c1
(
μ + (μ+ε)(μ+η)

ε+ρ+μ

)
(1 − τ)

τ
(
ρ + η + 2μ + ε

1−τ

) .

Combining (A.8) and (A.9), we have

LV ≤ −β(σ1 I
∗ + σ2E

∗)(E − E∗)2

−μβ(σ1 I
∗ + σ2E

∗)(ε + ρ + μ)

τδρ
(

1 + μ

ε + ρ + μ

)

(N − N∗)2

−
(
c1μ(μ + ε)

ε + ρ + μ
+ c2

(

ρ + μ + ε

1 − τ

))

(I − I∗)2

−
(

c1(μ + η) + c2τ
2(μ + η)

(1 − τ)2

)

(R − R∗)2.

(A.10)

In view of (A.10), one can obtain that there are positive
constants q1, q2 and q3 such that

q1[(E − E∗)2 + (I − I ∗)2 + (R − R∗)2
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+(N − N∗)2] ≤ V (N , E, I, R) ≤ q2[(E − E∗)2

+(I − I ∗)2 + (R − R∗)2 + (N − N∗)2],
and

LV ≤ −q3[(E − E∗)2 + (I − I ∗)2

+(R − R∗)2 + (N − N∗)2].
Hence we have

lim sup
t→+∞

ln |V ((S(t), E(t), I (t), R(t)))|
t

≤ −q3,

which implies that the endemic equilibrium (N∗, E∗,
I ∗, R∗) of system (A.1) is exponentially stable and
hence the endemic equilibrium is locally asymptoti-
cally stable. This completes the proof. 	


References

1. World Health Organization, Coronavirus disease (COVID-
19). https://www.who.int/health-topics/coronavirus

2. Annas, S., Pratama, M.I., Rifandi, M., Sanusi, W., Side,
S.: Stability analysis and numerical simulation of SEIR
model for pandemic COVID-19 spread in Indonesia. Chaos
Solitons Fract. 39, 110072 (2020). https://doi.org/10.1016/
j.chaos.2020.110072

3. Liang, K.: Mathematical model of infection kinetics and its
analysis for COVID-19, SARS and MERS. Infect. Genet.
Evol. 82, 104306 (2020). https://doi.org/10.1016/j.meegid.
2020.104306

4. Almocera, A.E.S., Quiroz, G., Hernandez-Vargas, E.A.:
Stability analysis in COVID-19 within-host model with
immune response. Commun. Nonlinear Sci. Numer. Simul.
95, 105584 (2021). https://doi.org/10.1016/j.cnsns.2020.
105584

5. Enrique Amaro, J., Dudouet, J., Nicolás Orce, J.: Global
analysis of the COVID-19 pandemic using simple epidemi-
ological models. Appl. Math. Model. 90, 995–1008 (2021).
https://doi.org/10.1016/j.apm.2020.10.019

6. Ndaïrou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical
modeling of COVID-19 transmission dynamics with a case
study of Wuhan. Chaos Solitons Fract. 135, 109846 (2020).
https://doi.org/10.1016/j.chaos.2020.109846

7. Biswas, S.K., Ghosh, J.K., Sarkar, S., Ghosh, U.: COVID-
19 pandemic in India: a mathematical model study. Nonlin-
ear Dyn. 102(1), 537–553 (2020). https://doi.org/10.1007/
s11071-020-05958-z

8. Khan, M.A., Atangana, A.: Mathematical modeling and
analysis of COVID-19: a study of new variant Omicron.
Physica A 599, 127452 (2022). https://doi.org/10.1016/j.
physa.2022.127452

9. Raza, A., Rafiq, M., Awrejcewicz, J., Ahmed, N., Mohsin,
M.: Dynamical analysis of coronavirus disease with crowd-
ing effect, and vaccination: a study of third strain. Non-
linear Dyn. 107(4), 3963–3982 (2022). https://doi.org/10.
1007/s11071-021-07108-5

10. Yu, Z., Sohail, A., Arif, R., Nutini, A., Nofal, T.A., Tunc, S.:
Modeling the crossover behavior of the bacterial infection
with the COVID-19 epidemics. Results Phys. 39, 105774
(2022). https://doi.org/10.1016/j.rinp.2022.105774

11. Ahmed, N., Elsonbaty, A., Raza, A., Rafiq, M., Adel,
W.: Numerical simulation and stability analysis of a
novel reaction–diffusion COVID-19 model. Nonlinear
Dyn. 106(2), 1293–1310 (2021). https://doi.org/10.1007/
s11071-021-06623-9

12. Tilahun, G.T., Alemneh, H.T.: Mathematical modeling and
optimal control analysis of COVID-19 in Ethiopia. J. Inter-
discip. Math. 24(8), 2101–2120 (2021). https://doi.org/10.
1080/09720502.2021.1874086

13. Smirnova, A., deCamp, L., Chowell, G.: Forecasting
epidemics through nonparametric estimation of time-
dependent transmission rates using the SEIR Model. Bull.
Math. Biol. 81(11), 4343–4365 (2019). https://doi.org/10.
1007/s11538-017-0284-3

14. Raza, A., Arif, M.S., Rafiq, M.: A reliable numerical analy-
sis for stochastic gonorrhea epidemic model with treatment
effect. Int. J. Biomath. 12(06), 1950072 (2019). https://doi.
org/10.1142/S1793524519500724

15. Raza, A., Awrejcewicz, J., Rafiq, M., Mohsin, M.: Break-
down of a nonlinear stochastic nipah virus epidemic models
through efficient numerical methods. Entropy 23(12), 1588
(2021). https://doi.org/10.3390/e23121588

16. Hamam, H., Raza, A., Alqarni, M.M., Awrejcewicz, J.,
Rafiq, M., Ahmed, N., Mahmoud, E.E., Pawłowski, W.,
Mohsin, M.: Stochastic modelling of Lassa fever epidemic
disease. Mathematics 10(16), 2919 (2022). https://doi.org/
10.3390/math10162919

17. Raza, A., Awrejcewicz, J., Rafiq, M., Ahmed, N., Mohsin,
M.: Stochastic analysis of nonlinear cancer disease
model through virotherapy and computational methods.
Mathematics 10(3), 368 (2022). https://doi.org/10.3390/
math10030368

18. Feng, T., Qiu, Z., Meng, X.: Analysis of a stochastic
recovery-relapse epidemic model with periodic parame-
ters and media coverage. J. Appl. Anal. Comput. 9(3),
1007–1021 (2019). https://doi.org/10.11948/2156-907X.
20180231

19. Din,A., Li,Y.: Stationary distribution extinction and optimal
control for the stochastic hepatitis B epidemic model with
partial immunity. Phys. Scr. 96(7), 074005 (2021). https://
doi.org/10.1088/1402-4896/abfacc

20. Shi, Z.: A stochastic SEIRS rabies model with popula-
tion dispersal: stationary distribution and probability density
function. Appl. Math. Comput. 23, 127189 (2022)

21. Nipa, K.F., Allen, L.J.S.: Disease emergence in multi-patch
stochastic epidemic models with demographic and seasonal
variability. Bull. Math. Biol. 82(12), 152 (2020). https://doi.
org/10.1007/s11538-020-00831-x

22. May, R.M.: Stability and Complexity inModel Ecosystems.
Princeton Landmarks in Biology, 1st edn. Princeton Univer-
sity Press, Princeton (2001)

23. Gao, N., Song, Y., Wang, X., Liu, J.: Dynamics of a stochas-
tic SIS epidemic model with nonlinear incidence rates. Adv.
Differ. Equ. 2019(1), 41 (2019). https://doi.org/10.1186/
s13662-019-1980-0

24. Wang, W., Cai, Y., Ding, Z., Gui, Z.: A stochastic differen-
tial equation SIS epidemic model incorporating Ornstein–

123

https://www.who.int/health-topics/coronavirus
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/j.meegid.2020.104306
https://doi.org/10.1016/j.meegid.2020.104306
https://doi.org/10.1016/j.cnsns.2020.105584
https://doi.org/10.1016/j.cnsns.2020.105584
https://doi.org/10.1016/j.apm.2020.10.019
https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1007/s11071-020-05958-z
https://doi.org/10.1007/s11071-020-05958-z
https://doi.org/10.1016/j.physa.2022.127452
https://doi.org/10.1016/j.physa.2022.127452
https://doi.org/10.1007/s11071-021-07108-5
https://doi.org/10.1007/s11071-021-07108-5
https://doi.org/10.1016/j.rinp.2022.105774
https://doi.org/10.1007/s11071-021-06623-9
https://doi.org/10.1007/s11071-021-06623-9
https://doi.org/10.1080/09720502.2021.1874086
https://doi.org/10.1080/09720502.2021.1874086
https://doi.org/10.1007/s11538-017-0284-3
https://doi.org/10.1007/s11538-017-0284-3
https://doi.org/10.1142/S1793524519500724
https://doi.org/10.1142/S1793524519500724
https://doi.org/10.3390/e23121588
https://doi.org/10.3390/math10162919
https://doi.org/10.3390/math10162919
https://doi.org/10.3390/math10030368
https://doi.org/10.3390/math10030368
https://doi.org/10.11948/2156-907X.20180231
https://doi.org/10.11948/2156-907X.20180231
https://doi.org/10.1088/1402-4896/abfacc
https://doi.org/10.1088/1402-4896/abfacc
https://doi.org/10.1007/s11538-020-00831-x
https://doi.org/10.1007/s11538-020-00831-x
https://doi.org/10.1186/s13662-019-1980-0
https://doi.org/10.1186/s13662-019-1980-0


18584 Z. Shi, D. Jiang

Uhlenbeck process. Physica A 509, 921–936 (2018). https://
doi.org/10.1016/j.physa.2018.06.099

25. Zhang, X., Yuan, R.: A stochastic chemostat model with
mean-reverting Ornstein–Uhlenbeck process and Monod-
Haldane response function. Appl. Math. Comput. 394,
125833 (2021). https://doi.org/10.1016/j.amc.2020.125833

26. Cai, Y., Jiao, J., Gui, Z., Liu, Y., Wang, W.: Environmen-
tal variability in a stochastic epidemic model. Appl. Math.
Comput. 329, 210–226 (2018). https://doi.org/10.1016/j.
amc.2018.02.009

27. Mamis, K., Farazmand,M.: Stochastic compartmental mod-
els of COVID-19 pandemic must have temporally corre-
lated uncertainties. Proc. R. Soc. A: Math. Phys. Eng. Sci.
479(2269), 20220568 (2023). https://doi.org/10.1098/rspa.
2022.0568

28. Allen,E.: Environmental variability andmean-revertingpro-
cesses. Discrete Contin. Dyn. Syst. Ser. B 21(7), 2073–2089
(2016). https://doi.org/10.3934/dcdsb.2016037

29. Du, N.H., Nguyen, D.H., Yin, G.G.: Conditions for per-
manence and ergodicity of certain stochastic predator–prey
models. J. Appl. Probab. 53(1), 187–202 (2016). https://doi.
org/10.1017/jpr.2015.18

30. Meyn, S.P., Tweedie, R.L.: Stability ofMarkovian processes
III: Foster–Lyapunov criteria for continuous-time processes.
Adv. Appl. Probab. 25(3), 518–548 (1993). https://doi.org/
10.2307/1427522

31. Dieu, N.T.: Asymptotic properties of a stochastic SIR epi-
demic model with Beddington–DeAngelis incidence rate. J.
Dyn. Differ. Equ. 30(1), 93–106 (2018). https://doi.org/10.
1007/s10884-016-9532-8

32. Zhou, B., Jiang, D., Dai, Y., Hayat, T.: Threshold dynam-
ics and probability density function of a stochastic avian
influenza epidemic model with nonlinear incidence rate and
psychological effect. J. Nonlinear Sci. 33(2), 29 (2023).
https://doi.org/10.1007/s00332-022-09885-8

33. Yang, Q., Zhang, X., Jiang, D.: Dynamical behaviors of a
stochastic food chain system with Ornstein–Uhlenbeck pro-
cess. J. Nonlinear Sci. 32(3), 34 (2022). https://doi.org/10.
1007/s00332-022-09796-8

34. Zhou, B., Han, B., Jiang, D., Hayat, T., Alsaedi, A.: Station-
ary distribution, extinction and probability density function
of a stochastic vegetation-water model in arid ecosystems.
J. Nonlinear Sci. 32(3), 30 (2022). https://doi.org/10.1007/
s00332-022-09789-7

35. Shi, Z., Jiang, D.: Environmental variability in a stochas-
tic HIV infection model. Commun. Nonlinear Sci. Numer.
Simul. 120, 107201 (2023). https://doi.org/10.1016/j.cnsns.
2023.107201

36. Higham, D.J.: An algorithmic introduction to numeri-
cal simulation of stochastic differential equations. SIAM
Rev. 43(3), 525–546 (2001). https://doi.org/10.1137/
S0036144500378302

37. Kifle, Z.S., Obsu, L.L.:Mathematical modeling for COVID-
19 transmission dynamics: a case study in Ethiopia. Results
Phys. 34, 105191 (2022). https://doi.org/10.1016/j.rinp.
2022.105191

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.physa.2018.06.099
https://doi.org/10.1016/j.physa.2018.06.099
https://doi.org/10.1016/j.amc.2020.125833
https://doi.org/10.1016/j.amc.2018.02.009
https://doi.org/10.1016/j.amc.2018.02.009
https://doi.org/10.1098/rspa.2022.0568
https://doi.org/10.1098/rspa.2022.0568
https://doi.org/10.3934/dcdsb.2016037
https://doi.org/10.1017/jpr.2015.18
https://doi.org/10.1017/jpr.2015.18
https://doi.org/10.2307/1427522
https://doi.org/10.2307/1427522
https://doi.org/10.1007/s10884-016-9532-8
https://doi.org/10.1007/s10884-016-9532-8
https://doi.org/10.1007/s00332-022-09885-8
https://doi.org/10.1007/s00332-022-09796-8
https://doi.org/10.1007/s00332-022-09796-8
https://doi.org/10.1007/s00332-022-09789-7
https://doi.org/10.1007/s00332-022-09789-7
https://doi.org/10.1016/j.cnsns.2023.107201
https://doi.org/10.1016/j.cnsns.2023.107201
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1016/j.rinp.2022.105191
https://doi.org/10.1016/j.rinp.2022.105191

	Dynamics and density function of a stochastic COVID-19 epidemic model with Ornstein–Uhlenbeck process
	Abstract
	1 Introduction
	1.1 Background
	1.2 Stochastic model formulation

	2 Preliminaries
	2.1 Useful lemmas
	2.2 Existence and uniqueness of the global solution

	3 Ergodic property and stationary distribution
	4 Probability density function
	5 Extinction exponentially of the disease
	6 Numerical simulations
	7 Conclusion
	Appendix (Local asymptotic stability of endemic equilibrium in the deterministic model (1.1))
	References




