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Abstract For the bearing fault diagnosis in small

sample cases, a new model for signal denoising and

entropy feature fusion (EFF) based on the wild horse

optimizer (WHO) optimized variational mode decom-

position (VMD) and correlation coefficient weight

threshold (CCWT) is proposed (WHO–VMD–

CCWT–EFF). For signal denoising, we first take the

power spectrum entropy as the fitness function, and the

WHO is used to optimize VMD parameters. Secondly,

IMFs with correlation coefficient values less than 0.2

are removed and the correlation coefficient values as

weights are applied to the corresponding IMF com-

ponents, and then reconstruct them. Then, the refined

composite multiscale dispersion entropy (RCMDE),

refined composite multiscale fluctuation dispersion

entropy (RCMFDE), refined composite multivariate

generalized multiscale fuzzy entropy (RCmvMFE),

refined composite multivariate generalized multiscale

sample entropy (RCmvMSE), and multiscale permu-

tation entropy (MPE) of the signal are calculated and

fused. Finally, the Fisher discriminant classifier is used

as the model for fault diagnosis. The proposed model

achieves an accuracy of over 99% in 12 single working

conditions and 30 multiple working conditions exper-

iments using the case western reserve university

(CWRU) dataset and the Paderborn dataset. Compared

with existing feature fusion methods, the WHO–

VMD–CCWT–EFF model only integrates five

selected features, and can achieve accurate diagnosis

of bearing faults in small sample experiments with 42

different artificial and real damages. This indicates

that the model has good generalization ability between

different datasets and working conditions.

Keywords Fault diagnosis � Denoising � Entropy
feature fusion � Single working condition � Multiple

working conditions � Small sample

1 Introduction

In recent years, the issues related to health monitoring

in the mechanical industry urgently need to be

addressed. Some scholars have begun to spend time

monitoring the health status of structures such as

beams and trusses [1, 2]. Of course, due to the

development of automated machinery and equipment,

people are increasingly interested in fault diagnosis of

their components, such as bearings [3–5]. At present,

bearing fault diagnosis mainly includes three
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categories: signal processing and analysis, traditional

fault diagnosis methods based on feature extraction,

and self-extraction feature diagnosis methods based on

deep learning [6]. In the actual research process, the

three types of methods play their respective advan-

tages and complement each other. From the perspec-

tive of signal processing, Li y et al. proposed a new

time–frequency analysis (TFA) post-processing algo-

rithm called local maximum high order time iterative

synchrosqueezing (LHTIS) [7], and proved the effec-

tiveness of this method by analyzing and processing

fault signals. Haiyang Pan et al. [8] proposed multi-

class fuzzy support matrix machine and successfully

applied it to roller bearing fault diagnosis. In one

study, VMD parameters and kernel fuzzy c-means

(KFCM) were optimized respectively, and then the

bearing fault types of small samples were identified

[9]. Another study proposed a new method for bearing

fault diagnosis based on wavelet packet transform and

convolutional neural network optimized by simulated

annealing algorithm [10]. Another study proposed

ensemble self-taught learning convolutional auto-

encoders (STL-CAEs) [11], which can effectively

solve the problem of few labeled data. The method of

combining dempster-shafer (DS) evidence theory with

support vector machines (SVM) has also appeared in

other bearing fault diagnosis research [12]. A new

fault diagnosis method called RSG is proposed in the

literature [13]. Yang S et al. [14] combined two-

dimensional convolutional neural network (2DCNN)

feature extractor and random forest (RF) classifier to

establish a fault diagnosis model for the problem of

high-speed bearings in offshore wind turbines. And

the experimental results were 99.5% when 700

training samples and 300 test samples were input to

the model. Literature [15] intercepted 30 training

samples and 30 test samples respectively, and then

calculated and mixed the time-domain and frequency-

domain features of the samples. Finally, the deep

neural network was used to identify the fault type with

an accuracy of 99.1%. In [16], the weighted signal

difference average (WSDA) as a new fitness function

was proposed to optimize VMD, and a one-dimen-

sional neural network was used for rolling bearing

fault diagnosis. In the experiment with 5000 samples

as the training set and 1000 samples as the test set, the

accuracy of bearing fault diagnosis is 99.6%. In [17],

the few-shot learning method was successfully applied

to the fault diagnosis of rolling bearings, and the

experimental verification was carried out under the

mixed working conditions. The results show that when

the number of training samples is 60, 200, 900, and

19,800, and the number of test samples is 75, the

accuracy rates are 82.8%, 94.32%, 98.55%, and

99.77%, respectively.

It can be seen from previous research that deep

learning is widely used in the field of bearing fault

diagnosis. Of course, this is also due to its advantages

in feature extraction and classification. However, the

accuracy of deep learning is often at the cost of

increasing the number of training samples. In addition,

some studies are only carried out for a single working

condition, and the effect of applying the proposed

model to other working conditions remains to be

verified. Based on the above analysis, the WHO-

VMD-CCWT-EFF is proposed in this paper. In order

to verify the usability and universality of the model,

the CWRU dataset [18] and Paderborn dataset [19] are

used for various single and multiple working condition

experiments. The experimental results indicate that

WHO-VMD-CCWT-EFF can achieve good results

with only 10 training samples and 90 test samples. The

main contributions of this paper are summarized as

follows:

1. A correlation coefficient weight threshold denois-

ing method is proposed to denoise the fault signal

decomposed by VMD.

2. To extract better classification features, an entropy

feature fusion method is proposed and the new

bearing fault diagnosis method named WHO-

VMD-CCWT-EFF is verified in the experiment.

3. A new deviation metric is used to measure the

stability of the model and validated in various

experiments.

4. On the basis of completing the experiment of

single working condition, the experiment of

mixing multiple working conditions is carried

out, and good results are obtained. And the WHO-

VMD-CCWT-EFF is still applicable and stable in

the case of a small amount of data.
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The rest of this paper is organized as follows:

Section 2 introduces the theoretical basis related to the

model. Section 3 introduces the framework of the

model. The CWRU dataset and the Paderborn dataset

are used for the experiments and analyses in Sect. 4.

Finally, Sect. 5 gives the conclusion.

2 Theoretical backgrounds

2.1 WHO-VMD

VMD [20] is a non-recursive and adaptive signal

processing algorithm proposed based on algorithms

such as empirical mode decomposition (EMD). It aims

to dissect the original signal in the frequency domain

and decompose it into intrinsic mode function (IMF)

with limited bandwidth and center frequency. WHO is

a meta-heuristic optimization algorithm proposed by

Iraj Naruei [21]. Similar optimization algorithms, such

as the improved grey wolf optimization (IGWO), ant

lion optimizer (ALO), and marine predator algorithm

(MPA), have also been well applied to various

structural detection. This article selects the WHO to

optimize VMD parameters [22–24].

The algorithm is mainly inspired by the special

behavior of wild horses that is different from other

animals, that is, foals leave their parent groups before

puberty to join other parent groups to avoid mating

between relatives. In addition to mating behaviors,

wild horses renew their position through social

behaviors such as grazing behavior, group leadership,

and exchange and selection of leaders.

In the process of VMD decomposition of bearing

fault signal, it is found that the number of IMFs in

VMD, that is, the number of decomposed layers k and

the value of multiplication factor a will directly affect

the decomposition effect. To select the relatively

optimal parameters, the parameter k; að Þ of VMD is

optimized by WHO, as shown in Fig. 1.

Step1: Set the parameters of WHO. The total

number of wild horses N = 30, the maximum

number of iterations Max_iter = 30, the crossover

ratio PC = 0.13, the percentage of stallions in the

group population PS = 0.2, the number of stallions

Nstallion = N*PS, the number of foals in each

group Nfoal = (N-Nstallion)/Nstallion. The param-

eters to be optimized a 2 100; 2000½ �, k 2 4; 8½ �,
a; k 2 Z.

Step2: Create populations, select leaders, and cal-

culate fitness function values.

Step3: Search and update according to grazing

behavior if Rand[ PC, otherwise update by mating

behavior. It should be noted that Rand is a random

number with uniform distribution in the range [0, 1].

Step4: Group leaders as well as stallions are

updated, respectively.

Step5: Determine whether the number of iterations

is reached, if so, output k; að Þ, otherwise return to

step 3.

2.2 Power spectrum entropy

The power spectral entropy [25] represents the uncer-

tainty of signal energy under power spectral partition-

ing, which is a quantitative description of the

complexity of signal energy distribution in the

frequency domain. In actual industrial environments,

bearing fault signals are collected in environments

with different noise sources, resulting in complex

frequency components of bearing fault signals. In

order to effectively reflect the fault characteristics

contained in each frequency component, the power

spectrum entropy is used as the fitness function of the

optimization algorithm. When the entropy value of the

power spectrum is small, the frequency components in

the signal are simple, and the power spectrum is

concentrated on some frequency components, which

can reflect the characteristics of the fault signal. In

addition, the power spectral entropy values of each

IMF component in the same fault state after VMD

decomposition are relatively stable, and the power

spectral entropy values vary in different fault states.

This further proves that the power spectral entropy is

suitable as the fitness function of the optimization

algorithm.

Step1: Define the original fault signal sequence as

x tð Þ ¼ x 1ð Þ; x 2ð Þ; x 3ð Þ; . . .x Lð Þf g

P ið Þ ¼ x wð Þj j2

2pL
ð1Þ
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Yes

Start

Initialize parameters

e

Calculate the power spectrum entropy value

i=1, j=1

Yes
Update grazing behavior

No
Update mating behavior Rand>PC ?

Calculate the power spectrum entropy value

Yes
j=j+1j < Nfoal?

Update the position of the stallion

Yes
i=i+1, j=1

No

Calculate the power spectrum entropy value

No

i< Nstallion?

Whether the iteration condition is met?

SSstallion

Output the optimized parameter

Exchange and selection of leaders

Stop

No

Fig. 1 Flow chart of WHO-VMD algorithm
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where L is the length of the signal, P ið Þ is the power

spectrum of the signal. x wð Þ is the Fourier transform of

the signal.

Step 2: Obtain the power spectral density distribu-

tion function by normalization:

p ið Þ ¼ P ið Þ
PN

i¼1 P ið Þ
i ¼ 0; 1; 2::::N ð2Þ

where N is the number of frequency components in the

Fourier transform.

Step 3: Define the power spectrum entropy through

the power spectral density distribution function as:

H ¼ �
XN

i¼1

p ið Þlogp ið Þ ð3Þ

2.3 Correlation coefficient

The correlation coefficient is a description of the

similarity between two random signals or determinis-

tic signals. After the VMD decomposition of the

bearing fault signal, the correlation between each IMF

and the original bearing fault signal can be judged by

calculating the correlation coefficient value. Then, it

can be inferred from the correlation coefficient

whether the IMF contains the main features of the

original signal. Generally speaking, the closer the

absolute value of the correlation coefficient is to 1, the

higher the degree of correlation between the two, and

the more obvious the features of the original signal

contained in the IMF. The correlation coefficient Rk

between the k-th IMF and the original signal is defined

as:

Rk ¼
E uk tð Þf tð Þð Þ � E uk tð Þð ÞE f tð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D uk tð Þð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D f tð Þð Þ

p ð4Þ

where f tð Þ is the original signal and uk tð Þ is the k-th

IMF. E and D represent expected values and variance.

2.4 Entropy features

2.4.1 RCMDE

RCMDE [26, 27] was first proposed and applied to

biomedical signals in 2017. RCMDE is improved by

multi-scale and coarse-graining based on dispersion

entropy. The specific calculation steps are as follows:

Step 1: For the sequence X of lengthN, divide it into

segments of length s. The average value of each

segment is calculated and arranged to obtain a coarse-

grained sequence.

xsk;j ¼
1

s

Xkþsj�1

b¼kþs j�1ð Þ
Xb; 1� j� N

s

� �

; 1� k� s ð5Þ

where xsk ¼ xsk;1; x
s
k;2; :::

n o
is the k-th coarse-grained

sequence at the s scale.
Step 2: Map the time series xsk;j to ysk;j by Eq. (6)

ysk ¼
1

r
ffiffiffiffiffiffi
2p

p
Zx

s
k

�1

e
� t�uð Þ2

2r2 dt ð6Þ

where u represents the mathematical expectation of

sequence ysk, and r represents the variance of sequence

ysk.

Step 3: Map the time series ysk to Zc
j by Eq. (7)

Zc
j ¼ Round c � ysk þ 0:5

� �
ð7Þ

where RoundðÞ represents the rounding function, and c
represents the number of categories.

Step 4: Calculate the embedding vector by Eq. (8).

zm;ci ¼ zci ; z
c
iþd; � � � ; zciþ m�1ð Þd

n o

i ¼ 1; 2; � � � ;N � m� 1ð Þd ð8Þ

where m is the embedding dimension and d is the time

delay.

Step 5: Calculate the dispersion patterns and its

corresponding probability. Assuming that zci ¼ v0,

zciþd ¼ v1, and z
c
iþ m�1ð Þd ¼ vm�1, the dispersion pattern

corresponding to zm;ci is pv0v1���vm�1
. Calculate the

probability corresponding to the dispersion pattern

according to Formula (9).

p pv0v1���vm�1
ð Þ ¼ Number pv0v1���vm�1

ð Þ
N � m� 1ð Þd ð9Þ

Step 6: Calculate the average value p pv0v1���vm�1
ð Þ of

the probability of the dispersion pattern, and obtain the

RCMDE value through p pv0v1���vm�1
ð Þ.

RCMDE ðxsk;m;c;d;sÞ¼�
Xcm

p¼1

p pv0v1���vm�1
ð Þln p pv0v1���vm�1

ð Þð Þ

ð10Þ
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2.4.2 RCMFDE

RCMFDE is based on the study of Azami H et al.

[28, 29] for dispersion entropy. The fluctuation

dispersion entropy is superior to the dispersion entropy

in that it takes into account the volatility of the time

series while maintaining stable performance and less

computation. Like RCMDE, RCMFDE obtains the

dispersion pattern by formula (5–8). Calculate the

probability corresponding to the dispersion pattern

according to Formula (11).

p pv0v1���vm�1
ð Þ ¼

count
iji�N � m� 1ð Þd;
zm;ci pattern pv0v1���vm�1

� �

N � m� 1ð Þd ð11Þ

Among them, count () is the number of maps from

zm;ci to pv0v1���vm�1
.

Calculate the average value of the dispersion

pattern probabilities at scale s, and the RCMFDE is

obtained through p pv0v1���vm�1
ð Þ.

p pv0v1���vm�1
ð Þ ¼ 1

s

Xs

k¼1

pk ð12Þ

ERCMFD xsk;m; c; d; s
� �

¼ �
X2c�1ð Þm�1

p¼1

p pv0v1���vm�1
ð Þ

� ln p pv0v1���vm�1
ð Þ½ �

ð13Þ

2.4.3 RCmvMFE

RCmvMFE [30] is a tool proposed in 2017 to analyze

the complexity of multi-channel signals. The detailed

description of RCmvMFE is as follows:

Step 1: For a multivariate signal Y ¼ fyk;bgC;b¼1

containing p signals with a length of C, the coarse-

grained operations are performed to obtain a time

series, represented as z
bð Þ
a ¼ x

bð Þ
a;k;i

n o
, where b is the

time series scale.

x
bð Þ
a;k;i ¼

1

b

Xibþa�1

b¼ i�1ð Þb
yk;b

1� i� C

b

� �

¼ N; 1� k� p; 1� a� b

ð14Þ

Step 2: The multivariate embedded reconstruction is

used.

Xm ið Þ ¼ x1;i; x1;iþs1 ; . . .; x1;iþ m1�1ð Þs1 ; x2;i;
	

x2;iþs2 ; . . .; x2;iþ m2�1ð Þs2 ; . . .;

xP;i; xP;iþsP ; . . .; xP;iþ mP�1ð ÞsP



ð15Þ

whereM ¼ m1;m2; :::mp

	 

, s ¼ s1; s2; :::sP½ � are the

embedding dimension and delay time, respectively,

n ¼ max Mf g �max sf g, i ¼ 1; 2; :::N � n.

Step 3: Calculate the distance between Xm ið Þ and

Xm jð Þ, where i 6¼ j.

d Xm ið Þ;Xm jð Þ½ � ¼ max
l¼1;2;...;m

x iþ l� 1ð Þ � x jþ l� 1ð Þj jf g

ð16Þ

Step 4: According to the given threshold r and fuzzy

membership function h d; rð Þ, /m rð Þ with the

embedding dimension m can be obtained:

h d; rð Þ ¼ exp
�ðdÞfp

r

 !

/m rð Þ ¼ 1

N � nð Þ
XN�n

i¼1

PN�n
j¼1;i 6¼j exp

�ðd Xm ið Þ;Xm jð Þ½ �Þfp
r

� �

N � n� 1

ð17Þ

Step 5: Let m = m ? 1 and repeat steps 2–4.

Calculate the average values /
m

b;a and /
mþ1

b;a of

Eq. (17). Then RCmvMFE can be calculated by

Eq. (18)

RCmvMFE Y ; b;M; n; rð Þ ¼ �ln
/
mþ1

b;a

/
m

b;a

 !

ð18Þ

2.4.4 RCmvMSE

The probability calculation method for RCmvMSE

[31] varies when the embedding dimension is m.

Bm
i rð Þ ¼ ðN � n� 1Þ�1Pi ð19Þ

Bm rð Þ ¼ ðN � nÞ�1
XN�n

i¼1

Bm
i rð Þ ð20Þ

Let m = m ? 1, and repeat the above steps to get

Bmþ1 rð Þ. Calculate the mean values B
m
b;a and B

mþ1

b;a inm
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and mþ 1 dimensions. RCmvMSE can be calculated

by Eq. (21)

RCmvMSE Y; b;M; n; rð Þ ¼ �ln
B
mþ1

b;a

B
m
b;a

 !

ð21Þ

2.4.5 MPE

To better study and analyze the dynamic characteris-

tics of EEG, Ouyang G et al. [32] proposed a

multiscale permutation entropy based on permutation

entropy.

Step 1: A new time series is obtained by coarse-

graining an original sequence Y of length N, where s is
the scale factor.

y
sð Þ
j ¼ 1

s

Xjs

i¼ j�1ð Þsþ1

xi; 1� j� N

s

� �

ð22Þ

Step 2: The phase space reconstruction is applied

with y sð Þ to obtain the time series Xi.

Xi ¼ yi; yiþk; . . .; yiþ m�1ð Þk
� �

ð23Þ

wherem is the embedding dimension and k is the delay
time.

Step 3: The Xi is sorted in ascending order to

generate a sequence of position indexes. For any kind

of Xi, there are m! permutations. The probability of

each permutation is calculated according to Eq. (24).

P xð Þ ¼ T xð Þ
N � m� 1ð Þk ð24Þ

where T xð Þ is the number of occurrences of permu-

tation x, 1�x�m!

Step 4: Define the multiscale permutation entropy

by Eq. (25).

HPE ¼ �
X

P xð Þ lnP xð Þ

HMPE ¼ ½HP1;HP2:::HPs� ð25Þ

2.5 Deviation

In order to measure the stability of the model, a new

deviation indicator is defined. Suppose that for

experiment A, the result of the i-th repeated experi-

ment is Ai, i = 1,2,3……N.

DeviationA ¼ max Ai �min� ½Ai½ � ð26Þ

where max Ai½ � is to find the maximum value of Ai,

min Ai½ � is to find the minimum value of Ai.

3 The WHO–VMD–CCWT–EFF

The framework of the WHO–VMD–CCWT–EFF

model is shown in Fig. 2. Three parts of fault signal

denoising, feature extraction and fusion, and feature

classification are included in this method.

Denoising: First, the VMD optimized by the WHO

algorithm decomposes various bearing fault signals

into IMFs; Secondly, the correlation coefficients

between each IMF and the original bearing fault

signal are calculated; Then, selecting IMFs with

correlation function values greater than 0.2 with the

original bearing signal; Finally, the correlation coef-

ficients are used as the weight to multiply the

corresponding IMFs to reconstruct the fault signal.

Feature extraction: RCMDE, RCMFDE,

RCMvMFE, RCMvMSE, and MPE are extracted

from the fault signal after denoising, and then the five

entropy features extracted are fused.

Classification: The feature samples of the fault

signals are divided into training and test sets according

to the experimental requirements, and then the fault

signals are classified by Fisher classifier.

4 Experimental analyses

In order to verify the effectiveness of the method

proposed in this paper, two classical public datasets

are used in the experiments.
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4.1 Analysis of bearing fault signal

4.1.1 WHO–VMD

To address the issue of VMD decomposition being

greatly affected by parameters k; að Þ, the WHO is used

to optimize the parameters. Figure 3 shows the

convergence curve of partial artificial damage and

real damage under the Paderborn dataset. It can be

seen that the number of iterations required to achieve

convergence for each fault signal is inconsistent.

Therefore, in order to consider as many fault signals as

possible, 30 is chosen as the number of iterations.

Similarly, the number of search agents is set to 30.

From Fig. 4, it can be seen that when the number of

search agents is 30, the convergence of the fault signal

is better.

Taking the 0.3556 mm outer race bearing fault at

0HP as an example, the fitness curve of the WHO-

VMD is shown in Fig. 5. As can be seen from the

Fig. 5, the value of the fitness function for the first

iteration is 7:2145� 10�4. The value of the fitness

function is 7:0273� 10�4 after a small decrease, and

bFig. 2 Flow chart of the WHO-VMD-CCWT-EFF algorithm

(a) artificial damage (b) real damage

Fig. 3 Convergence curve of partial fault signal under the Paderborn dataset

(a) artificial damage (b) real damage

Fig. 4 Convergence curves of IR with Label = 2 in the Paderborn University dataset under different search agents
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tends to be smooth after two iterations. The fitness

function value is reduced to 5:66� 10�4 after the fifth

iteration, and to a minimum value of after the 14th

iteration. The results show that WHO has a fast

convergence rate in the process of VMD parameter

optimization, which proves that WHO is suitable for

optimizing the parameters of VMD. The parameters

obtained by WHO-VMD in this experiment is

k ¼ 5; a ¼ 1106.

To verify the superiority of the WHO algorithm in

optimizing the VMD parameters, the particle swarm

optimization algorithm (PSO) [33], the whale opti-

mization algorithm (WOA) [34], and the moth-flame

optimization algorithm (MFO) [35] are used to

optimize the VMD parameters. The number of opti-

mization algorithm populations is set to 30, and the

maximum number of iterations is 30, and then the

fitness function convergence curve shown in Fig. 6 is

obtained. As can be seen from Fig. 6, the convergence

curve of PSO is unstable and the phenomenon of

sudden high and low appears. The WOA and MFO

converge after the 2nd and 6th iterations, respectively,

corresponding to a power spectrum entropy function

value of 7:0273� 10�4. It can be seen that WOA and

MFO are faster in finding the optimum, and conver-

gence can be achieved in fewer iterations. In contrast,

WHO can reach the fitness termination value of WOA

and MFO after the 2nd iteration, and still continue to

iterate to 5:646� 10�4 thereafter. This proves the

superiority of WHO in optimizing VMD parameters.

4.1.2 CCWT

After determining the VMD parameters, the fault

signal is decomposed to obtain IMF and denoised

through CCWT. The correlation coefficient about IR

and OR in the Paderborn real damage D2 dataset as

shown in Fig. 7. When 0.3 is chosen as the denoising

threshold for CCWT, half of the IMFs are filtered,

which may lead to excessive denoising and loss of

otherwise useful information. When 0.1 is chosen as

the denoising threshold of CCWT, no IMFs are

filtered, and the expected denoising effect cannot be

achieved. In the paper, 0.2 is chosen as the denoising

threshold of CCWT. The IMFs with correlation

coefficients less than 0.2 are filtered out first, and then

the correlation coefficients of the remaining are used

as the weighting coefficients of the IMFs to recon-

struct the original signal.

Taking the OR (Label = 3) of the Paderborn real

damage D4 dataset as an example. For easy observa-

tion, 500 sample points are selected to compare the

differences before and after denoising, as shown in

Fig. 5 The convergence curve of the WHO

Fig. 6 VMD optimized by four different optimization

algorithms
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Fig. 8. When correlation coefficient threshold (CCT)

is used, IMFs whose correlation coefficient value is

less than 0.2 are removed and the remaining compo-

nents are reconstructed. Based on the former, the

CCWT applies the correlation coefficient values

greater than 0.2 to the corresponding IMF components

as weights. As can be seen from Fig. 8, compared with

the signal of CCT denoising, the signal curve of

(a) OR (Label=3) (b) IR (Label=6)

Fig. 7 The correlation coefficient about IR and OR in the Paderborn real damage D2 dataset. a OR (Label = 3), b IR (Label = 6)

Fig. 8 Comparison of CCT and CCWT a original signal, b CCT denoising, c CCWT denoising
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CCWT denoising is smoother and has less burrs.

Therefore, we think the denoising effect of CCWT is

better.

In addition, although the threshold is set to 0.2

considering the characteristics of most fault signals.

Due to the large number of fault signals in both

datasets, there are still some signals with all correla-

tion coefficient values greater than 0.2. Taking the IR

(Label = 8) of the Paderborn real damage D1 dataset

as an example, the denoising effects of CCT and

CCWT on such situations are explored. As can be seen

from the Fig. 9, the signal after CCT denoising is

almost indistinguishable from the original signal

because all the correlation coefficient values are

greater than 0.2. CCWT not only effectively avoids

this defect, but also achieves good denoising effect.

This is because the weighting operation on IMF not

only enhances the useful signal, but also weakens the

noisy signal. The larger the correlation coefficient

between IMF and the original signal during CCWT

denoising, the more useful information the signal

contains. On the contrary, the smaller the value of

correlation coefficient, the more the IMF is considered

to contain noise. The operation of using the correlation

coefficient values as weights is equivalent to ampli-

fying the IMF that is considered to contain useful

information and shrinking the IMF that contains noise.

Therefore, the CCWT method is considered not only

enhance the useful signal but also weaken the noisy

signal.

Fig. 9 Comparison of CCT and CCWT, a original signal, b CCT denoising, c CCWT denoising

Fig. 10 The CWRU bearing data center bearing test stand
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4.2 The CWRU dataset

4.2.1 The CWRU dataset description

The experimental data in this paper comes from the

rolling bearing test stand shown in Fig. 10. The

6205-2RS JEM SKF deep groove ball bearing is used

as the test bearing, and the data is collected under four

loads of 0HP, 1HP, 2HP, and 3HP, and the sampling

frequency is 12 kHz. Three damage faults made by

electro-discharge machining (EDM), namely inner

race fault, outer race fault, and ball fault, are included

in the experiment. Each fault includes three different

degrees of damage with diameters of 0.1778 mm,

0.3556 mm, and 0.5334 mm, as shown in Table 1. In

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

0HP

1HP

2HP

3HP

Fig. 11 Diagnostic

accuracy of three classifiers

under four working

conditions

Table 1 The CWRU dataset description

Motor load (HP) Approx. motor speed (rpm) Bearing fault type Bearing fault data Label

0 1797 Normal 0 mm 1

Inner race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 2/3/4

Outer race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 5/6/7

Ball fault 0.1778 mm, 0.3556 mm, 0.5334 mm 8/9/10

1 1772 Normal 0 mm 1

Inner race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 2/3/4

Outer race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 5/6/7

Ball fault 0.1778 mm, 0.3556 mm, 0.5334 mm 8/9/10

2 1750 Normal 0 mm 1

Inner race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 2/3/4

Outer race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 5/6/7

Ball fault 0.1778 mm, 0.3556 mm, 0.5334 mm 8/9/10

3 1730 Normal 0 mm 1

Inner race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 2/3/4

Outer race fault 0.1778 mm, 0.3556 mm, 0.5334 mm 5/6/7

Ball fault 0.1778 mm, 0.3556 mm, 0.5334 mm 8/9/10
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the experiment, 100 samples are intercepted for each

fault signal without overlap.

4.2.2 Experimental analysis of single working

condition bearing fault diagnosis

After feature extraction of bearing fault signal, Fisher

classifier is used to classify the fused features. The

number of samples for each class of fault signals in the

experiment is set to 100, and then the training set and

test set are divided according to different proportions.

Each result is the average of ten replicates. In order to

verify the performance of the selected classifiers, three

classifiers are selected for experiments with training

samples and test samples at different ratios. As shown

in Fig. 11, the accuracy of all three classifiers under

the four working conditions shows an increasing trend

when the ratio of training samples to test samples is

larger. The best performance for the decision tree

classification is achieved with 2HP data, while the

SVM has higher accuracy under 1HP. In Fisher

classifier, except for the slightly lower performance

of 0HP when the ratio of training samples to test

samples is 1:9, the accuracy of other working condi-

tions exceeds 99%. When the ratio of training samples

and test samples is 1:9, the Fisher classifier is

improved by 4.5–5.4% compared with the decision

tree classifier, and 3.2–4.63% compared with the SVM

classifier. It is clear that the Fisher classifier still shows

95.00

96.00

97.00

98.00

99.00

100.00

1 2 3 4 5 6 7 8 9 10

1:9 2:8 3:7

98.80

99.00

99.20

99.40

99.60

99.80

100.00

1 2 3 4 5 6 7 8 9 10

1:9 2:8

98.00

98.50

99.00

99.50

100.00

1 2 3 4 5 6 7 8 9 10
1:9 2:8 3:7 5:5

98.00

98.50

99.00

99.50

100.00

1 2 3 4 5 6 7 8 9 10

1:9 2:8

Fig. 12 The 10-time fault diagnosis accuracy of Fisher classifier under different training and testing ratios. a 0HP, b 1HP, c 2HP, d 3HP
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the superior performance when the number of samples

is small, which is what we would like to see.

For the bearing fault diagnosis method, superior

performance is the primary requirement, but the

stability of the model is also crucial. To further

illustrate the stability of theWHO-VMD-CCWT-EFF,

the results of 10 experiments for four working

conditions are recorded as shown in Fig. 12. The

difference between the maximum and minimum

values in 10 experiments are used as deviations to

measure the stability of the WHO-VMD-CCWT-EFF.

It can be seen from the Fig. 12 that when the ratio of

training samples to test samples is 1:9, the deviation

under 0HP is 2.23%, which is the largest deviation

under the four working conditions. At the training

sample to test sample ratio of 2:8, the deviation of the

Table 2 Experimental results of four working conditions under different ratios of training samples and test samples (%)

Fisher Decision tree SVM

Mean

(%)

Deviations

(%)

Mean

(%)

Deviations

(%)

Mean

(%)

Deviations

(%)

The ratio of training samples to test samples 0HP

1:9 98.73 2.23 93.96 5 95.53 4.56

2:8 99.95 0.25 96.65 5.75 98.08 2.38

3:7 100 0 97.34 3.14 98.36 1.14

5:5 100 0 98.54 2 99.04 1

7:3 100 0 99.1 1.67 99.13 1.67

9:1 100 0 99.5 2 99.4 2

The ratio of training samples to test samples 1HP

1:9 99.51 1.11 94.98 8.45 95.38 5.66

2:8 99.96 0.25 98.04 2.25 98.84 2.62

3:7 99.99 0.14 98.13 3.29 99.3 1.43

5:5 100 0 98.8 1.8 99.64 1

7:3 100 0 99.3 1.33 99.77 0.67

9:1 100 0 99.5 2 99.9 1

The ratio of training samples to test samples 2HP

1:9 99.83 0.78 94.43 5.11 95.21 5.56

2:8 100 0 97.88 3 98.43 3.38

3:7 100 0 98.32 2 99.04 1.42

5:5 100 0 98.68 1.4 99.86 0.4

7:3 100 0 98.73 1 99.5 1.33

9:1 100 0 99.2 3 99.8 2

The ratio of training samples to test samples 3HP

1:9 99.77 1.11 95.27 6.22 95.14 3.33

2:8 100 0 97.13 1.75 98.36 2.25

3:7 100 0 97.41 1.57 98.66 2.14

5:5 100 0 98.3 2 99.18 1.4

7:3 100 0 99.1 1.33 99.57 1

9:1 100 0 99.4 2 99.6 2

Bold values are used to quickly grasp the key points in the table when reviewing papers. In addition, this approach can further

highlight the experimental effectiveness of the model proposed in this chapter
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0HP and 1HP are 0.25%, and the deviation of the 2HP

and 3HP are 0. This indicates that the data under 0HP

with few training samples is slightly less stable com-

pared to the data under other working conditions. But

when the proportion of training samples is slightly

larger under the premise of small samples, the data

under 0HP still shows very good performance.

Table 2 presents the experimental results of the four

working conditions under different ratios of training

samples and test samples. It can be seen that under the

four working conditions, the Fisher classifier not only

has higher accuracy but also maintains the smallest

deviation, which further verifies the effectiveness and

stability of the WHO-VMD-CCWT-EFF. At the same

time, we can see that the accuracy of the other two

classifiers reaches over 99% when the ratio of training

samples to test samples is 9:1 and remains around 95%

when the ratio of training samples to test samples is

1:9. This indicates that denoising and feature extrac-

tion are successful, for which feature extraction will be

analyzed in detail later.

4.2.3 Experimental analysis of bearing fault

diagnosis under multiple working conditions

Since the actual industrial environment is complex and

changeable, it is impossible to ensure that the collected

data are always under the same working conditions.

So, a variety of bearing fault diagnosis experiments

and analysis under multiple working conditions are

carried out. The CWRU dataset includes four

working conditions, which means that six mixed

experiments of two working conditions and four

mixed experiments of three working conditions are

included in the experiments. Like the single working

condition experiment, the training set and the test

set are divided according to different proportions. In

addition, each experiment is repeated ten times, and

the average value is taken as the final experimental

result. Details of the experimental data for the two

working conditions and the three working conditions

are described in detail in Tables 3 and 4 respectively

(0HP ? 1HP and 0HP ? 1HP ? 2HP as an

example).

Figure 13 shows the experimental results under

multiple working conditions. Compared with Fig. 11,

it can be seen that the WHO-VMD-CCWT-EFF

performs better in the multiple working conditions

experiment. To explain this phenomenon, the exper-

iments shown in Fig. 14 are performed. It is not

difficult to see that the accuracy rates of the three

classifiers under multiple working conditions are

almost always higher than those under a single

working condition. Therefore, we can conclude that

Table 3 Dataset descriptions with different ratios of training data to test data under two working conditions

Fault location Normal Inner race Out race Ball

Label 1 2 3 4 5 6 7 8 9 10

Load 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

1:9 Train 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Test 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90

2:8 Train 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

Test 80/80 80/80 80/80 80/80 80/80 80/80 80/80 80/80 80/80 80/80

3:7 Train 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

Test 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70

5:5 Train 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50

Test 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50

7:3 Train 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70

Test 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

9:1 Train 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90

Test 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
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the phenomenon is not related to the classifier and may

be since the extracted features of the same fault in

different working conditions are relatively similar or

the experimental samples of multiple working condi-

tions are increased.

To verify whether this phenomenon is related to the

increase in the number of samples, experiments are

carried out with the combination 0HP ? 1HP as an

example. Of course, the number of training samples

and test samples for the selected combinations is the

same as for the experiments under a single working

condition. Table 5 presents the experimental data in

detail.

Figure 15 shows the experimental results, the

difference between the accuracy of fisher classifier in

both cases is 0–0.41%, and the difference between

decision tree and SVM is 0–2.9%. It is not difficult to

draw a conclusion that for some classifiers, an increase

in sample size has a certain impact on accuracy. But

99.88

99.90

99.92

99.94

99.96

99.98

100.00

Fisher 1:9 Fisher 2:8 Fisher 3:7

Fig. 13 Experimental results of different ratios of training

samples to test samples under multiple working conditions

Table 4 Dataset descriptions with different ratios of training data to test data under three working conditions

Fault

location

Normal Inner race Out race Ball

Label 1 2 3 4 5 6 7 8 9 10

Load 0/1/2 0/1/2 0/1/2 0/1/2 0/1/2 0/1/2 0/1/2 0/1/2 0/1/2 0/1/2

1:9 Train 10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

Test 90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

2:8 Train 20/20/

20

20/20/

20

20/20/

20

20/20/

20

20/20/

20

20/20/

20

20/20/

20

20/20/

20

20/20/

20

20/20/

20

Test 80/80/

80

80/80/

80

80/80/

80

80/80/

80

80/80/

80

80/80/

80

80/80/

80

80/80/

80

80/80/

80

80/80/

80

3:7 Train 30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

Test 70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

5:5 Train 50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

Test 50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

50/50/

50

7:3 Train 70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

70/70/

70

Test 30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

30/30/

30

9:1 Train 90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

90/90/

90

Test 10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10

10/10/

10
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Table 5 Description of the number of samples under two working conditions that are consistent with the number of samples under a

single operating condition (0HP ? 1HP as an example)

Fault location Normal Inner race Out race Ball

Label 1 2 3 4 5 6 7 8 9 10

Load 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

1:9 Train 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

Test 45/45 45/45 45/45 45/45 45/45 45/45 45/45 45/45 45/45 45/45

2:8 Train 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Test 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90

3:7 Train 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15

Test 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35

5:5 Train 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25

Test 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25 25/25

7:3 Train 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35 35/35

Test 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15

9:1 Train 45/45 45/45 45/45 45/45 45/45 45/45 45/45 45/45 45/45 45/45

Test 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

Fisher 1:9 Fisher 2:8 Fisher 3:7 Decision

Tree 1:9

Decision

Tree 2:8

Decision

Tree 3:7

SVM 1:9 SVM 2:8 SVM 3:7

0H 1H 2H 3H 0H+1H

0H+2H 0H+3H 1H+2H 1H+3H 2H+3H
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Fig. 14 Experiment comparison between a single working condition and multiple working conditions under three classifiers
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the proposed model almost overcomes this shortcom-

ing. For further validation, experiments as shown in

Fig. 16 are performed. The number of samples for the

two working conditions and three working conditions

in the figure are shown in the Tables 3 and 4. In

Fig. 16, the ratio of training samples to test samples

for each experiment is 1:9. From the figure, the

accuracy rate of some three working conditions

experiments are higher than that of two working

conditions, while the rest are lower than that of two

working conditions. And the accuracy rate of four

working conditions experiments is the lowest. This

indicates that for the proposed model, the increase of

samples does not necessarily lead to the improvement

of fault diagnosis rate.

4.3 Paderborn university dataset

4.3.1 Dataset description

The Paderborn dataset is proposed by Christian

Lessmeier et al. of the Kat-Data Center, and the

6205 deep groove ball bearing is used as the test

bearing for the collection of the artificial damage

dataset and the real damage dataset. The rolling

bearing test stand is shown in Fig. 17. As with the

CWRU data, Paderborn dataset is collected under each

of the four working conditions, as shown in Table 6.

As shown in Tables 7 and 8, the artificial damage

dataset contains a total of 8 faults, while the real

damage dataset contains 9 faults. The bearing damage

for both data sets are inner ring (IR) and outer ring

(OR). For each type of fault signal, 100 samples are

intercepted without overlapping for the experiment.

4.3.2 Experimental analysis of bearing fault

diagnosis in single working condition

Whether the fault types of bearings can be diagnosed

efficiently and accurately depends largely on the

feature extraction. And the classification effect will be

better if the extracted features of fault are more

obvious. To confirm the advantages of the feature

extraction method in this paper, the features of the

artificial damage and the real damage under four

working conditions are visualized.

In Fig. 18a–d and e–h are the feature visualization

plots for four single working conditions under artificial

damage and real damage data, respectively. As shown

in Fig. 18, D3 performs the best in the feature

visualization of the artificial damage, which means

that D3 is more successful in feature extraction. In

contrast, D1 performs relatively poorly, which

explains the lower accuracy of D1 compared to other

data in Table 9. Similarly, the same situation occurred

with the real damage experiment. This shows that the

relatively low accuracy of D1 compared to other data

may be due to the acquisition conditions.

The experimental results of artificial damage and

real damage are given in Tables 9 and 10, respectively.

The accuracy rate is relatively low and the deviation is

large when the ratio of the training sample to the test

sample is low. With the increase of the ratio, all the

data reaches 100% except for the real damage D1

which reaches 99.77%. This shows that the increase of

the ratio of the training sample to the test sample can

enhance the experimental effect. In addition, the real

damage D2 and D3 reach 100% when the ratio of

training samples to test samples is 2:8, and D4 reaches

100% at 3:7. This indicates that even with only a small

number of samples, the WHO-VMD-CCWT-EFF can

identify the type of bearing fault.

4.3.3 Experimental analysis of bearing fault

diagnosis under multiple working conditions

As with the CWRU data, the experiments on artificial

damage and real damage under multiple working

conditions are also carried out after completing the

experiments of single working conditions. Here the

Fig. 15 Effect of using the same number of data samples and

the same proportional of data samples on bearing fault diagnosis

a the same sample size as the single working condition

experiment b the same sample proportion as single working

condition experiment
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Fig.16 Effect of the phenomenon of increasing sample size due

to increased working conditions on bearing fault diagnosis

a 0H ? 1H and its extended experiments b 0H ? 2H and its

extended experiments c 0H ? 3H and its extended experiments

d 1H ? 2H and its extended experiments e 1H ? 3H and its

extended experiments f 2H ? 3H and its extended experiments
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experimental data for the artificial damage dataset are

analyzed specifically, and the same is true for the real

damage dataset. The experimental data for the two

working conditions and the three working conditions

are described in detail in Tables 11 and 12,

respectively.

As shown in Tables 13 and 14, which are the results

of the experiments on artificial damage and real

damage under multiple working conditions, respec-

tively. For both artificial damage and real damage, the

accuracy rate reaches more than 99%when the ratio of

training sample to test sample is 1:9. Compared to a

single working condition, the accuracy of multiple

working conditions is higher. This is consistent with

the conclusions obtained from the CWRU data. In

addition, when the ratio of training samples to test

samples is 1:9, the deviation is relatively large, but it

improves at 2:8 and then fluctuates as the ratio

Table 6 Four working

conditions of bearing

experimental data

Data name Rotational speed (rpm) Load torque (Nm) Radial force (N)

D1 900 0.7 1000

D2 1500 0.1 1000

D3 1500 0.7 400

D4 1500 0.7 1000

Table 7 The artificial

damage dataset description
Bearing code Component Extent of damage (level) Damage method Label

K006 No No No 1

KA01 OR 1 EDM 2 (OR01)

KA03 OR 2 Electric engraver 3(OR02)

KA05 OR 1 Electric engraver 4(OR03)

KA07 OR 1 Drilling 5(OR04)

KA08 OR 2 Drilling 6(OR05)

KI01 IR 1 EDM 7(IR01)

KI03 IR 1 Electric engraver 8(IR02)

KI07 IR 2 Electric engraver 9(IR03)

Table 8 The real damage dataset description

Bearing code Component Extent of damage (level) Damage (main mode and symptom) Characteristic of damage Label

K006 No No No No 1

KA04 OR 1 Fatigue, pitting single damage 2(OR01)

KA15 OR 1 Plastic deform, Indentations single damage 3(OR02)

KA16 OR 2 Fatigue, pitting Repetitive damage 4(OR03)

KA30 OR 1 Plastic deform, Indentations repetitive damage 5(OR04)

KI04 IR 1 Fatigue, pitting Multiple damage 6(IR01)

KI16 IR 3 Fatigue, pitting single damage 7(IR02)

KI17 IR 1 Fatigue, pitting Repetitive damage 8(IR03)

KI18 IR 2 Fatigue, pitting Single damage 9(IR04)

KI21 IR 1 Fatigue, pitting Single damage 10(IR05)

Fig. 17 Rolling bearing test stand
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Fig. 18 Feature visualization a artificial damage D1, b artificial damage D2, c artificial damage D3, d artificial damage D4, e real

damage D1, f real damage D2 g for real damage D3, h real damage D4
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Table 9 Experimental results of artificial damage

The ratio of training samples to test

samples

D1 D2 D3 D4

Mean

(%)

Deviation

(%)

Mean

(%)

Deviation

(%)

Mean

(%)

Deviation

(%)

Mean

(%)

Deviation

(%)

1:9 97.41 4.07 98.07 3.58 99.56 1.73 98.96 2.59

2:8 99.83 0.42 99.78 0.56 100 0 99.99 0.14

3:7 99.94 0.32 99.97 0.32 100 0 100 0

5:5 100 0 99.98 0.22 100 0 100 0

7:3 100 0 100 0 100 0 100 0

Table 10 Real damage experimental results

The ratio of training samples to test

samples

D1 D2 D3 D4

Mean

(%)

Deviation

(%)

Mean

(%)

Deviation

(%)

Mean

(%)

Deviation

(%)

Mean

(%)

Deviation

(%)

1:9 96.12 5 98.09 4 99.64 0.42 97.52 7.67

2:8 99.06 1.38 100 0 100 0 99.99 0.13

3:7 99.71 0.57 100 0 100 0 100 0

5:5 99.78 0.4 100 0 100 0 100 0

7:3 99.77 0.67 100 0 100 0 100 0

9:1 99.77 0.67 100 0 100 0 100 0

Fig. 18 continued
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increases. This reminds us that the selection of training

to test sample ratio is a very important when exper-

imenting with multiple working conditions.

To verify the effectiveness of the entropy fusion

method proposed in this paper, the experiments of

single entropy and fusion entropy are carried out

respectively. 9 entropies are selected for the experi-

ments in Tables 15 and 16, which are RCMDE,

RCMFDE, RCMvMFE, RCMvMSE,MPE, multiscale

dispersion entropy (MDE), multiscale weight

Table 11 Dataset descriptions with different ratios of training data to test data under two working conditions (D1 ? D2 under

artificial damage dataset as an example)

Fault location Normal IR OR

Label 1 2 3 4 5 6 7 8 9

Data name D1/D2 D1/D2 D1/D2 D1/D2 D1/D2 D1/D2 D1/D2 D1/D2 D1/D2

1:9 Train 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Test 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90

2:8 Train 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

Test 80/80 80/80 80/80 80/80 80/80 80/80 80/80 80/80 80/80

3:7 Train 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

Test 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70

5:5 Train 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50

Test 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50 50/50

7:3 Train 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70 70/70

Test 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30 30/30

9:1 Train 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90 90/90

Test 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table 12 Dataset descriptions with different ratios of training data to test data under three working conditions (D1 ? D2 ? D3

under artificial damage dataset as an example)

Fault

location

Normal IR OR

Label 1 2 3 4 5 6 7 8 9

Data

name

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

D1/D2/

D3

1:9 Train 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10

Test 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90

2:8 Train 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20

Test 80/80/80 80/80/80 80/80/80 80/80/80 80/80/80 80/80/80 80/80/80 80/80/80 80/80/80

3:7 Train 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30

Test 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70

5:5 Train 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50

Test 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50 50/50/50

7:3 Train 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70 70/70/70

Test 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30 30/30/30

9:1 Train 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90 90/90/90

Test 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10 10/10/10
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permutation entropy (MWPE), multivariate fuzzy

entropy (MVFE), and multivariate sample entropy

(MVSE). Among them, MVFE and MVSE are single-

scale entropy, and the remaining seven are multiscale

entropy. Taking the multiple working conditions

experiment as an example, the experimental effect of

multiscale entropy both in artificial damage and real

damage far exceeds that of single-scale entropy. In

order to improve the accuracy and reduce deviations of

the model, an entropy fusion method is proposed.

For the fusion of entropy features, the main goal is

to improve the accuracy and minimize the deviation.

According to Tables 15 and 16, the better-performing

entropy features are fused in turn to obtain the

experimental results of the artificial damage fusion

entropy features in Table 17 and the experimental

results of the real damage fusion entropy features in

Table 18. Comparing Table 17 with Table 18, we can

see that the WHO-VMD-CCWT-EFF is more appli-

cable to the real damage dataset, which is the direction

of our efforts. In the entropy fusion, the experimental

performance of D1, D2, and D4 is not the best, but the

difference with the indicator of the best effect is slight.

To make the model more convincing, the experi-

mental results of the three working conditions exper-

iments of D1, D2, and D3 with different ratios of

Table 13 Experimental results of artificial damage under multiple working conditions

Data Evaluation indicators The ratio of training samples to test samples

1:9 2:8 3:7 5:5 7:3 9:1

D1 ? D2 Mean (%) 99.54 99.96 99.98 100.00 100.00 100.00

Deviations (%) 1.91 0.28 0.16 0.00 0.00 0.00

D1 ? D3 Mean (%) 99.86 100.00 100.00 100.00 100.00 100.00

Deviations (%) 1.36 0.00 0.00 0.00 0.00 0.00

D1 ? D4 Mean (%) 99.88 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.99 0.00 0.00 0.00 0.00 0.00

D2 ? D3 Mean (%) 99.88 100.00 100.00 100.00 100.00 100.00

Deviations (%) 1.17 0.00 0.00 0.00 0.00 0.00

D2 ? D4 Mean (%) 99.93 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.43 0.00 0.00 0.00 0.00 0.00

D3 ? D4 Mean (%) 99.94 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.37 0.00 0.00 0.00 0.00 0.00

D1 ? D2 ? D3 Mean (%) 99.59 99.87 99.94 99.92 99.96 99.96

Deviations (%) 1.56 0.19 0.11 0.15 0.12 0.37

D1 ? D2 ? D4 Mean (%) 99.68 99.96 99.96 99.97 99.95 99.96

Deviations (%) 1.93 0.09 0.05 0.07 0.12 0.37

D1 ? D3 ? D4 Mean (%) 99.81 99.99 99.98 100.00 100.00 100.00

Deviations (%) 0.74 0.05 0.05 0.00 0.00 0.00

D2 ? D3 ? D4 Mean (%) 99.82 99.96 99.96 99.97 99.95 99.96

Deviations (%) 0.49 0.09 0.05 0.07 0.12 0.37

D1 ? D2 ? D3 ? D4 Mean (%) 99.53 99.83 99.81 99.84 99.85 99.81

Deviations (%) 0.90 0.17 0.28 0.39 0.28 0.56
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Table 14 Real damage experimental results under multiple working conditions

Data Evaluation indicators The ratio of training samples to test samples

1:9 2:8 3:7 1:9 7:3 9:1

D1 ? D2 Mean (%) 99.12 99.68 99.85 99.91 99.93 99.90

Deviations (%) 1.00 0.50 0.29 0.40 0.17 0.50

D1 ? D3 Mean (%) 99.07 99.68 99.85 99.91 99.93 99.90

Deviations (%) 1.00 0.50 0.29 0.40 0.17 0.50

D1 ? D4 Mean (%) 99.09 99.68 99.85 99.91 99.93 99.90

Deviations (%) 1.00 0.50 0.29 0.40 0.17 0.50

D2 ? D3 Mean (%) 99.99 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.06 0.00 0.00 0.00 0.00 0.00

D2 ? D4 Mean (%) 99.99 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.11 0.00 0.00 0.00 0.00 0.00

D3 ? D4 Mean (%) 99.99 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.11 0.00 0.00 0.00 0.00 0.00

D1 ? D2 ? D3 Mean (%) 99.19 99.48 99.64 99.67 99.70 99.60

Deviations (%) 0.89 0.42 0.43 0.40 0.67 1.00

D1 ? D2 ? D4 Mean (%) 99.51 99.71 99.76 99.75 99.74 99.87

Deviations (%) 0.74 0.58 0.38 0.33 0.56 0.33

D1 ? D3 ? D4 Mean (%) 99.46 99.71 99.76 99.75 99.74 99.87

Deviations (%) 0.70 0.58 0.38 0.33 0.56 0.33

D2 ? D3 ? D4 Mean (%) 99.98 100.00 100.00 100.00 100.00 100.00

Deviations (%) 0.11 0.00 0.00 0.00 0.00 0.00

D1 ? D2 ? D3 ? D4 Mean (%) 99.58 99.74 99.79 99.77 99.73 99.80

Deviations (%) 1.11 0.16 0.25 0.30 0.25 0.50

Table 15 Accuracy of single entropy of artificial damage

Data Evaluation

indicators

RCMFDE RCMDE RcMVMFE RcMVMSE MPE MDE MWPE MVFE MVSE

D1 ? D2 ? D3 Mean (%) 90.74 90.01 98.22 96.91 94.34 83.67 94.43 49.06 33.75

Deviations

(%)

12.47 16.71 4.90 7.86 15.19 20.33 13.25 20.49 7.28

D1 ? D2 ? D4 Mean (%) 94.20 89.43 99.35 98.60 96.99 83.89 96.32 54.08 46.88

Deviations

(%)

6.79 10.70 3.95 4.53 10.33 15.10 11.85 35.80 30.86

D1 ? D3 ? D4 Mean (%) 91.87 93.37 99.33 98.02 94.16 82.13 92.97 42.49 45.53

Deviations

(%)

8.85 10.78 2.80 4.24 12.80 7.98 11.65 21.60 13.91

D2 ? D3 ? D4 Mean (%) 93.94 90.01 99.56 98.76 97.59 84.31 97.07 56.48 48.38

Deviations

(%)

9.34 4.90 1.85 2.92 4.36 10.86 4.32 11.81 15.88

D1 ? D2 ? D3 ? D4 Mean (%) 86.81 86.16 97.51 96.27 92.43 76.23 92.61 47.48 39.76

Deviations

(%)

8.61 11.20 4.04 6.54 13.52 10.22 11.05 18.86 15.68
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training samples to test samples are analyzed. The

trend plots of entropy fusion experimental results for

artificial and real damage at D1, D2 and D3 are given

in Figs. 19 and 20, respectively. As the number of

fused feature entropies increases the artificial damage

accuracy increases and the deviation decreases. In the

real damage, the performance of the 5 entropy fusions

is not the best when the ratio of training samples to test

samples is high. This shows that for the fusion of

entropy features, it is not the more the better, but the

category and number of entropy should be reasonably

selected according to the experiment. In this paper,

five entropy features are fused in the model.

Table 16 Accuracy of single entropy of real damage

Data Evaluation

indicators

RCMFDE RCMDE RcMVMFE RcMVMSE MPE MDE MWPE MVFE MVSE

D1 ? D2 ? D3 Mean (%) 90.03 89.78 97.52 95.47 92.00 83.30 91.03 22.23 16.11

Deviations

(%)

10.30 8.26 3.26 5.74 9.59 11.11 9.19 6.59 4.37

D1 ? D2 ? D4 Mean (%) 93.42 95.20 99.11 97.25 95.16 89.29 93.00 20.80 18.25

Deviations

(%)

1.78 2.74 0.33 1.44 1.30 4.00 2.11 5.44 2.67

D1 ? D3 ? D4 Mean (%) 92.23 94.34 98.79 96.73 94.36 88.12 92.21 20.89 17.90

Deviations

(%)

13.56 11.26 3.56 6.63 9.33 15.70 10.04 4.48 3.00

D2 ? D3 ? D4 Mean (%) 96.99 97.54 99.83 98.64 97.99 93.19 97.77 51.26 46.99

Deviations

(%)

10.93 8.37 1.63 4.85 8.96 14.44 8.67 12.56 14.41

D1 ? D2 ? D3 ? D4 Mean (%) 91.84 93.63 98.59 96.25 94.05 87.68 91.86 30.32 25.01

Deviations

(%)

11.64 9.36 4.97 6.61 10.31 13.78 10.50 3.28 4.14

Table 17 Accuracy of artificial damage fusion entropy

Data Evaluation

indicators

RcMVMFE ?

RcMVMSE

RcMVMFE ?

RcMVMSE ? MPE

RcMVMFE ?

RcMVMSE ? MPE ?

? RCMDE

The WHO-VMD-

CCWT-EFF

D1 ? D2 ? D3 Mean (%) 98.92 99.49 99.59 99.59

Deviations (%) 3.09 2.67 2.26 1.56

D1 ? D2 ? D4 Mean (%) 99.60 99.73 99.72 99.68

Deviations (%) 2.43 1.81 1.69 1.93

D1 ? D3 ? D4 Mean (%) 99.57 99.81 99.77 99.81

Deviations (%) 2.10 1.40 0.99 0.74

D2 ? D3 ? D4 Mean (%) 99.78 99.89 99.84 99.82

Deviations (%) 0.66 0.25 0.58 0.49

D1 ? D2 ? D3 ? D4 Mean (%) 98.92 99.52 99.43 99.53

Deviations (%) 3.09 1.73 1.70 0.90

Bold values are used to quickly grasp the key points in the table when reviewing papers. In addition, this approach can further

highlight the experimental effectiveness of the model proposed in this chapter
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4.4 Model comparison

As shown in Table 19, in order to verify the

performance of the proposed method, we selected

existing models from recent years for comparison. In

bearing fault diagnosis, the most classic CWRU

dataset is used as the dataset for model comparison.

The comparison results indicate that the proposed

model can identify bearing faults with higher accuracy

when the training and testing data are the same as other

literature. In addition, while maintaining the same

level of accuracy, less data is used.

5 Conclusions

A bearing fault diagnosis method WHO-VMD-

CCWT-EFF based on signal denoising and feature

fusion is proposed to address the issues of low

accuracy in traditional methods and the need for a

large number of data samples in deep learning

Table 18 Accuracy of real damage fusion entropy

Data Evaluation

indicators

RcMVMFE ?

RcMVMSE

RcMVMFE ?

RcMVMSE ? MPE

RcMVMFE ?

RcMVMSE ?

MPE ? ? RCMDE

The WHO-VMD-

CCWT-EFF

D1 ? D2 ? D3 Mean (%) 98.16 98.86 99.13 99.19

Deviations (%) 1.67 2.00 1.15 0.89

D1 ? D2 ? D4 Mean (%) 99.23 99.40 99.52 99.51

Deviations (%) 0.56 0.56 0.56 0.74

D1 ? D3 ? D4 Mean (%) 99.09 99.31 99.40 99.46

Deviations (%) 1.56 0.85 1.04 0.70

D2 ? D3 ? D4 Mean (%) 99.91 99.93 99.93 99.98

Deviations (%) 0.85 0.59 0.59 0.11

D1 ? D2 ? D3 ? D4 Mean (%) 99.18 99.45 99.42 99.58

Deviations (%) 2.44 1.83 1.78 1.11

Bold values are used to quickly grasp the key points in the table when reviewing papers. In addition, this approach can further

highlight the experimental effectiveness of the model proposed in this chapter
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Fig. 19 Experimental results of entropy fusion of artificial damage D1 ? D2 ? D3

123

17364 J. Yang et al.



Table 19 Comparison of the proposed model with other models in the literature

Literature Year Data Number of training samples/number of test samples

(per category)

Accuracy (%)

[36] 2019 0HP 200/37 98.10

1HP 200/37 97.62

2HP 200/37 97.92

3HP 200/37 95.76

[37] 2023 3HP 80/120 99.2

[38] 2023 0HP 10/90 97.98 ± 1.58

1HP 10/90 96.29 ± 0.60

2HP 10/90 95.84 ± 1.83

3HP 10/90 97.49 ± 1.43

0 HP ? 1 HP ? 2

HP ? 3 HP

400/3600 98.72 ± 0.31

[15] 2017 2 HP 30/30 99.10

[39] 2021 0 HP (Three types) 20/20 99.12

[40] 2021 0 HP 240/60 99.83

1 HP 240/60 99.83

2 HP 240/60 100

3 HP 240/60 100

[16] 2021 2 HP 500/100 99.69

The proposed

method

– 0HP 10/90,20/80,30/70 98.73,99.95,100

1HP 10/90,20/80,30/70,50/50 99.51,99.96,99.99,100

2HP 10/90,20/80 99.83,100

3HP 10/90,20/80 99.77,100

0 HP ? 1 HP ? 2

HP ? 3 HP

40/360,80/320,120/280,200/200 99.89,99.95,99.94,99.97
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Fig. 20 Experimental results of entropy fusion of real damage D1 ? D2 ? D3
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methods. This paper focuses on two aspects of bearing

fault signal denoising and feature extraction. In order

to verify the effectiveness and stability of the model,

the CWRU dataset and Paderborn dataset are used for

various single and multiple working experiments. The

experimental results show that WHO-VMD-CCWT-

EFF exhibits superior performance in both single and

multiple working conditions when the training data of

both datasets are small. The following experimental

results confirm this conclusion.

(1) The WHO-VMD-CCWT-EFF model can accu-

rately identify the fault status of bearings. It can

be proved by the fact that experiments on the

CWRU dataset and the Paderborn dataset (12

single operating conditions and 30 multiple

operating conditions) achieve over 99%

accuracy.

(2) In the Paderborn dataset, when the ratio of

training samples to test samples is 1:9, the

difference between real and artificial damage is

0.02% -1.44%. This indicates that even under

small sample experimental conditions, the

model has good stability and generalization

ability.

(3) The fusion entropy feature vector is an effective

method for extracting bearing fault features. In

the experiments on the CWRU dataset, in

addition to the Fisher discriminator achieving

an accuracy of over 98% in small samples, the

accuracy of decision tree and SVM classifica-

tion in small samples also reach over 93.5%,

which proves this point.

(4) Compared to the Paderborn dataset, the CWRU

dataset performs better in the experiment. This

indicates that differences in data from different

devices can affect the performance of the model.

Therefore, in the future, we will focus on

researching cross equipment bearing fault

diagnosis.
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