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Abstract The derivative expansion method was suc-
cessfully proposed by scholars to characterize the prop-
agation and to discuss the dynamics of nonlinear water
waves in the last century. The results manifest the great
superiority of this method. The present paper aims
mainly at the uses of this technical method to describe
the evolutionary processes and to explain the dynami-
cal mechanisms of nonlinear Rossby waves for large-
scale geophysical fluid motions. We derive a nonlin-
ear Schrödinger equation from describing the evolution
of Rossby wave amplitude. Furthermore, the bound-
ary value problem is handled by using the perturbation
expansionmethod. The effects of initial amplitude, fre-
quency and zonal wave number on the amplitude of
Rossby solitary waves are analyzed in both the pres-
ence and the absence of topography cases. The effects
of weak shear current on dipole blocking are discussed
in the presence of bottom topographic structures. The
results indicate that topography has a significant impact
on the size of amplitude and propagation speed of
Rossby waves, and sheared background current will
benefit the generation of blockings.
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1 Introduction

Rossby wave characterizes a kind of slow and large-
scale motions in the geophysical fluid mechanics. The
existence of Rossby waves can not only well explain
the movement of ridge and trough on the high alti-
tude weather map, but also explain the weather change
near the ground. In earlier articles, many scholars have
explained the relevant theories of Rossby solitary wave
in detail. Redekopp [1] proved that the finite amplitude
evolution of Rossby solitary wave can be described
using the Korteweg–de Vries (KdV) equation or the
modified Korteweg–de Vries (mKdV) equation. Fur-
thermore, it is pointed out that the change in horizontal
shear can significantly affect the generation of Rossby
wave. Maslowe [2] extended the theory. Not limited
to single-layer and two-layer models, more complex
continuous three-layer models were studied in detail.
Yeh [3] first discussed the maintenance and disappear-
ance of atmospheric blocking in the westerlies with
the energy dispersion theory of Rossby wave. A few
years ago, Malguzzi and Rizzoli [4,5] proposed to
use Rossby solitary wave to explain the generation,
enhancement, and decay process of dipole in the atmo-
sphere during blocking. Liu and Tan [6] showed the
evolution of Rossby wave during changes in β. In addi-
tion, the changes of β during latitude changes were dis-
cussed, and the plane approximation ofβ was extended.
What is more, the phase velocity formula of Rossby
wave including β variation is given under general con-
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ditions. Zhao [7] incorporated the influence of topog-
raphy into the continuity equation. The results indi-
cate that topography effects have a significant impact
on the stability and characteristics of Rossby wave.
Huang [8] indicated that the only effect of the time-
dependent background wind on the Rossby wave is
the accumulated motion in the zonal direction. Camp-
bell [9] studied the nonlinear evolution of a barotropic
forced Rossby wave in a meridional shear flow. Song
[10] derived the mKdV equation to describe the evo-
lution of the amplitude of the Rossby solitary wave
and specifically explained that the coefficients of the
mKdV equation are affected by β effect, buoyancy fre-
quency, and the basic shear flow. Yang [11] explained
that the dissipative effect and time-dependent topog-
raphy effect cause changes in the mass and energy of
solitary waves. He [12] mainly discussed the impact of
plateau topography gradients on atmospheric Rossby
waves. The results indicate that the topography of the
Tibetan Plateau is very favorable for the generation of
Rossbywave.ThedissipativePetviashvili equationwas
derived by Chen [13] to describe the two-dimensional
Rossby waves. Zhang [14] considered the effects of
generalized β effect, dissipation, and topography fac-
tors on (2+1)-dimensional Rossby wave. The conclu-
sion drawn is that the generalized β effect has a signifi-
cant impact on the generation of nonlinear Rossby soli-
tary waves, while dissipation and topography factors
have an important impact on the evolution of Rossby
wave amplitude. Zhao [15] also analyzed the impact
of topography on Rossby waves. But the topography
under consideration is unstable. Through theoretical
analysis, the physical characteristics of solitary waves
in terms of mass and energy were discussed. Shi [16]
made it clear that background flow shear is required for
the existence of Rossby solitary wave. Zhang [17,18]
proposed a variable coefficient equation to describe the
amplitude evolution of Rossby wave. Qualitative anal-
ysis was conducted on the impact of various physical
factors on the evolution process of nonlinear Rossby
wave. Similarly, Zhang [19] introduced the variable
coefficient KdV equation to describe the evolution of
the amplitude of Rossby solitary wave. Yang [20] sug-
gested that three-dimensional Rossby solitarywave can
better reflect real ocean and atmospheric conditions.On
this basis, the dissipation effect of three-dimensional
Rossby wave was discussed.

Scholars also have great interest in the instability
of Rossby solitary wave [21]. Chen [22] stated that

slowly varying topography is an external impact fac-
tor for Rossby wave. Wang [23] derived the Gard-
ner equation to simulate the propagation of nonlin-
ear Rossby wave amplitude. Moreover, the numerical
results indicate that the size of meridional topography
and frequency have a certain impact on the evolution
of Rossby wave, but the influence of topography will
be greater. What is more, Zhao [24] investigated the
instability of two-layer quasi-geostrophic model and
gave a nonlinear stability criterion. Yang [25] derived
the (2+1)-dimensional coupled nonlinear Schrödinger
equations. Drawing the conclusion that the range of
modulational instable regions is not only affected by
amplitude, but also greatly related to the number of
waves in the y-direction. This provides strong theo-
retical support for our further research on stability. In
addition, some scholars are not limited to considering
the influence of a single physical factor on Rossby soli-
tary wave, but rather analyze the influence of combined
physical factors on waves. Gnevyshev [26] explained
that the combination of the earth’s rotation and topog-
raphy enhances the β effect, while the combination
of the shear flow and topography is the opposite. Yin
[27] presented the spatial transmission characteristics
of Rossby wave. The above results indicate that, on the
one hand, scholars are constantly proposing newmodel
equations to describe the evolution of Rossbywave. On
the other hand, the influence of various physical fac-
tors on the evolution of Rossby wave has been deeply
explored. This has profound implications for the study
of Rossby solitary wave models in atmospheric and
oceanic dynamics.

Another important issue to consider is finding solu-
tions to various nonlinear equations that satisfy the
evolution of the amplitude of Rossby solitary waves.
Zhang [28] provided some exact explicit paramet-
ric representations of traveling wave solutions of the
Klein–Gordon–Zakharov equations. Meng [29] pro-
vided another calculation method. By using symbolic
computation, the nonlinear equation is transformed into
bilinear form. Then, multi-soliton solutions are derived
from this. Shi [30] derived the analytic solutions of non-
linear Schrödinger equation with dissipation and exter-
nal forces, respectively. Based on the obtained solu-
tions, the effects of dissipation and external forces on
the evolution of Rossbywaves were discussed in detail.
Karjanto and van Groesen [31] discussed three differ-
ent breathing solutions of the Schrödinger equation.
The relationship between the breathing solutions is ana-
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lyzed. Additionally, via Darboux transformation algo-
rithm, rogue wave and semi-rational solutions of the
mixed nonlinear Schrödinger equation will be derived
[32]. Liu [33] extended the real equation to the com-
plex equation and provided the explicit formulae of
the smooth position solutions of the complex mod-
ified KdV equation. Some scholars have also made
contributions to the existence of solutions for higher-
order equations. Ma [34] proved the existence of N-
soliton solutions of the (2+1)-dimensional KdV equa-
tion. Liu [35] proved that the global solution of the
sixth-order nonlinear Schrödinger equation not only
exists, but also is unique. Bai [36] used a bilinear neu-
ral network method to solve the (2 + 1)-dimensional
Kadomtsev–Petviashvili equation in order to obtain the
exact solutions. The method of solving nonlinear equa-
tions is expanded. The improved tan(ϕ/2) expansion
method is also a good method for finding analytical
solutions to nonlinear equations. Narenmandula [37]
used it to obtain the analytical solution of the forced
(2+ 1)-dimensional Zakharov–Kuznetsov equation. It
is also indicated that the improved tan(ϕ/2) expansion
method can be applied to other nonlinear equations and
obtain more accurate solutions.

These studies have laid the foundation for us to bet-
ter understand the spread and evolution of Rossbywave
and for further research.However,most of the nonlinear
equations describing the amplitude of Rossby solitary
wave in these studies are obtained by reductive per-
turbation method or multiple-scale method. It is worth
mentioning that Karjanto [38] derived the Schrödinger
equation from theKdVequationusing themultiple time
scale method. The intertransformation between differ-
ent nonlinear equations is realized. This paper uses the
derivative expansion method to derive the nonlinear
Schrödinger equation to describe the evolution of soli-
tary wave amplitude. Besides, based on the presence
and absence of topography, the effects of various phys-
ical factors on the propagation ofRossby solitarywaves
and the effects of shear on atmospheric blocking are
analyzed. The paper is organized in the following. In
Sect. 2, the derivative expansionmethod is briefly intro-
duced and we derive nonlinear Schrödinger equation
dissipative effect to describe the evolution of Rossby
wave amplitude. In Sect. 3, the analytical solution of the
nonlinear Schrödinger equation is given. As well, the
influence of some physical factors on solitary waves
is discussed through numerical analysis. Finally, the
research results of this paper are summarized in Sect. 4.

2 Method and derivation

2.1 Derivative expansion method and perturbation
expansion method

Many methods have been proposed to study nonlinear
equations, and the derivative expansionmethod is a rel-
atively effective method. Its core idea is to expand the
derivative in the equation. Next, we will use the deriva-
tive expansionmethod to derive the (1+1)-dimensional
Schrödinger equation. The amplitude A satisfying the
Schrödinger equation is a function of time t and space
x . Then, we can choose the following different time
and space scales

{
x0, x1, x2, . . . , xn,

t0, t1, t2, . . . , tn,
(1)

where xm = εmx, tm = εmt . Using the chain rule, the
derivatives become⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x
=

n∑
m=0

εm
∂

∂xm
,

∂

∂t
=

n∑
m=0

εm
∂

∂tm
,

(2)

and this increases the number of independent variables
in the original equation. Substitute the expandedderiva-
tive into the original equation for solution.

And perturbation expansions

� ′ = δ�(1) + δ2�(2) + · · · , (3)

where ε and δ are both small parameters in the present
problem, specific relations are obtained according to
specific situations in the following derivations.

2.2 Nonlinear Schrödinger equation for Rossby wave
packet

Beginwith the following simple dimensionless barotropic
potential vorticity equation as [39](

∂

∂t
+ ∂�

∂x

∂

∂y
− ∂�

∂y

∂

∂x

)(
∇2� + f + h

)
= 0, (4)

where � is the total stream function, f = f0 + βy
is the vertical component of Coriolis parameter with
f0 = 2� sin ϕ0, h = h(y) is the topographic function,
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� is the angular velocity of the earth’s rotation, ϕ0 is
the local latitude, β is the Rossby parameter, ∇2 is the
Laplace operator, and here it is two dimensional.

Because the flow is impermeable, our boundary con-
ditions can be obtained as

∂�

∂x

∣∣∣∣
y=0

= ∂�

∂x

∣∣∣∣
y=1

= 0. (5)

The total stream function is presented to be basic
part and perturbed part as follows:

� = −
∫ y

0
(ū(s) − c0)ds + � ′(x, y, t). (6)

Substituting Eq. (6) into Eqs. (4) and (5) yields[
∂

∂t
+ (ū − c0)

∂

∂x

]
∇2� ′ + p(y)

∂� ′

∂x

+J
[
� ′,∇2� ′] = 0, (7)

∂� ′

∂x

∣∣∣∣
y=0

= ∂� ′

∂x

∣∣∣∣
y=1

= 0. (8)

where p(y) = β − ū′′ + h′. It includes the β effect,
the shear effect and the topographic effect. J [a, b] =
∂a
∂x

∂b
∂y − ∂a

∂y
∂b
∂x is the Jacobian operator.

The derivation-expansion method suggests us to
extend the independent variables x and t as

{
x0, x1, x2,

t0, t1, t2.
(9)

The derivatives become⎧⎪⎪⎨
⎪⎪⎩

∂

∂x
= ∂

∂x0
+ ε

∂

∂x1
+ ε2

∂

∂x2
,

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
;

(10)

δ = ε (11)

is required, which means the balance between disper-
sion and nonlinearity.

Substituting Eqs. (3) and (10) into Eq. (7) yields
approximation equations as follows:

o(ε(1)) L(0)
(
�(1)

)
= 0, (12)

o(ε(2)) L(0)
(
�(2)

)

+ L(1)
(
�(1)

)
= M (0)

(
�(1), �(1)

)
, (13)

o
(
ε(3)

)
L(0)

(
�(3)

)
+ L(1)

(
�(2)

)
+ L(2)

(
�(1)

)
= M (0)

(
�(1), �(2)

)
+ M (0)

(
�(2), �(1)

)
+ M (1)

(
�(1), �(1)

)
. (14)

The linear and nonlinear operators of each order are

L(0) =
[

∂

∂t0
+ (ū − c0)

∂

∂x0

] (
∂2

∂x20

+ ∂2

∂y2

)
+ p(y)

∂

∂x0
,

L(1) =
[

∂

∂t1
+ (ū − c0)

∂

∂x1

] (
∂2

∂x20
+ ∂2

∂y2

)

+ p(y)
∂

∂x1
+

[
∂

∂t0
+ (ū − c0)

∂

∂x0

]
(
2

∂2

∂x0∂x1

)
,

L(2) =
[

∂

∂t2
+ (ū − c0)

∂

∂x2

] (
∂2

∂x20
+ ∂2

∂y2

)

+ p(y)
∂

∂x2
+

[
∂

∂t1
+ (ū − c0)

∂

∂x1

]

×
(
2

∂2

∂x0∂x1

)
+

[
∂

∂t0
+ (ū − c0)

∂

∂x0

]

×
(

∂2

∂x21
+ 2

∂2

∂x0∂x2

)
,

M (0)(∗,⊗) = −∂(∗)

∂x0

∂

∂y

(
∂2

∂x20
+ ∂2

∂y2

)
(⊗)

+ ∂(∗)

∂y

∂

∂x0

(
∂2

∂x20
+ ∂2

∂y2

)
(⊗),

M (1)(∗,⊗) = −∂(∗)

∂x1

∂

∂y

(
∂2

∂x20
+ ∂2

∂y2

)
(⊗)

+ ∂(∗)

∂y

∂

∂x1

(
∂2

∂x20
+ ∂2

∂y2

)
(⊗)

− ∂(∗)

∂x0

∂

∂y

(
2

∂2

∂x0∂x1

)
(⊗)

+ ∂(∗)

∂y

∂

∂x0

(
2

∂2

∂x0∂x1

)
(⊗).
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Formal solution of first-order equation is assumed to
be

�(1) = A(x1, x2, t1, t2)ϕ(y)ei(kx0−wt0) + c.c, (15)

where c.c represents the conjugation of the former part.
The following equation holds after substitutingEq. (15)
into Eq. (12), when ū − c0 − c �= 0. Add boundary
conditions, and it becomes

⎧⎨
⎩ ϕ′′(y) + (

p(y)

ū − c0 − c
− k2)ϕ(y) = 0,

ϕ(0) = ϕ(1) = 0.
(16)

It is the Rayleigh–Kuo equation [40]with varying coef-
ficients. c = w

k is the phase velocity of the wave. Sub-
stituting Eq. (16) into Eq. (13) yields the nonsecular
condition as

∂A

∂t1
+ cg

∂A

∂x1
= 0, (17)

where cg = c + 2k2(ū−c0−c)2

p(y) is the group velocity of
wave.Meanwhile, Eq. (13) becomes the following form

L(0)
(
�(2)

)
= ik A2

(
p(y)

ū − c0 − c

)′
ϕ2(y)e2i(kx0−wt0)

+c.c. (18)

Assuming �(2) = B(x1, x2, t1, t2)ϕ1(y)e2i(kx0−wt0) +
c.c, it is easily obtained that

[ϕ′′
1 − 4k2ϕ1]B + p(y)

ū − c0 − c
ϕ1(y)B = G(y)A2.

(19)

where G(y) = 1
2(ū−c0−c)

(
p(y)

ū−c0−c

)′
ϕ2(y). Without

loss of generality, let B = A2, and the modified merid-
ional structure is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ′′
1 − 4k2ϕ1 + p(y)

ū − c0 − c
ϕ1(y)

= 1

2(ū − c0 − c)

(
p(y)

ū − c0 − c

)′
ϕ2(y),

ϕ1(0) = ϕ1(1) = 0.

(20)

Higher-order equation is still needed to ensure the
evolution of amplitude A. Substituting �(1) and �(2)

into Eq. (14), nonsecular condition is satisfied as fol-
lows:

i

(
∂A

∂t2
+ cg

∂A

∂x2

)
+ α

∂2A

∂x21
+ γ |A|2A = 0, (21)

whereα = I1
I , γ = I2

I , I = ∫ 1
0

p(y)
(ū−c0−c)2

ϕ2(y)dy,

I1 = − ∫ 1
0

2kcg+w−3k(ū−c0)
ū−c0−c ϕ2(y)dy,

I2 = − ∫ 1
0

kϕ
ū−c0−c

(
(

p(y)
ū−c0−c )

′ϕ(y)ϕ1(y) + ϕ(y)G ′ +
2ϕ′(y)G

)
dy.

Equation (21) is the nonlinear Schrödinger equa-
tion which describes the evolution of nonlinear Rossby
wave packet. Introducing transforms T = t2, X =
x1−cgt1 = 1

ε
(x2−cgt2), Eq. (21) becomes the standard

form

i
∂A

∂T
+ α

∂2A

∂X2 + γ |A|2A = 0. (22)

3 Obtaining solutions and discussion

First, let

ū(y) = ū0 + νQ(y), (23)

h(y) = a1y + a0, (24)

where a1, a0 are constant and ϕ in Eq. (16) is expanded
as a series

ϕ = ϕ00 + νϕ01+ · · · . (25)

Substituting Eq. (23) and Eq. (25) into Eq. (16) yields
the following boundary value problemapproximatively

⎧⎪⎨
⎪⎩

d2ϕ00

dy2
− k2ϕ00 = − β + a1

ū0 − c0 − c
ϕ00

ϕ00(0) = ϕ00(1) = 0.

(26)

Solving Eq. (26), we can obtain ϕ00 = √
2 sinmy.

What is more, it satisfies that m2 + k2 = β+a1
ū0−c0−c .

So, the approximate solution of ϕ is

ϕ = √
2 sinmy. (27)

Let

Q(y) = cosmy, (28)

and ϕ1 is expanded as a series

ϕ1 = νϕ10 + ν2ϕ11+ · · · . (29)

Substituting Eq. (28) and Eq. (29) into Eq. (20) and
boundary conditions yield the following boundary
value problem approximatively
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2ϕ10

dy2
− 4k2ϕ10 + β + a1

ū0 − c0 − c
ϕ10

= (m2 + k2)2k2m

4(β + a1)2
(3 sinmy − sin 3my),

ϕ10(0) = ϕ10(1) = 0.

(30)

Then ϕ10 = − (m2+k2)2mk2

4(β+a1)2
( 1
k2

sinmy − 1
3k2+8m2 sin

3my). So, the approximate solution of ϕ1 is

ϕ1 = − (m2 + k2)2mk2

4(β + a1)2(
1

k2
sinmy − 1

3k2 + 8m2 sin 3my

)
. (31)

As the solution of the standard Schrödinger equation
obtained by Yin [41] is

A(X, T ) =
√
2α

γ
M

sechM (X − 2αk0T )ei
[
k0X−α

(
k20−M2

)
T

]
+c.c, (32)

where c.c represents the conjugate of the previous term
and M and k0 are the amplitude and moving speed of
the envelope Rossby solitary waves determined by the
initial state at A(X, T ) = A(0, 0), the stream function
is

� = −
∫ y

0
(ū0 + ν cos (my) − c0)ds

+ ε

√
2α

γ
Msech[εM(x − (cg + 2εαk0)t)]

× √
2 sin (my)ei[(k+εk0)x−(ω+εk0cg+ε2α(k20−M2))t]

+ c.c. (33)

We assume that the topography function is h =
a1 + a0, and only a1 appears in our model equation
without a0. Therefore, when a1 = 0, it is equivalent
to ignoring the influence of topography. The following
analysis will be divided into two situations: one is that
the terrain does not exist and the other is that it includes
the influence of topographic factors.

According to Eq. (32), the amplitude A(x, t) is not
only related to time and space, but also affected by
the initial state A(0,0). Therefore, take different values
for M and k0 to represent the effect of different initial
states. Let us take a look at the effect of different values
of M on amplitude. The effect of different values of M

on amplitude is shown in Fig. 1 when the parameters
in the amplitude are ū0 = 0.7, ν = 0.1, m = π ,
ε = 0.2, ω = 1, k = 4 and k0 = 4, respectively. And
subgraph (a) represents the impact of different M on
amplitude when there is no topography (a1 = 0), and
subgraph (b) represents the situation when topography
exists (a1 = 20). It is worth noting that we have taken
three different values for M , namely 1, 3 and 5.

Subgraph (a) in Fig. 1 shows the change of amplitude
A with space x and time t when M is taken as 1, 3 and
5. It shows that the initial state has a great influence
on the amplitude when there is no topography present.
When M is taken as 1, the amplitude changes slowly
with time and space.However, comparedwithM which
is taken as 3 or 5, it is easy to find that the amplitude
changes more and more significantly with the increase
of M . What is more, it has a certain periodicity. From
subgraph (b), it can be seen that the conclusion is the
same when topography exists. But it should be noted
that the range of our coordinate axes is not exactly the
same. From Fig. 1, it can be seen that the amplitude is
greater when the terrain exists than when it does not.

As shown in Figs. 2 and 3, let us fix M to 3 and
observe how different values of k0 affect the amplitude.
Similarly, in Fig. 2, we consider the three-dimensional
images of amplitude changes when the topography
does not exist (subgraph (a), a1 = 0) and when it
exists (subgraph (b), a1 = 20). As well, in Fig. 3,
we consider the two-dimensional images of amplitude
changes when the topography does not exist (subgraph
(a), a1 = 0) and when it exists (subgraph (b), a1 = 20).

Here, we take the values of k0 as 2, 4 and 6, respec-
tively, in subgraphs (a) and (b) of Fig. 2. It is obvious
that the amplitude changes more significantly when k0
increases, which is the same as the conclusion in Fig. 1.
Furthermore, the amplitude is greater when topogra-
phy exists. This is also consistent with the conclusion
obtained in Fig. 1. I will not say more than is needed.
In addition, we take k0 as 0, 2, 4, and 6, respectively,
in subgraphs (a) and (b) of Fig. 3. It can be seen more
clearly from the figure that when the time t is 0, 3,
6 and 9, the amplitude of solitary wave decreases as
k0 increases. As time goes by, the propagation speed
of amplitude also increases with the increase of k0. In
addition, we have given different ranges of the coordi-
nate axis for subgraphs (a) and (b) to better reflect the
changes in amplitude. Therefore, by comparing sub-
graph (a) with subgraph (b), it can be found that the
propagation speed of the amplitude of Rossby solitary
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Fig. 1 The effect of M on amplitude: a flat bottom topography; b sloped topography

wave is significantly accelerated and the magnitude is
significantly increased when topography exists.

To sum up, the given initial state of amplitude A
will greatly affect magnitude of amplitude and propa-
gation of solitary waves with time and space. There-
fore, selecting an appropriate initial amplitude is more
conducive to the formation of large amplitude and fast
propagating Rossby solitary waves.

Figure4 shows the effect of frequency on the ampli-
tude of solitary waves. Subgraph (a) represents the sit-
uation when the topography does not exist (a1 = 0).
Subgraph (b) represents the situationwhen the topogra-
phy exists (a1 = 20). The frequencyω is taken as 1, 1.5,
2 and 2.5, respectively. The values of other parameters
are the same as those in Fig. 1. By observing the image,
it is not difficult tofind that the frequencydoes not affect
the magnitude of the amplitude of the Rossby solitary
waves, but rather has a significant impact on the prop-

agation speed. As the frequency increases, amplitude
will propagate at a faster speed. Similarly, the range of
the coordinate axis of subgraphs (a) and (b) in Fig. 4 is
also different. By comparing subgraphs (a) and (b) at a
fixed time t , it can be observed that the amplitude prop-
agates faster in the presence of topography. Besides, the
amplitude obtained is much larger. This is the same as
in Fig. 3.

Similarly, based on the values of the parameters in
Fig. 1, only the magnitude of the zonal wave number
is changed. Figure5 analyzes the impact of the zonal
wave number on the amplitude of the Rossby wave.
The situation when the topography does not exist is
shown in subgraph (a). Subgraph (b) represents the sit-
uation when the topography exists. The range of the
coordinate axes in subgraph (a) and subgraph (b) is
different, which still needs to be noted. We can draw
the following conclusions: Increasing the wave num-
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Fig. 2 The effect of k0 on amplitude: a flat bottom topography; b sloped topography

ber will reduce the amplitude of the Rossby solitary
wave and slow down the propagation speed of the soli-
tary wave. This phenomenon is more pronounced in
the presence of topography. Additionally, by compar-
ing subgraphs (a) and (b), it can be found that at the
same time, the amplitude in the presence of topography
is larger and propagates further. As a consequence, the
wave number is also an important factor affecting the
evolution of Rossbywaves. Observing graphics ismore
conducive to our analysis and understanding of actual
physical phenomena. Therefore, as shown in Fig. 6, we
analyze the propagation of nonlinear Rossby solitary
waves through the evolution of the total flow field. The
absence of topography and the presence of topography
are shown in subgraphs (a) and (b), respectively.

M is 3, k0 is 4, and the other parameters are the same
as the previous. The evolution of the total flow func-
tion is shown in Fig. 6. It is obvious that according to

the current selection of parameter values, there is no
dipole generation in the absence of topography. After
adding topography factors, multiple pairs of dipoles
were generated. This indicates that topography may be
an important factor in the generation of dipole blocking.
Subgraph (b) of Fig. 6 clearly shows the evolution of
dipole blocking. Therefore, in the presence of topogra-
phy, the impact of basic flow shear ν on dipole blocking
is analyzed.

In theprevious calculationprocess,wehave assumed
that there is weak shear in the background westerly
flow. That is, ū = ū0 + ν cos(my). So, we can change
the magnitude of weak shear by changing the magni-
tude of ν. The evolution of dipole blocking under weak
shear is shown in Fig. 7 by taking different values of
ν. Subgraphs (a–d) in Fig. 7 correspond to the evolu-
tion of dipole blocking when ν is 0.4, 0.3, 0.2 and 0.1,
respectively. Figure7 shows that shear only affects the
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Fig. 3 The effect of different values of k0 on amplitude (two-dimensional diagram): a flat bottom topography; b sloped topography
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Fig. 4 The effect of frequency on the amplitude of solitary waves: a flat bottom topography; b sloped topography
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Fig. 5 The effect of zonal wave numbers on the amplitude of solitary waves: a flat bottom topography; b sloped topography
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Fig. 6 Evolution of total flow field under the given parameters: a flat bottom topography; b sloped topography

strength of dipole blocking and does not affect its mov-
ing speed. The weaker the shear, the stronger the dipole
blocking.

4 Conclusions

The traditional method for deriving the nonlinear
Schrödinger equations for the evolution of nonlinear

Rossby wave amplitude is the perturbation method or
the multiple-scale method. In this paper, we use the
derivative expansion method to derive the Schrödinger
equation to describe the evolution of Rossby solitary
waves. In the bargain, the perturbation method is used
to solve the variable coefficient boundary value prob-
lem obtained during the derivation process. Based on
the solution of the Schrödinger equation, a detailed
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Fig. 7 Evolution of dipole
blocking under different
weak shear. a ν = 0.4; b
ν = 0.3; c ν = 0.2; d
ν = 0.1.

numerical analysis was conducted. What is more, the
effects of various physical factors on solitary waves
were discussed. The following conclusions are drawn:

Through exploring the amplitude of solitary waves,
it is found that Rossby solitary waves are affected by
initial amplitude, frequency and zonal wave number in
time and space. When the initial amplitude is properly
selected, a larger frequency and a smaller wave number
aremore conducive to the generation of large amplitude
Rossby solitary waves. Moreover, compared with the
situation without topography, the amplitude of Rossby
solitary waves is larger and the propagation speed of

solitary wave is faster when topography exists. In the
end, the evolution of dipole blocking is analyzed using
contour plots of the flow field. It is found that topog-
raphy also has a certain impact on the generation of
blocking. In addition, the impact of shear on blocking
was also emphasized. A conclusion is drawn that weak
shear is beneficial to the generation of dipole block-
ing. This is consistent with previous research results
by other scholars.
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