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Abstract In this article, state and parameter estima-
tion problems are investigated for ODE-PDE coupled
systems, for which the parabolic PDE sensor includes
nonlinear dynamics and parameter uncertainty. The
major difficulty we face is that the link point among the
ODE part and the PDE part is not convenient to mea-
surable. For this reason, the objective of this paper is to
build an adaptive observer to provide online estimates
of states and unknown parameters on the basis that only
boundary state is available for measurement. First of
all, the observer error system is converted to a tractable
target error systemby applying the decoupling transfor-
mation. Then, the least-squares parameter adaptive law
is built. Under an ad hoc persistent excitation condition,
the exponentially decaying of the observer error sys-
tem is demonstrated by applyingLyapunov–Krasovskii
functional. Finally, the effectiveness of the theoretical
results is confirmed by a simulation example.
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1 Introduction

It is well-known that the state observer design for finite-
dimensional system has been greatly developed in the
last thirty years. Since partial differential equations
(PDEs) can more accurately describe various phenom-
ena in nature, such as fluid mechanics, heat conduc-
tion, electromagnetic field, wave phenomena, quantum
mechanics and so on. Recently, people have gradu-
ally paid attention to state observer design for infinite-
dimensional system described by PDEs. In this respect,
Smyshlyaev and Krstic did some pioneering work.
In Ref. [1], they constructed the collocated and anti-
collocated backstepping observers for parabolic partial
integro-differential equations (PIDEs).

As far as we know, the ODE plant with the PDE
actuator dynamics (namely, PDE-ODE cascade sys-
tems) have abundant application, such as: coupled
electromagnetic, chemical reactions and mechanical,
etc. Thus, there are also many meaningful results for
the observer design of PDE-ODE cascade systems.
References [2] and [3] established the anti-collocated
observer for PDE-ODE cascade systems with constant
coefficient and spatially varying coefficient, respec-
tively. In Ref. [4], a Luenberger observer was designed
for nonlinear multivariable systems with diffusion
PDE-governed sensor dynamics. In Ref. [5], a collo-
cated observer was presented for the first-order hyper-
bolic PDE-ODE cascade systems using the Volterra
integral transformation. Then, a novel anti-collocated
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observer was proposed for under-actuated PDE-ODE
coupled system in Refs. [6] and [7], respectively. How-
ever, in practical applications, the ODE-PDE cascade
systems cannot be ignored, where the ODE and the
PDEstand for the plant and the sensor, respectively.The
observer design of the ODE plant with diffusive sensor
dynamics was presented for the first time in Ref. [8].
Then, Ahmed-Ali et al. extended the observer design
approach to the nonlinear ODEs with parabolic and
hyperbolic sensors in Refs. [9] and [10], respectively,
where the nonlinear dynamics have a lower triangular
structure. The authors of Ref. [11] developed a sample
boundary observer for strict-feedback nonlinear system
with heat PDE sensor. Later, sample boundary observer
was built for linear ODEs with nonlinear parabolic
PDE sensor in Ref. [12]. In Ref. [13], the authors con-
structed a Luenberger-type observer for the Stefan sys-
tem and applied the results to polar ice dynamicsmodel
and charging and discharging in lithium-ion batteries
model.

It is worth emphasizing that most of the above sys-
tems require themathematicalmodel to be fully known.
In fact, due to the working mechanism of the con-
trolled object may not be clear, the measurement accu-
racy may not be accurate or other influences, the sys-
tem inevitably has a variety of uncertainties. It is well
known that adaptive technology is an effective method
to eliminate the influence of unknown parameters on
the system, see Ref. [14]. Therefore, there is also great
interest in the design of adaptive observers for scalar
PDE and coupled systems with uncertain parameters.
In Refs. [15–17], by utilizing backstepping-like trans-
formations, the anti-collocated adaptive observerswere
established for scalar parabolic equation and fully cou-
pled parabolic equations with uncertain parameters.
Adaptive boundary observers were also designed for
transport and wave PDEs with unknown parameters
in Refs. [18] and [19], respectively. Meanwhile, the
authors of Refs. [20] and [21] proposed a continuous
observer and a sampled-data observer for the linear
ODE-heat PDE coupled systems subject to parameter
uncertainty, respectively.

From the above discussion, it can be found that there
are three main constraints in the existing results for
ODE-PDE cascade systems: (i) The uncertainty of the
system only acts on its domain, and the case where the
boundary is also affected by the uncertainty is not con-
sidered; (ii)When the parameter uncertainty is present,
the PDE sensor is a linear system, while most phenom-

ena in nature are nonlinear; (iii) When the Lipschitz
nonlinearity is involved, the Lipschitz coefficient and
the PDE domain length are not permitted to be concur-
rently large.

In this paper, our goal is to break through con-
straints (i) and (ii) and relax constraint (iii): ① Con-
sidering that both the boundary and the domain are
affected by parameter uncertainty; ② Considering that
the PDE sensor contains nonlinearity; ③ Even if the
PDEdomain length and theLipschitz coefficient cannot
be simultaneously large, with the increase of diffusion
coefficient, the value range of the PDE domain length
and the Lipschitz coefficient becomes larger. The nov-
elty of this paper includes:

• Anovel backstepping-like transformation is applied
to decouple unknown states and parameters.

• A least-squares type update law is designed to accu-
rately estimate the decoupled unknown states and
parameters online.

• We relax the condition of Ref. [12, Theorem 1].

We proceed as follows. Section2 proposes the
main issues and presents some necessary information.
In Sect. 3, combining the decoupling transformation
and least-squares type parameter update law, an anti-
collocated adaptive state observer is built. Then, the
exponential stability of the observer error system is
analyzed in Sect. 4. Finally, a simulation example is uti-
lized to confirm the validity of the theoretical method
in Sect. 5.

Notation. Throughout the text, Rn and Rn×m are n
dimensional real space and n×m real matrices, respec-
tively. The symbol ‖ · ‖ denotes the corresponding
Euclidean norm. L2(0, �) represents the Hilbert space
of square integrable function p : [0, �] → R, its L2-

norm is given by ‖p‖2 =
√∫ �

0 p2(ξ)dξ . Here, � > 0 is

the PDE domain length. Hi (0, �) is the Sobolev space
of absolutely continuous functions p : [0, �] → R
with di p/dσ i ∈ L2(0, �). For a scalar function q ∈
H1(0, �) with q(0) = 0 or q(�) = 0, it is easy to give
that the following Wirtinger’s inequalities (see, e.g.,
Refs. [22, Sect. 7.6] and [23])

∫ �

0
q2(σ, t)dσ ≤ 4�2

π2

∫ �

0
q2
σ (σ, t)dσ, (1a)

max
0≤σ≤�

q2(σ, t) ≤ �

∫ �

0
q2
σ (σ, t)dσ (1b)
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Fig. 1 The block diagram of the plant consisting of (2a)–(2d)

For simplicity, we sometimes omit the time variable t .

2 Problem formulation

In the present work, we are devoted to investi-
gate the following ODE-PDE coupled systems subject
to unknown parameters and nonlinear dynamics. The
block diagram of the system structure is displayed in
Fig. 1.

Ẋ(t) = AX (t) + φ1(t)ρ1, (2a)

ut (σ, t) = huσσ (σ, t) + g(u(σ, t), σ, t) + φ2(σ, t)ρ2,
(2b)

uσ (0, t)= φ3(t)ρ3, (2c)

u(�, t)= C X (t) + φ4(t)ρ4, (2d)

where X (t) ∈ Rn and u(σ, t) ∈ R with initial data
X (0) = X0 and u(σ, 0) = u0(σ ) denote ODE and
PDE states, respectively. Here, h > 0 is called the dif-
fusion coefficient. A ∈ Rn×n , CT ∈ Rn are known
constant matrices and satisfy the pair (A, C) is observ-
able. φ1(t) ∈ C1([0,+∞) : Rn×m1), φ2(σ, t) ∈
C1([0, �] × [0,+∞) : R1×m2), φ3(t) ∈ C1([0,+∞) :
R1×m3) and φ4(t) ∈ C1([0,+∞) : R1×m4) are known
bounded functions. ρi ∈ Rmi (i = 1, 2, 3, 4) are
unknown constant parameter vectors. We suppose that
m = m1+m2+m3+m4. In addition, g(u(σ, t), σ, t) ∈
C1(R × [0, �] × [0,+∞) : R) is a known mapping,
it does not have any special form but its derivative is
bounded with respect to its first argument, namely, for
∀(u, σ, t) ∈ R×[0, �]×[0,+∞), there has a constant
β > 0 such that

|gu(u, σ, t)| ≤ β. (3)

The main aim of this note is to build an adaptive
boundary observer that can offer accurate online esti-
mates of the system states X (t), u(σ, t) and unknown
parameter vectors ρi (i = 1, 2, 3, 4) only when the
boundary state u(0, t) is continuous measurable.

Remark 1 In this note, the uncertain quantity and non-
linear dynamics in (2a)–(2d) constitute new features
compared to Ref. [8] where ρi = 0(i = 1, 2, 3, 4) and
g = 0. On the other hand, if g, ρi (i = 3, 4) are all set
to zero, the system (2a)–(2d) boils down to the system
consisting of (2) and (3a)–(3b) in Ref. [20].

3 Adaptive observer design

3.1 Observer construction

In this part, we only use the boundary output measur-
able signal y(t) = u(0, t) to construct the following the
anti-collocated observer, which is a copy of the ODE-
PDE cascade systems (2a)–(2d)

˙̂X (t) = AX̂(t) + φ1(t)ρ̂1(t)

− L
(
û(0, t) − y(t)

) + v1(t), (4a)

ût (σ, t) = hûσσ (σ, t) + g(û(σ, t), σ, t)

+ φ2(σ, t)ρ̂2(t)

− p(σ )
(
û(0, t) − y(t)

) + v2(σ, t), (4b)

ûσ (0, t)= φ3(t)ρ̂3(t), (4c)

û(�, t)= C X̂(t) + φ4(t)ρ̂4(t), (4d)

where X̂(t) and û(σ, t) with initial conditions X̂(0) =
X̂0 and û(σ, 0) = û0(σ ) are the estimates of the states
X (t) and u(σ, t), respectively. ρ̂i (t) with initial data
ρ̂i (0) = ρ̂i0 are the estimates of unknown parameter
vectors ρi (i = 1, 2, 3, 4), respectively. L ∈ Rn and
p(σ ) ∈ R are the observer gains. Besides, v1(t) and
v2(σ, t) are added functions to be defined later.

Without loss of generality, let X̃(t) = X̂(t) − X (t),
ũ(σ, t) = û(σ, t) − u(σ, t) and ρ̃i (t) = ρ̂i (t) − ρi (i =
1, 2, 3, 4), then subtracting (4a)–(4d) into (2a)–(2d),
we get

˙̃X (t) = AX̃(t) + φ1(t)ρ̃1(t)

− Lũ(0, t) + v1(t), (5a)

ũt (σ, t) = hũσσ (σ, t) + g̃(σ, t)

+ φ2(σ, t)ρ̃2(t) − p(σ )ũ(0, t) + v2(σ, t),
(5b)

ũσ (0, t) = φ3(t)ρ̃3(t), (5c)

ũ(�, t) = C X̃(t) + φ4(t)ρ̃4(t), (5d)
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where

g̃(σ, t) = g(û(σ, t), σ, t) − g(u(σ, t), σ, t).

3.2 Decoupling transformation

In this section,wefirst adopt the followingbackstepping-
like transformation to decouple the unknown states and
parameters

Z(t) = X̃(t) −
4∑

i=1

λ1i (t)ρ̃i (t), (6a)

w(σ, t) = ũ(σ, t) − C
(σ)
−1(�)X̃(t)

−
4∑

i=1

λ2i (σ, t)ρ̃i (t), (6b)

for any (σ, t) ∈ [0, �] × [0,+∞). Here, λ1i (t) ∈
Rn×mi and λ2i (σ, t) ∈ R1×mi (i = 1, 2, 3, 4) are
auxiliary state matrices and vectors, respectively. The
matrix function 
(σ) ∈ Rn×n is determined by the
following ODEs:

d2


dσ 2 (σ ) = 1

h

(σ)A,

d


dσ
(0) = 0, 
(0) = I. (7)

It is important to note, the matrix function
(σ) has
played a crucial role in the observer design and its prop-
erties are given in Appendix A. From (6b), we found
that 
(�) needs to be invertible, which means that it is
necessary to impose a constraint on the matrix A. As
described in Ref. [9], if the matrix A is nilpotent, that
is, An = 0, thus
(�) is invertible. It should be pointed
out that this property also holds for other classes of
matrix A.

Next, we transform the observer error system (5a)–
(5d) into an easy-to-handle target error system by the
decoupling transformation (6a)–(6b). To this end, dif-
ferentiating (6a) with respect to t and using (5a), we
deduce

Ż(t) = ˙̃X (t) −
4∑

i=1

λ̇1i (t)ρ̃i (t) −
4∑

i=1

λ1i (t) ˙̃ρi (t)

= AX̃(t) + φ1(t)ρ̃1(t) − Lũ(0, t) + v1(t)

−
4∑

i=1

λ̇1i (t)ρ̃i (t) −
4∑

i=1

λ1i (t) ˙̃ρi (t). (8)

Selecting v1(t) =
4∑

i=1
λ1i (t) ˙̂ρi (t), it follows from

(6a) and (7) that

Ż(t)=(
A−LC
−1(�)

)
Z(t)−Lw(0, t)+φ1(t)ρ̃1(t)

− L
4∑

i=1

λ2i (0, t)ρ̃i (t) −
4∑

i=1

λ̇1i (t)ρ̃i (t)

+ (
A − LC
−1(�)

) 4∑
i=1

λ1i (t)ρ̃i (t). (9)

By eliminating the terms with ρ̃i (t)(i = 1, 2, 3, 4) in
the above equality, we can obtain that the auxiliary state
matrices λ1i (t)(i = 1, 2, 3, 4) satisfy

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

λ̇11(t) = (
A − LC
−1(�)

)
λ11(t) + φ1(t) − Lλ21(0, t),

λ̇12(t) = (
A − LC
−1(�)

)
λ12(t) − Lλ22(0, t),

λ̇13(t) = (
A − LC
−1(�)

)
λ13(t) − Lλ23(0, t),

λ̇14(t) = (
A − LC
−1(�)

)
λ14(t) − Lλ24(0, t).

(10)

Substituting (10) into (9), we have

Ż(t) = (
A − LC
−1(�)

)
Z(t) − Lw(0, t), (11)

where A − LC
−1(�) is a Hurwitz matrix.

Remark 2 Utilizing the property (c) of Appendix A,
we infer that the equality A = 
(�)A
−1(�) holds. In
particular, we get

A − LC
−1(�) = 
(�)A
−1(�) − LC
−1(�)

= 
(�)
(

A − 
−1(�)LC
)

−1(�),

which implies that matrices A − LC
−1(�) and A −

−1(�)LC are similar and therefore have equivalent
eigenvalues. Since the pair (A, C) is observable, one
has a suitable vector L such that A − 
−1(�)LC is a
Hurwitz matrix, so A − LC
−1(�) is also a Hurwitz
matrix.

Next, taking the time derivative of (6b) and utilizing
(5a)–(5b), we obtain

wt (σ, t) = ũt (σ, t) − C
(σ)
−1(�)
˙̃X (t)

−
4∑

i=1

λ2i,t (σ, t)ρ̃i (t) −
4∑

i=1

λ2i (σ, t) ˙̃ρi (t)

= hũσσ (σ, t) + g̃(σ, t)
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+ φ2(σ, t)ρ̃2(t) − p(σ )ũ(0, t) + v2(σ, t)

− C
(σ)
−1(�)
(

AX̃(t) + φ1(t)ρ̃1(t)

− Lũ(0, t) + v1(t)
)

−
4∑

i=1

λ2i,t (σ, t)ρ̃i (t) −
4∑

i=1

λ2i (σ, t) ˙̃ρi (t).

(12)

Similarly, we choose

v2(σ, t) = C
(σ)
−1(�)v1(t) +
4∑

i=1

λ2i (σ, t) ˙̂ρi (t).

(13)

Substituting (6b) and (13) into (12), it follows that

wt (σ, t) = hwσσ (σ, t) + g̃(σ, t)

+ hC
d2


dσ 2 (σ )
−1(�)X̃(t)

− C
(σ)
−1(�)AX̃(t) + φ2(σ, t)ρ̃2(t)

− (
p(σ ) − C
(σ)
−1(�)L

)
ũ(0, t)

− C
(σ)
−1(�)φ1(t)ρ̃1(t)

+
4∑

i=1

(
hλ2i,σσ (σ, t) − λ2i,t (σ, t)

)
ρ̃i (t).

(14)

By eliminating the last four terms, it is easy to give
that the trajectories of the auxiliary state matrices
λ2i (σ, t)(i = 1, 2, 3, 4), respectively, satisfy

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ21,t (σ, t) = hλ21,σσ (σ, t) − C
(σ)
−1(�)φ1(t),

λ22,t (σ, t) = hλ22,σσ (σ, t) + φ2(σ, t),

λ23,t (σ, t) = hλ23,σσ (σ, t),

λ24,t (σ, t) = hλ24,σσ (σ, t),

(15)

and the observer gain p(σ ) satisfies

p(σ ) = C
(σ)
−1(�)L . (16)

Inserting (15) and (16) to (14), then using (7) and the
property (b) of Appendix A, it is easy to get

wt (σ, t) = hwσσ (σ, t) + g̃(σ, t). (17)

Then, it follows from (6b) that

⎧
⎪⎪⎨
⎪⎪⎩

wσ (0, t) = ũσ (0, t) −
4∑

i=1
λ2i,σ (0, t)ρ̃i (t),

w(�, t) = ũ(�, t) − C X̃(t) −
4∑

i=1
λ2i (�, t)ρ̃i (t).

(18)

Choosing

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ21,σ (0, t) = 0, λ22,σ (0, t) = 0,

λ23,σ (0, t) = φ3(t), λ24,σ (0, t) = 0,

λ21(�, t) = 0, λ22(�, t) = 0,

λ23(�, t) = 0, λ24(�, t) = φ4(t),

(19)

andutilizing (4c)–(4d),we can obtain that the following
boundary conditions are associated to (17)

{
wσ (0, t) = 0,

w(�, t) = 0.
(20)

In this way, the target error system consisting of (11),
(17) and (20) is established.

Remark 3 The backstepping-like transformation
described by (6a)–(6b) is a pivotal feature of the
observer design and analysis. It is partly motivated by
the previous finite- or infinite-dimensional transforma-
tions, but is also a generalization. In fact, the finite-
dimensional transformation in Ref. [24] is achieved by
taking λ1i (t)(i = 2, 3, 4) be zero and deleting (6b),
which can be utilized to adaptive observer design for
ODEs. Similarly, the infinite-dimensional transforma-
tion in Ref. [8] is achieved by taking λ2i (i = 1, 2, 3, 4)
be zero and deleting (6a), which can be utilized to non-
adaptive observer design for ODE-PDEs. In addition,
the transformation in [20] can be regarded as a par-
ticular case of (6a)-(6b) by taking λ13(t), λ14(t) and
λ23(σ, t), λ24(σ, t) be zero. It is worthy mentioning
that the new transformation (6a)–(6b) features a cou-
pling among the finite- and infinite-dimensional trans-
formations. This coupling is part of the novelty of the
present transformation, which can be used to decouple
unknown states and parameters.
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3.3 Parameter adaptive law

In this section, we design the ensuing parameter adap-
tive law to online accurately estimate unknown param-
eters by utilizing the known signals u(0, t) and φ1(t),
φ2(σ, t), φ3(t), φ4(t)

˙̂ρ(t) = − Q(t)�(t)ũ(0, t), (21a)

Q̇(t) =αQ(t) − Q(t)�(t)�T (t)Q(t), (21b)

where ρ̂(t) = [ρ̂T
1 (t), ρ̂T

2 (t), ρ̂T
3 (t), ρ̂T

4 (t)]T ∈ Rm

with the initial data ρ̂(0) = ρ0 and Q(t) ∈ Rm×m is a
matrix gain with the initial value Q(0) = Q0 = QT

0 >

0. In addition, α > 0 is a scalar to be set later, and

�(t) =

⎛
⎜⎜⎜⎝

(
C
−1(�)λ11(t) + λ21(0, t)

)T

(
C
−1(�)λ12(t) + λ22(0, t)

)T

(
C
−1(�)λ13(t) + λ23(0, t)

)T

(
C
−1(�)λ14(t) + λ24(0, t)

)T

⎞
⎟⎟⎟⎠ . (22)

Next, we suppose the ensuing persistent excitation (PE)
condition to be true.
PEAssumption.Thevector signal�(t)definedby (22)
is assumed to be persistently exciting, i.e., for some
positive constants τ and ε0, there exists

∫ t+τ

t
�(s)�T (s)ds > ε0 I, ∀t > 0,

with I ∈ Rm×m being the identity matrix.
Analytically, thePEassumption implies that the sub-

set {�(s); t ≤ s ≤ t + τ } spans the parameter space
Rm for any t . Since �(t) only relies on the known sig-
nals φ1(t), φ2(0, t), φ3(t), φ4(t) and auxiliary function

(σ), it is easy to get that the PE condition is satisfied
if the frequency spectra of the known signals φ1(t),
φ2(0, t), φ3(t), φ4(t) are rich enough.

Since det(Q(0)) �= 0, it follows from the equality
Q(t)Q−1(t) = I that

0 = d

dt
(I ) = d

dt
(Q(t)Q−1(t))

= d

dt
(Q(t))Q−1(t) + Q(t)

d

dt
(Q−1(t)), (23)

which means that

d

dt
(Q(t)) = −Q(t)

d

dt
(Q−1(t))Q(t). (24)

Together with (21b), we get

Q̇−1(t) = −Q−1(t)Q̇(t)Q−1(t)

= −αQ−1(t) + �(t)�T (t). (25)

According to Ref. [25], we obtain that Q−1(t) is pos-
itive definite matrix and stays bounded away from 0
under the PE condition, which implies that one exists
two constants ε1, ε2 satisfying 0 < ε1 < ε2 such that

ε1 I ≤ Q−1(t) ≤ ε2 I, ∀t ≥ 0. (26)

Noticing that the parameter adaptive law (21a)–(21b)
weestablished is very similar to the so-called forgetting-
factor adaptive least-squares in Ref. [25]. The reader
can refer to Reference [25] for more details about least-
squares with forgetting factor and PE Assumption.

In particular, we rewrite the error system consisting
of (11), (17), (20), (21a)–(21b) and (25) in the following
form

Ż(t) = (
A − LC
−1(�)

)
Z(t) − Lw(0, t), (27a)

wt (σ, t) = hwσσ (σ, t) + g̃(σ, t), (27b)

wσ (0, t) = 0, (27c)

w(�, t) = 0, (27d)

˙̃ρ(t) = − Q(t)�(t)�T (t)ρ̃(t)

− Q(t)�(t)
(
w(0, t) + C
−1(�)Z(t)

)
,

(27e)

Q̇−1(t) = − αQ−1(t) + �(t)�T (t), (27f)

where g̃(σ, t) = g(û(σ, t), σ, t) − g(u(σ, t), σ, t).
For the sake of convenience, the complete adaptive
observer structure is listed in Table 1.

Remark 4 The well-posedness of the plant consisting
of (2a)–(2d) and the observer system in Table 1 is ana-
lyzed in Appendix B. From [28, Theorem 3.3.3], we
conclude that the inequality (3) is a sufficient condition
to guarantee the existence and uniqueness of solution
of the considered system.

Remark 5 Compared with other types of observers,
adaptive observers can estimate unknown states and
parameters online. In this paper, only the boundary
state u(0, t) is available for measurement, we design an
adaptive boundary observer based on the least-squares
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Table 1 Adaptive observer

State observer

˙̂X (t) = AX̂(t) + φ1(t)ρ̂1(t) − L
(
û(0, t) − u(0, t)

) +
4∑

i=1
λ1i (t) ˙̂ρi (t),

ût (σ, t) = hûσσ (σ, t) + g(û(σ, t), σ, t) + φ2(σ, t)ρ̂2(t) − C
(σ)
−1(�)L(û(0, t) − u(0, t))

+
4∑

i=1

(
λ2i (σ, t) + C
(σ)
−1(�)λ1i (t)

) ˙̂ρi (t),

ûσ (0, t) = φ3(t)ρ̂3(t),

û(�, t) = C X̂(t) + φ4(t)ρ̂4(t),

with λ1i (t) ∈ Rn×mi , λ2i (σ, t) ∈ R1×mi (i = 1, 2, 3, 4),

and 
(σ) = (
I 0

)
e

(
0 A

h
I 0

)
σ (

I
0

)
∈ Rn×n .

Filters

λ̇11(t) = (
A − LC
−1(�)

)
λ11(t) + φ1(t) − Lλ21(0, t),

λ̇12(t) = (
A − LC
−1(�)

)
λ12(t) − Lλ22(0, t),

λ̇13(t) = (
A − LC
−1(�)

)
λ13(t) − Lλ23(0, t),

λ̇14(t) = (
A − LC
−1(�)

)
λ14(t) − Lλ24(0, t),

λ21,t (σ, t) = hλ21,σσ (σ, t) − C
(σ)
−1(�)φ1(t),

λ22,t (σ, t) = hλ22,σσ (σ, t) + φ2(σ, t),

λ23,t (σ, t) = hλ23,σσ (σ, t),

λ24,t (σ, t) = hλ24,σσ (σ, t),

λ21,σ (0, t) = 0, λ22,σ (0, t) = 0, λ23,σ (0, t) = φ3(t), λ24,σ (0, t) = 0,

λ21(�, t) = 0, λ22(�, t) = 0, λ23(�, t) = 0, λ24(�, t) = φ4(t).

Parameter estimator
˙̂ρ(t) = −Q(t)�(t)ũ(0, t), Q̇(t) = αQ(t) − Q(t)�(t)�T (t)Q(t),

where Q(t) ∈ Rm×m , Q(0) = Q0 = QT
0 > 0,

and �(t) =

⎛
⎜⎜⎜⎝

(
C
−1(�)λ11(t) + λ21(0, t)

)T

(
C
−1(�)λ12(t) + λ22(0, t)

)T

(
C
−1(�)λ13(t) + λ23(0, t)

)T

(
C
−1(�)λ14(t) + λ24(0, t)

)T

⎞
⎟⎟⎟⎠ ∈ Rm .

update law.Under an ad hoc persistent excitation condi-
tion, the estimation of unknown parameters and states
can converge to the true value, thus eliminating the
impact of uncertainty on the system performance.

4 Adaptive observer analysis

In this part, we plan to analyze stability of the error
system consisting of (27a)–(27f). The main theoretical
results will be given. First, we discuss the nonlinear
function g̃ by means of the mean value theorem, which
will be used in the stability analysis.

Utilizing themeanvalue theoremand the decoupling
transformation (6a)–(6b), it follows that

g̃(σ, t) = π(σ, t)
(
w(σ, t) + C
(σ)
−1(�)Z(t)

+
4∑

i=1

C
(σ)
−1(�)λ1i (t)ρ̃i (t)

+
4∑

i=1

λ2i (σ, t)ρ̃i (t)
)
, (28)

with

π(σ, t) =
∫ 1

0

∂g

∂u
(u(σ, t) + sũ(σ, t), σ, t)ds. (29)
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Next, we give the boundedness of the auxiliary states
λ1i (t) and λ2i (σ, t)(i = 1, 2, 3, 4) given by (10), (15)
and (19).

Lemma 1 There has a real scalar λM such that the
auxiliary states λ1i (t) and λ2i (σ, t)(i = 1, 2, 3, 4)
have the ensuing properties:

‖λ1i (t)‖ ≤ λM , ‖λ2i (σ, t)‖ ≤ λM . (30)

Proof In order to make the structure of the article
clearer, the proof of the lemma is put in Appendix C.


�

After, we establish the stability analysis of the
observer system,which is also themost important result
of this article.

Theorem 1 Consider the system (2a)–(2d) and the
adaptive observer of Table 1 with the initial values
X (0) ∈ Rn, u(·, 0) ∈ H1(0, �) and the initial esti-
mates X̂(0) ∈ Rn, û(·, 0) ∈ H1(0, �) and ρ̂(0) ∈ Rm,
choosing the appropriate constant α, and suppose that
Lemma 1 holds. If the diffusion coefficient h, the domain

length � and the coefficient β meet 0 < β�2 < π2

4 h,
then, the observer is globally exponentially convergent
as t → ∞, i.e., X̃(t), ũ(σ, t) and ρ̃(t) converge expo-
nentially to zero as t → ∞.

Proof In this part, the exponential stability of the plant
(27a)–(27f) will be established.We discuss the ensuing
Lyapunov–Krasovskii functional

V (t) = Z T (t)P Z(t) + a

2

∫ �

0
w2(σ, t)dσ

+ b

2

∫ �

0
w2

σ (σ, t)dσ + ρ̃T (t)Q−1(t)ρ̃(t),

(31)

where a, b are positive scalars and P is a positive defi-
nite symmetricmatrix thatmeets the ensuing Lyapunov
equation

P
(

A − LC
−1(�)
) + (

A − LC
−1(�)
)T

P ≤ −μI,
(32)

with μ being a positive scalar to be determined later.
Since A − LC
−1(�) is a Hurwitz matrix, it can be

easily checked that P exists. Next, we divide Lyapunov
functional V (t) into three parts, denoted as

V1(t) = Z T (t)P Z(t), (33a)

V2(t) = a

2

∫ �

0
w2(σ, t)dσ + b

2

∫ �

0
w2

σ (σ, t)dσ,

(33b)

V3(t) = ρ̃T (t)Q−1(t)ρ̃(t). (33c)

Part I. Differentiating (33a) with respect to time, it fol-
lows from (27a) and (32) that

V̇1(t) = Z T (t)
(

A − LC
−1(�)
)T

P Z(t)

+ Z T (t)P
(

A − LC
−1(�)
)
Z(t)

− 2Z T (t)P Lw(0, t)

≤ −μ‖Z(t)‖2 + ξ‖Z(t)‖2 + ‖P L‖2
ξ

w2(0, t)

≤−(μ−ξ)‖Z(t)‖2+�‖P L‖2
ξ

∫ �

0
w2

σ (σ, t)dσ,

(34)

with ξ > 0 being a constant to be chosen later. In the
last two steps, Young’s inequality and (1b) are utilized,
respectively.
Part II. Next, taking the time derivative of (33b) and
utilizing (27b)–(27d), it follows that

V̇2(t) = a
∫ �

0
w(σ, t)wt (σ, t)dσ

+ b
∫ �

0
wσ (σ, t)wσ t (σ, t)dσ

=−ah
∫ �

0
w2

σ (σ, t)dσ+a
∫ �

0
w(σ, t)g̃(σ, t)dσ

− b
∫ �

0
wσσ (σ, t)

(
hwσσ (σ, t) + g̃(σ, t)

)
dσ.

(35)

Substituting (28) into (35) yields

V̇2(t) = −ah
∫ �

0
w2

σ (σ, t)dσ

+ a
∫ �

0
w(σ, t)π(σ, t)w(σ, t)dσ

+ a
∫ �

0
w(σ, t)π(σ, t)C
(σ)
−1(�)Z(t)dσ
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+ a
∫ �

0
w(σ, t)π(σ, t)

4∑
i=1

C
(σ)
−1(�)λ1i (t)ρ̃i (t)dσ

+ a
∫ �

0
w(σ, t)π(σ, t)

4∑
i=1

λ2i (σ, t)ρ̃i (t)dσ

− bh
∫ �

0
w2

σσ (σ, t)dσ

− b
∫ �

0
wσσ (σ, t)π(σ, t)w(σ, t)dσ

− b
∫ �

0
wσσ (σ, t)π(σ, t)C
(σ)
−1(�)Z(t)dσ

− b
∫ �

0
wσσ (σ, t)π(σ, t)

4∑
i=1

C
(σ)
−1(�)λ1i (t)ρ̃i (t)dσ

− b
∫ �

0
wσσ (σ, t)π(σ, t)

4∑
i=1

λ2i (σ, t)ρ̃i (t)dσ.

(36)

For the second term of (36), by means of Young’s
inequality and together with (3), we get

∣∣∣a
∫ �

0
w(σ, t)π(σ, t)w(σ, t)dσ

∣∣∣ ≤ aβ
∫ �

0
w2(σ, t)dσ.

(37)

For the third term of (36), applying Young’s inequality,
we deduce

a
∫ �

0
w(σ, t)π(σ, t)C
(σ)
−1(�)Z(t)dσ

≤ aξ1‖Z(t)‖2

+ a

4ξ1

∫ �

0
‖π(σ, t)C
(σ)
−1(�)w(σ, t)‖2dσ

≤ aξ1‖Z(t)‖2 + aδβ2�

4ξ1

∫ �

0
w2(σ, t)dσ, (38)

where ξ1 is an arbitrary scalar and δ
def= supσ∈[0,�] ‖C


(σ)
−1(�)‖2. From the property (a) in Appendix A, it
can be easily checked that δ is bounded, due to function

(σ) is continuous on the closed interval [0, �]. Uti-
lizing Young’s inequality for the fourth term of (36),

then recalling (3) and (29)–(30), we get

a
∫ �

0
w(σ, t)π(σ, t)C
(σ)
−1(�)λ11(t)ρ̃1(t)dσ

≤ aξ2‖ρ̃1(t)‖2

+ a

4ξ2

∫ �

0
‖π(σ, t)C
(σ)
−1(�)λ11(t)w(σ, t)‖2dσ

≤aξ2‖ρ̃1(t)‖2 + aδλ2Mβ2�

4ξ2

∫ �

0
w2(σ, t)dσ, (39)

where ξ2 > 0 is an arbitrary number. Thus, we obtain

a
∫ �

0
w(σ, t)π(σ, t)

4∑
i=1

C
(σ)
−1(�)λ1i (t)ρ̃i (t)dσ

≤aξ2‖ρ̃(t)‖2 + aδλ2Mβ2�

ξ2

∫ �

0
w2(σ, t)dσ. (40)

By utilizing a similar approach to address the fifth term
of (36), it follows that

a
∫ �

0
w(σ, t)π(σ, t)

4∑
i=1

λ2i (σ, t)ρ̃i (t)dσ

≤aξ3‖ρ̃(t)‖2 + aλ2Mβ2�

ξ3

∫ �

0
w2(σ, t)dσ, (41)

with ξ3 > 0 being an arbitrary scalar.On the other hand,
using Young’s inequality for seventh term of (36) and
integration by parts, then together with (3) and (29), we
have

b
∫ �

0
wσσ (σ, t)π(σ, t)w(σ, t)dσ

≤ bβ

2ζ0

∫ �

0
w2(σ, t)dσ + bβζ0

2

∫ �

0
w2

σσ (σ, t)dσ, (42)

where ζ0 > 0 is an arbitrary constant. Then, by means
of Young’s inequality for the eighth term of (36) yields

b
∫ �

0
wσσ (σ, t)π(σ, t)C
(σ)
−1(�)Z(t)dσ

≤ bζ1‖Z(t)‖2

+ b

4ζ1

∫ �

0
‖π(σ, t)C
(σ)
−1(�)wσσ (σ, t)‖2dσ

≤bζ1‖Z(t)‖2 + bδβ2�

4ζ1

∫ �

0
w2

σσ (σ, t)dσ, (43)
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with ζ1 being an arbitrary scalar. Utilizing Young’s
inequality for the ninth term of (36), then together with
(3) and (29)–(30), we have

b
∫ �

0
wσσ (σ, t)π(σ, t)

4∑
i=1

C
(σ)
−1(�)λ1i (t)ρ̃i (t)dσ

≤bζ2‖ρ̃(t)‖2 + bδλ2Mβ2�

ζ2

∫ �

0
w2

σσ (σ, t)dσ, (44)

where ζ2 > 0 is an arbitrary scalar. By utilizing a simi-
lar approach to address the tenth term of (36), it follows
that

b
∫ �

0
wσσ (σ, t)π(σ, t)

4∑
i=1

λ2i (σ, t)ρ̃i (t)dσ

≤bζ3‖ρ̃(t)‖2 + bλ2Mβ2�

ζ3

∫ �

0
w2

σσ (σ, tdσ, (45)

with ζ3 > 0being an arbitrary scalar. Substituting (37)–
(45) into (36) yields

V̇2(t) ≤ −
{

ah − 4�2aβ

π2

(
1 + δβ�

4ξ1
+ δλ2Mβ�

ξ2
+ λ2Mβ�

ξ3

)

− 2�2bβ

π2ζ0

} ∫ �

0
w2

σ (σ, t)dσ

− b
(

h − βζ0

2
− δβ2�

4ζ1
− δλ2Mβ2�

ζ2
− δλ2Mβ2�

ζ3

)

∫ �

0
w2

σσ (σ, t)dσ

+ (
aξ2 + aξ3 + bζ2 + bζ3

)‖ρ̃(t)‖2
+ (aξ1 + bζ1)‖Z(t)‖2. (46)

Part III. Differentiating (33c) with respect to t and sub-
stituting (27e)–(27f), then utilizing Young’s inequality,
we deduce

V̇3(t) = ρ̃T (t)Q̇−1(t)ρ̃(t) + 2ρ̃T (t)Q−1(t) ˙̃ρ(t)

= ρ̃T (t)
( − αQ−1(t) + �(t)�T (t)

)
ρ̃(t)

− 2ρ̃T (t)�(t)
(
�T (t)ρ̃(t) + w(0, t)

+ C
−1(�)Z(t)
)

≤ −αρ̃T (t)Q−1(t)ρ̃(t) + 8w2(0, t)

+ 8

7
‖C
−1(�)Z(t)‖2.

Together with (26) andWirtinger’s inequality (1b), one
has

V̇3(t) ≤ −αε1‖ρ̃(t)‖2 + 8�
∫ �

0
w2

σ (σ, t)dσ

+ 8

7
δ1‖Z(t)‖2, (47)

where δ1
def= ‖C
−1(�)‖2 < ∞.

Then, adding (34) and (46)–(47) together, we get

V̇ (t) ≤ −
{

ah − 4�2aβ

π2

(
1 + δβ�

4ξ1
+ δλ2Mβ�

ξ2
+ λ2Mβ�

ξ3

)

− 2�2bβ

π2ζ0
− �‖P L‖2

ξ
− 8�

} ∫ �

0
w2

σ (σ, t)dσ

− b
(

h − βζ0

2
− δβ2�

4ζ1
− δλ2Mβ2�

ζ2
− δλ2Mβ2�

ζ3

)

∫ �

0
w2

σσ (σ, t)dσ

− (μ − ξ − aξ1 − bζ1 − 8

7
δ1)‖Z(t)‖2

− (
αε1 − aξ2 − aξ3 − bζ2 − bζ3

)‖ρ̃(t)‖2. (48)

Then, we choose the free coefficient ζ0 = h
β

and
assume that the diffusion coefficient h, the domain
length �, the coefficientβ and other (free) positive num-
bers (μ, a, b, α, ξ, ξ1, ξ2, ξ3, ζ1, ζ2, ζ3) satisfy the fol-
lowing inequalities:

ah − 4�2aβ

π2

(
1 + δβ�

4ξ1
+ δλ2Mβ�

ξ2
+ λ2Mβ�

ξ3

)

− 2�2bβ2

π2h
− �‖P L‖2

ξ
− 8� > εa > 0,

(49a)

h

2
− δβ2�

4ζ1
− δλ2Mβ2�

ζ2
− δλ2Mβ2�

ζ3
>

h

4
> 0, (49b)

μ − ξ − aξ1 − bζ1 − 8

7
δ1 >

μ − ξ

2
> 0, (49c)

αε1 − aξ2 − aξ3 − bζ2 − bζ3 >
αε1

2
> 0, (49d)

for certain 0 < ε < 1. For simplicity, we define
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Fig. 2 Maximal admissible
Lipschitz coefficient β for
different � when the
diffusion coefficient h is
fixed
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Fig. 3 The trajectories of the ODE state X (t) and its estimate X̂(t) in Example 1. a X1(t) and its estimate X̂1(t); b X2(t) and its
estimate X̂2(t)

χ1 = π2

2a�2

{
ah − 4�2aβ

π2

(
1 + δβ�

4ξ1
+ δλ2Mβ�

ξ2
+ λ2Mβ�

ξ3

)

− 2�2bβ

ζ0π2 − �‖P L‖2
ξ

− 8�
}
,

χ2 = π2

2�2

(
h − βζ0

2
− δβ2�

4ζ1
− δλ2Mβ2�

ζ2
− δλ2Mβ2�

ζ3

)
,

χ3 = (
μ − ξ − aξ1 − bζ1 − 8

7
δ1

) 1

λmin(P)
,

χ4 = α − (aξ2 + aξ3 + bζ2 + bζ3)
1

ε1
.

By means of (49a)–(49d), it follows that

χ(�) =: min
{επ2

2�2
,
π2h

8�2
,

μ − ξ

2λmin(P)
,
α

2

}

≤ min{χ1, χ2, χ3, χ4}.

Together with (31), (48) and (49a)–(49d), we get

V̇ (t) ≤ −χ(�)V (t),

which means that V (t) is exponentially vanishing as
t → ∞. From (31), we can easily verify that Z(t),

ρ̃(t),
∫ �

0 w2(σ, t)dσ and
∫ �

0 w2
σ (σ, t)dσ are exponen-

tially vanishing as t → ∞. Together with Wirtinger’s
inequality (1b), so is w(σ, t).

Furthermore, due to λ1i (t) and λ2i (σ, t) (i =
1, 2, 3, 4) and 
(σ) are bounded, Z(t), ρ̃(t) and
w(σ, t) are exponentially vanishing as t → ∞, so
are X̃(t) and ũ(σ, t) by the decoupling transformation
(6a)–(6b).

Finally, we verify the above conditions (49a)–(49d)
hold. Owing to (49a), it holds if the ensuing couple of
inequalities do so:

h − 4�2β

π2 − δ�3β2

ξ1π2 − 4�3δλ2Mβ2

ξ2π2 − 4�3λ2Mβ2

ξ3π2 >
ε

2
,

(50a)

2�2bβ

π2h
+ �‖P L‖2

ξ
+ 8� < a

ε

2
. (50b)

Due to 0 < ε < 1 is free and in Theorem 1, it is
supposed that 4β�2

π2 < h. Taking ε = h − 4β�2

π2 , it is
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Fig. 4 The trajectories of the PDE state u(σ, t) and the observer state û(σ, t) when σ = 0.3 and σ = 0.7 in Example 1

Fig. 5 The trajectory of the
PDE state estimation error
ũ(σ, t) = û(σ, t) − u(σ, t)
in Example 1

easy to check that (50a) holds if ξi (i = 1, 2, 3) satisfy

ξ1 >
8δ�3β2

hπ2 − 4�2β
, ξ2 >

32δ�3λ2Mβ2

hπ2 − 4�2β
,

ξ3 >
32�3λ2Mβ2

hπ2 − 4�2β
, (51)

In addition, we take a sufficiently large and an appro-
priate ξ such that b satisfies

0 < b <
aξh(hπ2 − 4�2β) − 16ξ�hπ2 − 2�hπ2‖P L‖2

4ξ�2β
,

(52)

which implies that (50b) holds. Thus, we infer that
(49a) holds. Then, taking

ζ1 >
3δβ2�

h
, ζ2 >

12δλ2Mβ2�

h
, ζ3 >

12δλ2Mβ2�

h
,

(53)

it is easy to give that (49b) holds. In addition, we select

μ > ξ + aξ1 + bζ1 + 8

7
δ1,

α >
aξ2 + aξ3 + bζ2 + bζ3

ε1
, (54)

123



Adaptive observer for ODE-PDE cascade systems subject to nonlinear dynamics and uncertain 17329

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

(a)

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

0 5 10 15 20 25 30 35 40
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(c)

0 5 10 15 20 25 30 35 40
-2.5

-2

-1.5

-1

-0.5

0

0.5

(d)

Fig. 6 The trajectories of the fixed system parameters ρi (i = 1, 2, 3, 4) and their estimate values ρ̂i (t) in Example 1. a ρ1(t) and ρ̂1(t);
b ρ2(t) and ρ̂2(t); c ρ3(t) and ρ̂3(t); d ρ4(t) and ρ̂4(t)

we get (49c)–(49d) hold. In general, inequalities (49a)–
(49d) can be easily verified by selecting appropri-
ate free parameters (μ, a, b, α, ξ, ξ1, ξ2, ξ3, ζ1, ζ2, ζ3)

provided that 4β�2

π2 < h.
In this way, the result of Theorem 1 is given. 
�

Remark 6 (i) From the condition 0 < β�2 < π2

4 h of
Theorem 1, we can see that once h is fixed, there is
a dependence between the domain length � and the
coefficient β, neither of which can be arbitrarily large.
If the region length � is large, then the coefficient β

is small and vice versa. Moreover, if β = 0, then the
condition 0 < β�2 < π2

4 h is satisfied for all �, which

also indicates that Ref. [20] is the special case of this
paper.

(ii) In Theorem 1, we assume that the diffusion coef-
ficient h, the domain length � and the coefficient β meet
the condition 0 < β�2 < π2

4 h. As h increases, the
range of β and � increases. In a sense, we relax the
condition of Reference [12, Theorem 1], because [12]
is the special case of this paper when h = 1.

(iii) In the situation of arbitrary large coefficients β

and �, the current observer design can still be advan-
tageous. Just as in the literature [23], as long as one
places M sensors along the domain. Then, by increas-
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Fig. 7 The trajectories of the ODE state X (t) and its estimate X̂(t) in Example 2. a X1(t) and its estimate X̂1(t); b X2(t) and its
estimate X̂2(t)
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Fig. 8 The trajectories of the PDE state u(σ, t) and the observer state û(σ, t) when σ = 0.3 and σ = 0.7 in Example 2

ing the number M of sensors, �
M will be enough small,

which can always be achieved.
Remark 7 In practice, the inequality (32) is equiv-
alently expressed by the bilinear matrix inequality
(BMI): P A − P LC
−1(�)+AT P−(
−1(�))T CT LT

P<0. Letting � = P L , then it is reduced to the linear
matrix inequality (LMI):

P A − �C
−1(�) + AT P − (
−1(�))T CT � < 0,
(55)

which can be solved by utilizing the MATLAB LMI
toolbox. As stated in [6,7], if the value of the gain L
is known, then the LMI (55) holds true. Suppose if the
value of the gain L is unknown, then the LMI (55)
turns to be nonlinear. To make it as linear one and to
obtain an explicit solution of LMI, we can take any
matrix � = P L in (55) and the gain can be solved by
L = P−1�, such that (A − LC
−1(�)) is Hurwitz.
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Fig. 9 The trajectory of the
PDE state estimation error
ũ(σ, t) = û(σ, t) − u(σ, t)
in Example 2

Remark 8 The idea of taking the Lyapunov function
V3(t) mainly depends on the structure of the least-
square adaptive update law (21a)–(21b). First, accord-
ing to (25) and the PE condition, Q−1(t) is a posi-
tive definite symmetric matrix, which meets the condi-
tion for designing Lyapunov function based on positive
definite quadratic. Second, the use of Q−1(t) in V3(t)
can skillfully deal with the term Q(t) in the adaptive
law (21a). The construction method of V3(t) is mainly
derived from the literature [29], and readers can refer
to [29] for more details.

5 Simulation analysis

In this part, we take the simplified catalytic reac-
tion in a chemical reactor as a concrete example
to verify the availability of the observer built in
Table 1, where the PDE state u(σ, t) ∈ R denotes
the temperature of a solid body, the term g is the
density of a heat resource generated by a chemi-
cal reaction. The ODE state X (t) ∈ Rn denotes
the temperature of a fluid. The uncertainty terms
φ1(t)ρ1, φ2(σ, t)ρ2, φ3(t)ρ3, φ4(t)ρ4 represent the inter-
ference of external factors to the system in practical
application, including the particle size of the reactants,
friction, contact area between the reactants, etc.

However, in practical applications, the method in
this paper also has some limitations.When the diffusion
coefficient h is fixed, the domain length � and Lipschitz
coefficient β cannot be arbitrarily large. As noted in
Remark 6 (iii), multiple sensors are required if � and
β are arbitrarily large, which increases the economic

cost to some extent. The admissible condition between
� and β is shown in Fig. 2. Next, we take two groups
of parameters in the green part in Fig. 2 for verification
in MATLAB software. Here, the forward Time Central
Space (FTCS) finite difference method in Reference
[30] is utilized to discretize time and space.

Example 1 We consider the system (2a)–(2d) with the

following parameters and functions: A =
[

0 1
−1 0

]
,

C = [
1, 0

]
, φ1(t) =

[
0

1 + (sin(3t))2

]
, φ2(σ, t) =

e0.2σ (5 + (sin(3t))2), φ3(t) = sin(4π t) + sin(2π t),
φ4(t)=sin(4π t) + sin(π t), g(u(σ, t), σ, t) = βsin
(u(σ, t)), h = 1, � = 1, with the initial values
X1(0) = X2(0) = 1, u(σ, 0) = σ + 1. The sys-
tem parameters ρ1 = 0.5, ρ2 = 1, ρ3 = −0.5 and
ρ4 = −2 are assumed to be unknown. The observer
established in Table 1 is considered with initial data
X̂1(0) = X̂2(0) = 0, û(σ, 0) = cos(2πσ), λ1i (0) =
1(i = 1, 2, 3, 4), λ2i (σ, 0) = 0(i = 1, 2, 3, 4),
ρ̂1(0) = ρ̂2(0) = ρ̂3(0) = ρ̂4(0) = 0, Q(0) =
0.001I .

The other parameters are selected as: β = 0.0617 <

2.4674, L = [16.8, 16.1]T , it can be obtained that

A − LC
−1(�) =
[−13.7957 8.1776

−14.2208 6.8785

]
. Next, let

us verify the conditions (49a)–(49d). After a compli-
cated calculation, taking ξ1 = 0.0032, ξ2 = ξ3 =
0.1139, ζ1 = 0.0114, ζ2 = ζ3 = 0.4109, ε1 = 42,

P =
[

1.8236 −1.6991
−1.6991 1.8751

]
, ξ = ‖P L‖2

30 , a = 78,

b = 0.1, it can be verified that the conditions (51)–
(53) hold. Then, we can obtain that the eigenvalues
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Fig. 10 The trajectories of the fixed system parameters ρi (i = 1, 2, 3, 4) and their estimate values ρ̂i (t) in Example 2. a ρ1(t) and
ρ̂1(t); b ρ2(t) and ρ̂2(t); c ρ3(t) and ρ̂3(t); d ρ4(t) and ρ̂4(t)

of (A − LC
−1(�))T P + P(A − LC
−1(�)) are
{−1.9933,−1.9903}. Further, it follows from (54) that
μ > 1.679 and α > 0.43. Thus, we take the design
parameters α = 1.2 and μ = 1.8.

The simulation results of the system and observer
are obtained and presented in Figs. 3, 4, 5, and 6. Fig-
ure3 indicates that the estimate values X̂1(t) and X̂2(t)
converge to the true values X1(t) and X2(t) after 15 s.
Figure4 gives the trajectories of the PDE state u(σ, t)
and its estimate û(σ, t) at two specified locations in the
domain, i.e., σ = 0.3 and σ = 0.7. We can observe
that after 15 s, the estimates û(0.3, t) and û(0.7, t) con-

verge to the true values u(0.3, t) and u(0.7, t). Figure5
illustrates that the evolution of the PDE state estimation
error ũ(σ, t).We can see that after 15 s, the error ũ(σ, t)
converges to zero. From Fig. 6, it can be observed that
after a transient period of 15s, parameter estimates
ρ̂i (i = 1, 2, 3, 4) are very close to their true values
ρi . In summary, the simulation results Figs. 3, 4, 5, and
6 are conformity with the theoretical results.

Example 2 Next, we will illustrate that the value range
of the domain length � and the Lipschitz coefficient β

increase with the increase of the diffusion coefficient
h.
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We consider the system (2a)–(2d) with the diffusion
coefficient h = 2 and the domain length � = 2. The
Lipschitz coefficient is selected as β = 1.2337. The
gain L = [12.8, 6.1] and the coefficient α = 1.2, the
other system parameters and initial data are the same
as Example 1.

The simulation results of the system and observer
are obtained and presented in Figs. 7, 8, 9, and 10. Fig-
ure7 indicates that the estimate values X̂1(t) and X̂2(t)
converge to the true values X1(t) and X2(t) after 20 s.
Figure8 gives the trajectories of the PDE state u(σ, t)
and its estimate û(σ, t) at two specified locations in the
domain, i.e., σ = 0.2 and σ = 0.8. We can observe
that after 20 s, the estimates û(0.2, t) and û(0.8, t) con-
verge to the true values u(0.2, t) and u(0.8, t). Figure9
illustrates that the evolution of the PDE state estimation
error ũ(σ, t).We can see that after 20 s, the error ũ(σ, t)
converges to zero. From Fig. 10, it can be observed
that after a transient period of 20s, parameter estimates
ρ̂i (t)(i = 1, 2, 3, 4) are very close to their true values
ρi . In summary, the simulation results Figs. 7, 8, 9, and
10 are also conformity with the theoretical results.

6 Conclusion

In this article, we design an adaptive observer for ODE-
PDE coupled systems subject to nonlinear dynamics
and uncertain parameters through the decoupling trans-
formation. The observer in Table 1 consists of the fol-
lowing four parts: (a) a state observer, which is a repli-
cate of the system; (b) the matrix function 
(σ); (c)
auxiliary filters given by ODEs and PDEs; and (d) a
least-squares parameter adaptive law. Finally, the expo-
nentially vanishing of the adaptive observer is estab-
lished by constructing a suitable Lyapunov–Krasovskii
functional. However, the system output is not continu-
ously measurable in many applications. How to design
a sample-value adaptive observer for ODE-PDE cas-
cade systems subject to nonlinear dynamics and param-
eter uncertainty is our next work. In addition, how to
extend the research results of this paper to the parabolic
PDE with uncertain nonlinear semi-Markov jumping
signals in the literature [31] is also worthy of further
study.
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AppendixA: Properties of thematrix function�(σ)

To the best of our knowledge, thematrix function
(σ)

meets the ensuing properties:

(a) 
(σ) = I +
n−1∑
k=1

σ 2k

(2k)!
( A

h

)k
,

(b) A
(σ) = 
(σ)A,

(c) A
−1(σ ) = 
−1(σ )A,

(d) 
(σ)
def= (

I 0
)

e

⎛
⎝ 0 A

h
I 0

⎞
⎠σ (

I
0

)
, ∀σ ∈ R.

The reader can refer to Ref. [9] for more details.

Appendix B: The well-posedness of system

Step 1. We first show the well-posedness of the ODE-
subsystem (2a) with the initial data X (0). By utiliz-
ing the existence theorem of ODEs, the subsystem (2a)
exists a unique solution X (t) ∈ C1([0,+∞) : Rn).

Step 2. The well-posedness of the PDE-subsystem
(2b)-(2d)will be illustrated. First, introducing the ensu-
ing transformation for any (σ, t) ∈ [0, �] × [0,+∞)

q(σ, t) = u(σ, t) − C
(σ)
−1(�)X (t). (B.1)

TogetherwithAppendixA,we rewrite the system (2b)–
(2d) as
⎧
⎪⎨
⎪⎩

qt (σ, t) = hqσσ (σ, t) + ḡ(q, σ, t),

qσ (0, t) = φ3(t)ρ3,

q(�, t) = φ4(t)ρ4,

where ḡ(q, σ, t) = g(q + C
(σ)
−1(�)X, σ, t) +
φ2(σ, t)ρ2 − C
(σ)
−1(�)φ1(t)ρ1. Obviously, func-
tion ḡ(·) inherits all the properties of function g(·). The
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q-subsystem turns out to be a special case of the semi-
linear parabolic system (13)–(14) in Ref. [26]. It can
be obtained that one has a strong solution q(σ, t) ∈
H1(0, �) for each t ≥ 0. Due to the fact that the trans-
formation (B.1) is inverse, the similar result holds for
PDE subsystem (2b)–(2d).

Step 3. In this part, we illustrate the well-posedness
of the observer system of Table 1.

First, we develop the well-posedness of the error
system (27a)–(27f). Applying the usual existence the-
orems for ODEs, it follows that the subsystem (27a)
exists a unique solution Z(t) ∈ C1([0,+∞) : Rn).
Similarly, we obtain that the subsystem consisting of
(27e)–(27f) exists a unique solution ρ̃ ∈ C1([0,+∞) :
Rm), Q−1 ∈ C1([0,+∞) : Rm×m), that is, the subsys-
tem consisting of (21a)–(21b) exists a unique solution
ρ̂ ∈ C1([0,+∞) : Rm), Q ∈ C1([0,+∞) : Rm×m).
Then, it is easy to verify that the subsystem consisting
of (27b)–(27d) has a strong solutionw(σ, t) ∈ H1(0, �)
by means of the similar analysis of Step 2.

Second, utilizing the usual existence theorems for
ODEs, we obtain the plant (10) exists a unique solu-
tion λ11(t) ∈ C1([0,+∞) : Rn×m1), λ12(t) ∈
C1([0,+∞) : Rn×m2), λ13(t) ∈ C1([0,+∞) :
Rn×m3), λ14(t) ∈ C1([0,+∞) : Rn×m4). Then, it is
easy to give that the first two equations of (15) and
(19) have strong solution λ21(σ, t) ∈ H1(0, �) and
λ22(σ, t) ∈ H1(0, �) applying the similar method with
Step 2. Next, applying themethod of separation of vari-
ables (see Ref. [27]), it follows that the last two equa-
tions of (15) and (19) have closed-loop solution.

The above analysis implies that the plant consisting
of (5a)–(5d) exists a unique solution X̃ ∈ C1([0,+∞) :
Rn) and ũ(σ, t) ∈ H1(0, �), due to (6a)–(6b). Conse-
quently, the similar results for the observer states X̂(t)
and û(σ, t) are hold.

Appendix C: The proof of Lemma 1

From (10), we found that λ1i (t)(i = 1, 2, 3, 4) are
bounded if λ2i (0, t)(i = 1, 2, 3, 4) are bounded, due
to the signal φ1(t) is bounded and A − LC
−1(�)

is a Hurwitz matrix. Therefore, we only need to sug-
gest λ2i (σ, t)(i = 1, 2, 3, 4) are bounded. Consider the
ensuing Lyapunov functional

W21(t) = 1

2

∫ �

0
λ21(σ, t)λT

21(σ, t)dσ

+ 1

2

∫ �

0
λ21,σ (σ, t)λT

21,σ (σ, t)dσ. (C.1)

Differentiating (C.1) and applying the integration by
parts formula, it follows from the first equation of (15)
and (19) that

Ẇ21(t) =
∫ �

0
λ21(σ, t)λT

21,t (σ, t)dσ

+
∫ �

0
λ21,σ (σ, t)λT

21,σ t (σ, t)dσ

= −h
∫ �

0
λ21,σ (σ, t)λT

21,σ (σ, t)dσ

−
∫ �

0
λ21(σ, t)

(
C
(σ)
−1(�)φ1(t)

)T
dσ

− h
∫ �

0
λ21,σσ (σ, t)λT

21,σσ (σ, t)dσ

+
∫ �

0
λ21,σσ (σ, t)

(
C
(σ)
−1(�)φ1(t)

)T
dσ.

(C.2)

Then, by means of Young’s inequality for (C.2), we get

Ẇ21(t) = − h
∫ �

0
‖λ21,σ (σ, t)‖2dσ

+ η

2

∫ �

0
‖λ21(σ, t)‖2dσ

+ 1

2η

∫ �

0
‖C
(σ)
−1(�)φ1(t)‖2dσ

−
(

h − ζ

2

) ∫ �

0
‖λ21,σσ (σ, t)‖2dσ

+ 1

2ζ

∫ �

0
‖C
(σ)
−1(�)φ1(t)‖2dσ,

where η and ζ are positive scalars to be determined
later. Then, applying (1a) yields

Ẇ21(t) ≤ −
(

h − 2η�2

π2

) ∫ �

0
‖λ21,σ (σ, t)‖2dσ

+
( 1

2η
+ 1

2ζ

) ∫ �

0
‖C
(σ)
−1(�)φ1(t)‖2dσ

−
(

h − ζ

2

) ∫ �

0
‖λ21,σσ (σ, t)‖2dσ.
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Taking positive constants η < π2h
2�2

and ζ < 2h, clearly,
we have

h − 2η�2

π2 > 0, h − ζ

2
> 0.

Then, by means of Wirtinger’s inequality (1a) again,
we obtain

Ẇ21(t) ≤ −
(

h − 2η�2

π2

) π2

4�2

∫ �

0
‖λ21(σ, t)‖2dσ

+
( 1

2η
+ 1

2ζ

) ∫ �

0
‖C
(σ)
−1(�)φ1(t)‖2dσ

−
(

h − ζ

2

) π2

4�2

∫ �

0
‖λ21,σ (σ, t)‖2dσ

≤
( 1

2η
+ 1

2ζ

) ∫ �

0
‖C
(σ)
−1(�)φ1(t)‖2dσ

− π2

2�2
min

{
h − 2η�2

π2 , h − ζ

2

}
W21(t).

It can be obtained thatW21(t) is bounded, due to the sig-
nal φ1(t) and matrix function
(σ) are bounded. (C.1)
implies that

∫ �

0 ‖λ21(σ, t)‖2dσ and
∫ �

0 ‖λ21,σ (σ, t)‖2dσ

are bounded. From (1b), we infer that ‖λ21(σ, t)‖ is
bounded, so is ‖λ11(t)‖.

In the same manner, we can infer that ‖λ22(σ, t)‖,
‖λ23(σ, t)‖ and ‖λ24(σ, t)‖ are bounded, which sug-
gest that ‖λ12(t)‖, ‖λ13(t)‖ and ‖λ14(t)‖ are also
bounded.
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