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Abstract This study investigates an adaptive fixed-
time tracking problem of nonlinear interconnected
high-order systemswith unknown control direction and
stochastic disturbances. Under the framework of adap-
tive feedback, the backsteppingmethod and fuzzy logic
systemare utilized to handle the stochastic disturbances
and the packaged unknown nonlinearities. By utilizing
the Nussbaum gain technique, an adaptive fixed-time
controller is proposed to overcome the difficulties asso-
ciated with unknown control directions. Distinguish-
ing from the most existing results, a modified fixed-
time control scheme is presented to deal with the pos-
itive odd integer terms from the interconnected high-
order systemwith the help of adding a power integrator
method. The designed control strategy guarantees that
the tracking error converges within a fixed settling time
and all signals of the closed-loop system are fixed-time
stable. Simulation results validate the designed control
approach.
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1 Introduction

In the past decades, adaptive intelligent control con-
taining fuzzy control or neural network control has
garnered increasingly attention because it can han-
dle the uncertainty of nonlinear system and guarantee
the satisfactory tracking performance of the closed-
loop system. A significant amount of achievements
have been already made [1–6]. The adaptive fuzzy
control methods have been presented for nonlinear
single-input and single-output (SISO) system [1–3]
and multi-input multi-output (MIMO) system [4,5].
The adaptive neural network control methods have
been studied for SISO system [6] and MIMO system
[7,8]. Furthermore, there are many intelligent control
schemes for nonlinear interconnected system, which
is consisted of a series of interconnected subsystems.
The decentralized control technology, as an effective
design approach, has attracted considerable attention
and made numerous significant achievements [9–12].
The aforementioned control schemes do not take into
account the control problems of high-order system
with the positive odd integer terms. It is meaning-
ful to research the consensus tracking control strate-
gies for the nonlinear high-order interconnected sys-
tem, and a plenty of significant achievements have been
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presented in [13,14]. Among them, the literature [13]
solves the low-complexity tracking control problem for
a class of nonlinear large-scale high-order systemswith
uncertain high powers. In [14], the adaptive backstep-
ping event-triggered control strategy has been investi-
gated for uncertain interconnected high-order system
by designing an adaptive observer.

As is known to all, stochastic disturbances often
occur in practical control system, which are caused
by the system oscillation or inaccuracy source. Many
promising achievements on nonlinear interconnected
stochastic system have been carried out [15–18]. In
[15], an adaptive tracking controller is designed for
nonlinear interconnected system with stochastic dis-
turbances by using dynamic surface. The continuously
asymptotic tracking control scheme has been proposed
for nonlinear interconnected stochastic system in [16].
The output-feedback control problem of the nonlinear
interconnected stochastic systemhas been addressedby
the adaptive control scheme and backstepping technol-
ogy [17] and [18]. Further, the adaptive state-feedback
fuzzy control approaches have been developed for a
class of nonlinear high-order system with stochastic
disturbances [19–21].

To improve the steadiness of the controlled system, a
great deal of progressive results put forward the concept
of finite time control scheme, which has been widely
considered in different fields [22–25]. In comparison
with these results, the convergence time of fixed-time
control does not rely on the initial condition. Thus,
fixed-time control can eliminate the dependence on ini-
tial conditions, and many related constructive achieve-
ments have been developed for a class of nonlinear
system [26–33]. Fixed-time control algorithm has been
reported to solve the design difficult caused by uncer-
tain linear plants, which guarantees all signals of con-
trolled system can maintain global fixed-time stabil-
ity [26]. The problem of fixed-time control has been
studied for nonlinear systems with the stochastic dis-
turbance in [27]. On the basis of these results, fault-
tolerant control method has been considered to solve
the actuator faults in [28]. In [29], an adaptive backstep-
pingfixed-time control approach has been presented for
nonlinear interconnected system with unknown sys-
tem uncertainties. The output-feedback control prob-
lem of a class of interconnected system has been stud-
ied by the adaptive fixed-time controller in [30]. In
[31] and [32], fixed-time control problems of nonlin-
ear interconnected system with stochastic disturbances

have been addressed by the adaptive fixed-time con-
trol method, where the stochastic disturbance can be
handled and the controlled system can keep steady. For
the nonlinear interconnected high-order system, there
is only one literature about designing a fixed-time con-
trol scheme to solve the output tracking problem of
controlled system [33]. However, there exist plenty of
considerable achievements on fixed-time control for
nonlinear interconnected systems with stochastic dis-
turbances, but there are few outcomes about the fixed-
time control for interconnected high-order system with
stochastic disturbances. In brief, it is a challenging and
meaningful topic in developing an adaptive fixed-time
controller for nonlinear interconnected high-order sys-
temwith stochastic disturbances, which is still open for
research.

From what has been discussed above, an adap-
tive fuzzy fixed-time control strategy is investigated
for nonlinear interconnected high-order system with
stochastic disturbances and unknown control direction.
In the design process of control scheme, the method
named adding a power integrator is employed to elim-
inate the effect of high-order terms of the nonlinear
interconnected high-order system. On the basis of the
Nussbaum gain functions and the fuzzy logic system
technique, the adaptive fuzzy control scheme is pro-
posed to solve the stochastic term and unknown control
direction of nonlinear interconnected high-order sys-
tem. According to the definition of fixed-time control,
an adaptive fixed-time control approach is investigated
to ensure that the outputs signal can track the desired
trajectory and all signals can maintain semi-globally
fixed-time steady. The main contributions are summa-
rized as follows:

1. An adaptive fixed-time fuzzy decentralized con-
trol strategy is developed for a class of nonlin-
ear large-scale high-order stochastic systems for
the first time. Both stochastic disturbances and
unknown control direction are taken into considera-
tion, which enhances the robustness and steadiness
of the system.

2. The tracking control problemof nonlinear intercon-
nected high-order systems is discussed by using the
adding power integrators method, where the con-
sidered system is nonlinear large-scale high-order
(i.e., pi ≥ 1) but not high-dimensional.

3. By introducing Nussbaum gain functions, the dif-
ficulties caused by the unknown control direction
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and the interconnection of subsystems are over-
come successfully.

The remainder of this paper can be outlined as fol-
lows. The problem statement and basic assumptions
are introduced in Sect. 2, and the controller design and
analysis are derived in Sect. 3. The simulation example
is provided in Sect. 4. Finally, Sect. 5 summarizes this
work.

2 Preliminaries and problem description

In this research, the nonlinear interconnection high-
order system is composed of N subsystems. The i th
subsystem is shown as:
⎧
⎪⎨

⎪⎩

dxi, j = x
pi, j
i, j+1 + hi, j (x̄i ) + gTi, j (x̄i, j )dw,

dxi,ni = di (t)u
pi,ni
i + hi,ni (x̄i ) + gTi,ni (x̄i,ni )dw

yi = xi,1
(1)

where x̄i = [xi,1, xi,2, ...., xi,ni ]T ∈ Rni denotes
the state variables, yi ∈ R expresses the system
output, and pi, j ≥ 1 shows positive odd numbers
with i = 1, ..., N , j = 1, 2, ..., ni . hi, j (x̄i )(i =
1, 2, ...N , j = 1, 2, ...., ni ) are unknown continuous
interconnected terms which exist in each subsystem
where hi, j (x̄i )(0) = 0. ω is an r -dimensional standard
Wiener process defined on the complete probability
space (�, F, P), where �, F and P denote the sample
space, the σ -field and the probability measure, respec-
tively. gi, j (·) : Rn → Rr represents the uncertain
smooth functions. The control directions are referred to
as the signs of di (t), which are assumed to be unknown.

The aim of this paper is that the adaptive fixed-time
fuzzy control project is developed for the nonlinear
interconnection high-order system (1) with stochastic
disturbances and unknown control direction such that
the controlled system remain semi-global stability and
all the signals are bounded in fixed time. Consequently,
the assumptions and lemmas can be considered:

Assumption 1 [34]: The desired trajectory yi,d(t) and
its j-order derivative y j

i,d(t) denote the known, contin-
uous and bounded functions.

Assumption 2 [35]: Positive odd integer pi, j satisfies:

pi + 1

pi, j
≥ pi − pi, j+1 + 1, j = 1, ..., ni − 1 (2)

where pi = max{pi, j }, j = 1, 2, ..., n.

Assumption 3 [17]: The interconnections among sub-
systems hi, j (xi ) satisfy |hi, j (xi )| ≤ �i, j (x̄i, j ) with
�i, j (·) being uncertain continuous functions.

Definition 1 [36]: Consider the system

dx = f (x, t)dt + h(x, t)dω, x(0) = 0 (3)

with x ∈ Rn and ω being state variable and the
r -dimensional independent standard Wiener process,
respectively. If any initial state is satisfied x0 ∈ �,
where � denotes the compact set, the system (3) is
semi-globally practically fixed-time steady. The set-
tling time function T (x0, ω) is bounded, and the upper
bound Tmax > 0 is an known constant. In other words,
E(T (x0, ω)) ≤ Tmax ,∀x0 ∈ �.

Lemma 1 [36]: For the stochastic system (3) with
any initial state x0 ∈ �. Define the positive radially
unboundedLyapunov function V (x) ∈ C2, if there exist
constants η1, η2 > 0, 0 < γ < 1, χ > 1 and ϑ > 0
such that

LV (x) ≤ −η1V
γ (x) − η2V

χ (x) + ϑ. (4)

Hence, the system (3) remains semi-globally fixed-
time steady in probability and the settling time Ts is
expressed as follows:

E(Ts) ≤ Tmax = 1

η1λ(1 − γ )
+ 1

η2λ(1 − χ)
, (5)

where λ ∈ (0, 1). And the residual set of the solution
for (3) can be derived as

x ∈ {V (x) ≤ min{( ϑ

(1 − λ)γ
)1/γ , (

ϑ

(1 − γ )χ
)1/χ }}.(6)

Lemma 2 [37]: Defining x, y ∈ R, one holds

|x |p|y|q ≤ p

p + q
m|x |p+q + q

p + q
m− p

q |y|p+q . (7)

with m > 0, p > 0, q > 0.

Lemma 3 [37]: For any real numbers a1, ...an and
c ∈ (0, 1), the following inequality has

(|a1| + ... + |an|)c ≤ |a1|c + ... + |an|c. (8)

Lemma 4 [37]: For xi ≥ 0, i = 1, ..., n, we have
(

n∑

i=1

xi

)2

=
(

n∑

i=1

1 · xi
)2

≤ n ·
n∑

i=1

x2i (9)
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Lemma 5 [38]: Consider a continuous function f (Z)

on the bounded closed set �Z . For the positive con-
stants ε0, there is a fuzzy system WT S (Z), which is
satisfied

sup
x∈�Z

∣
∣
∣ f (Z) − WT S (Z)

∣
∣
∣ ≤ ε0, (10)

with W = [ω1, ω2, · · · , ωn]T being the excepted

weight vector. S (Z) = [s1(Z),s2(Z),··· ,sN (Z)]T
N∑

i=1
si (Z)

expresses

the fuzzy basic function vectorwith N being the number
of fuzzy ruler and si (Z) can be expressed by

si (Z) = exp

[
−(Z−ςi )

T (Z−ςi )

η2i

]

, i = 1, 2, · · · , n,(11)

where ςi = [ςi1, ςi2, · · · , ςin]T and ηi indicate the
center and width vector of Gaussian function, respec-
tively.

Lemma 6 [35]: Define the given positive odd integer
p ≥ 1; we can get

|α p − β p| ≤ p|α − β|(α p−1 + β p−1) (12)

where α, β denote the real-valued function.

Lemma 7 [35]: For an known constant d ≥ 0, there
exists the formula satisfying

|α + β|d ≤ cd(|α|d + |β|d) (13)

with
{
cd = 1, 0 ≤ d < 1,
cd = 2d − 1, d ≥ 1.

(14)

In this work, the term d = pi − 1 needs further
judgment. For simplify, the above two cases (d < 1
and d ≥ 1) are shown as follows:

|α + β|d ≤ 2d(|α|d + |β|d) (15)

Definition 2 [39]: Assume the smooth function N (K )

as a function of Nussbaum type satisfying

lim
s→∞ sup

1

s

∫ s

0
N (K )dK = +∞ (16)

lim
s→−∞ sup

1

s

∫ s

0
N (K )dK = −∞ (17)

The following lemma about stochastic differential
equation is given as

dx = g(t, x)dt + h(t, x)dw (18)

where the definition of x and w in (1) and (18) is alike.
Define V (x, t) ∈ Rn × R+ as nonnegative functions
on C2,1 : Rn × R+, which are continuously twice dif-
ferentiable in x and one differentiable in t .

Lemma 8 [39]: For the above stochastic system (18),
V (x, t) ∈ C2,1 : Rn × R+ and K (t) : R+ → R
are defined as smooth bounded functions, and N (·)
is a smooth Nussbaum-type function. If the inequality
below has

V (t) ≤ co + e−c1t
∫ t

0
(g(x(τ ))N (K ) + 1)

K̇ ec1t dτ + S(t) (19)

with c0 > 0 being a nonnegative random variable,
S(t) denotes a real-valued continuous local martingale
where M(0) = 0 and V (x, t), K(t), [di (t)N (Ki )+1]K̇
are bounded.

Definition 3 [40]: In consideration of the stochastic
system as dx = f (x, t)dt + h(x, t)dω, if V is a func-
tion of x , one holds

LV = ∂V

∂t
+ ∂V

∂x
f + 1

2
Tr{hT ∂2V

∂2x
h} (20)

3 Controller design process

The adaptive fixed-time control strategy is presented
by fuzzy logic system technology and the backstep-
ping control approach which is applied by coordinate
transformation as follows:

zi,1 = xi,1 − yi,d ,

zi, j = xi, j − αi, j−1, j = 2, . . . , ni , (21)

To simplify the control process, we can define
hi, j (x̄i ) = hi, j , gi, j (x̄i, j ) = gi, j for i = 1, 2, ..., N ,

j = 1, ..., ni .
Step i, 1. From (1) and (21), one has

dzi,1 = (x
pi,1
i,2 + hi,1 − ẏi,d)dt + gTi,1(xi,1)dw (22)

Consider the following Lyapunov function

Vi,1 = z
pi−pi,1+4
i,1

pi − pi,1 + 4
+ 1

2λi
θ̃2i (23)

where θ̃i = θi − θ̂i with θ̂i being the approximation of
the uncertain parameter θi and λi ≥ 0 being an known
constant.

The term LVi,1 can be expressed by

LVi,1 = z
pi−pi,1+3
i,1 (x

pi,1
i,2 + hi,1 − ẏi,d) − 1

λi
θ̃i

˙̂
θi

+1

2
(pi − pi,1 + 3)z

pi−pi,1+2
i,1 ‖gi,1‖2 (24)
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According to the Young’s inequality, one holds

1

2
z
pi−pi,1+2
i,1 ‖gi,1‖2 ≤ 1

4
z
2(pi−pi,1+2)
i,1 ‖gi,1‖4 + 1

4
(25)

z
pi−pi,1+3
i,1 hi,1 ≤ 1

2
z
2(pi−pi,1+3)
i,1 �2

i,1 + 1

2
(26)

Substituting (25) and (26) into (24) gets

LVi,1 ≤ z
pi−pi,1+3
i,1 (x

pi,1
i,2 + pi − pi,1 + 3

4
z
pi−pi,1+1
i,1 ‖gi,1‖4

+1

2
z
pi−pi,1+3
i,1 �2

i,1 − ẏi,d ) − 1

λi
θ̃i

˙̂
θi + 1

2

+1

4
(pi − pi,1 + 3)

≤ z
pi−pi,1+3
i,1 (x

pi,1
i,2 + f̄i,1(Ẑi,1)) − 1

λi
θ̃i

˙̂
θi + 1

2

+1

4
(pi − pi,1 + 3) − z pi+3

i,1 − 1

2
z
2(pi−pi,1+3)
i,1 (27)

where f̄i,1(Ẑi,1) = pi−pi,1+3
4 z

pi−pi,1+1
i,1 ‖gi,1‖4− ẏi,d+

z
pi,1
i,1 + 1

2 z
pi−pi,1+3
i,1 �2

i,1 + 1
2 z

pi−pi,1+3
i,1 with Ẑi,1 =

[xi,1, yi,d , ẏi,d ]T .
According to Lemma 5, the fuzzy logic system

WT
i,1Si,1(Ẑi,1) can be introduced to approximate the

unknown function f̄i,1(Ẑi,1); we can get

f̄i,1(Ẑi,1) = WT
i,1Si,1(Ẑi,1) + δi,1(Ẑi,1),

|δi,1(Ẑi,1)| ≤ εi,1. (28)

with δi,1(Ẑi,1) indicating the estimation error and
εi,1 > 0.

Then, we can obtain by using Young’s inequality

z
pi−pi,1+3
i,1 f̄i,1(Ẑi,1)

= z
pi−pi,1+3
i,1 (WT

i,1Si,1(Ẑi,1) + δ1(Ẑi,1))

≤ z
pi−pi,1+3
i,1 (‖WT

i,1‖‖Si,1(Ẑi,1)‖ + εi,1))

≤ z
pi−pi,1+3
i,1 (‖WT

i,1‖‖Si,1(X̂i,1)‖ + εi,1))

≤ 1
2a2i,1

z
2(pi−pi,1+3)
i,1 θi STi,1(X̂i,1)Si,1(X̂i,1)

+ 1
2a

2
i,1 + 1

2 z
2(pi−pi,1+3)
i,1 + 1

2ε
2
i,1

(29)

where θi = ‖Wi,1‖2 and ai,1 > 0
Based on (46), we can get

LVi,1 ≤ z
pi−pi,1+3
i,1 (x

pi,1
i,2 − α

pi,1
i,1 + α

pi,1
i,1 + 1

2a2i,1
z
pi−pi,1+3
i,1

θi S
T
i,1(X̂i,1)Si,1(X̂i,1)) − 1

λi
θ̃i

˙̂
θi − z pi+3

i,1 + 1

2

+1

2
a2i,1 + 1

4
(pi − pi,1 + 3) + 1

2
ε2i,1 (30)

Choose virtual control signal αi,1 as

αi,1 = (−ci,11z
pi,1
i,1 − ci,12z

2(pi+3)−(pi−pi,1+3)
i,1

− 1

2a2i,1
z
pi−pi,1+3
i,1 θ̂i S

T
i,1(X̂i,1)Si,1(X̂i,1))

1
pi,1

(31)

where ci,11 and ci,12 are both positive given parameters.
So, the LVi,1 can be further written as

LVi,1 ≤ −ci,11z
pi+3
i,1 − ci,12z

2(pi+3)
i,1 + z

pi−pi,1+3
i,1 (x

pi,1
i,2

−α
pi,1
i,1 ) + 1

2
+ 1

4
(pi − pi,1 + 3) − z pi+3

i,1 + 1

2
a2i,1

− 1

λi
θ̃i (

˙̂
θi − 1

2a2i,1
z
2(pi−pi,1+3)
i,1 STi,1(X̂i,1)

Si,1(X̂i,1)) + 1

2
ε2i,1 (32)

Based on Lemma 6 and Lemma 7, we can get

z
pi−pi,1+3
i,1 (x

pi,1
i,2 − α

pi,1
i,1 )

≤ pi,1‖zi,1‖pi−pi,1+3|xi,2 − αi,1|(x pi,1−1
i,2 − α

pi,1−1
i,1 )

≤ pi,1‖zi,1‖pi−pi,1+3|zi,2|((zi,2 + αi,1)
pi,1−1 − α

pi,1−1
i,1 )

≤ pi,1‖zi,1‖pi−pi,1+3|zi,2|(2pi,1−1(|zi,2|pi,1−1

+|αi,1|pi,1−1) + |αi,1|pi,1−1)

≤ pi,1‖zi,1‖pi−pi,1+3(2pi,1−1 + 1)|zi,2||αi,1|pi,1−1

+pi,1‖zi,1‖pi−pi,1+32pi,1−1|zi,2|pi,1

(33)

Next, let p = pi − pi,1 + 3, q = pi,1,m =
pi+3

pi−pi,1+3 × 1
pi,12

pi,1 of Lemma 2, one holds

pi,1(2pi,1−1 + 1)‖zi,1‖pi−pi,1+3|zi,2||αi,1|pi,1−1

≤ pi,1(2pi,1−1 + 1) pi−pi,1+3
pi+3 (

pi+3
pi−pi,1+3

1
pi,12

pi,1 )|zi,1|pi+3

+pi,1(2pi,1−1 + 1) pi,1
pi+3 (

pi+3
pi−pi,1+3

1
pi,12

pi,1 )
− pi−pi,1+3

pi,1

×(z
1

pi,1
i,2 α

pi,1−1
pi,1

i,1 )pi+3

≤ 1
2 z

pi+3
i,1 + z

pi+3
pi,1
i,2 ρi,11

(34)

where ρi,11 = (2pi,1−1+1)p2i,1
pi+1 (

pi+3
pi−pi,1+3

1
pi,12

pi,1 )
− pi−pi,1+3

pi,1 α

(pi+3)(pi,1−1)
pi,1

i,1 .

By using the same above method with p = pi −
pi,1 + 3, q = pi,1,m = pi+3

pi−pi,1+3
1

pi,12
pi,1 , we can get

pi,12pi,1−1|zi,1|pi−pi,1+3|zi,2|pi,1
≤ pi,12pi,1−1 pi−pi,1+3

pi+3 (
pi+3

pi−pi,1+3
1

pi,12
pi,1 )|zi,1|pi+3

+pi,12pi,1−1(
pi+3

pi−pi,1+3
1

pi,12
pi,1 )

− pi−pi,1+3
pi,1 |zi,2|pi+1

≤ 1
2 z

pi+3
i,1 + z pi+3

i,2 ρi,12

(35)

whereρi,12 = pi,12pi,1−1(
pi+3

pi−pi,1+3
1

pi,12
pi,1 )

− pi−pi,1+3
pi,1 .

Next, substituting the above inequalities into (32)
gives

LVi,1 ≤ −ci,11z
pi+3
i,1 − ci,12z

2(pi+3)
i,1 + z

pi+3
pi,1
i,2 ρi,11
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+z pi+3
i,2 ρi,12 − 1

λi
θ̃i (

˙̂
θi − 1

2a2i,1
z
2(pi−pi,1+3)
i,1

STi,1(X̂i,1)Si,1(X̂i,1)) + 1

2
+ 1

4
(pi − pi,1 + 3)

+1

2
a2i,1 + 1

2
ε2i,1 (36)

With the support of Lemma 2, one has

z
3
4 (pi+3)
i,1 ≤

3
4 (pi + 3)

pi + 3

pi + 3
3
4 (pi + 3)

ci,11z
pi+3
i,1

+ (pi + 3) − 3
4 (pi + 3)

pi + 3

(
ci,11
3
4

)
3
4 (pi+3)

(pi+3)− 3
4 (pi+3)

≤ ci,11z
pi+3
i,1 + 1

4
(
4ci,11
3

)−3 (37)

Therefore, LVi,1 becomes

LVi,1 ≤ −z
3
4 (pi+3)
i,1 − ci,12z

2(pi+3)
i,1 + z

pi+3
pi,1
i,2 ρi,11

+z pi+3
i,2 ρi,12 − 1

λi
θ̃i (

˙̂
θi − 1

2a2i,1
z
2(pi−pi,1+3)
i,1

STi,1(X̂i,1)Si,1(X̂i,1)) + Di,1 (38)

where Di,1 = 1
2 + 1

4 (pi − pi,1 + 3) + 1
2a

2
i,1 + 1

2ε
2
i,1 +

1
4 (

4ci,11
3 )−3.

Step i, j (2 ≤ j ≤ ni −1). According to (21), dzi, j
can be expressed by

dzi, j = (x
pi, j
i, j+1 + hi, j − α̇i, j−1)dt + gTi, j (xi, j )dw

(39)

The Lyapunov function can be designed as

Vi, j = Vi, j−1 + z
pi−pi, j+4
i, j

pi − pi, j + 4
(40)

With the help of (21) and (40), one has

LVi, j ≤ −
j−1∑

k=1

z
3
4 (pi+3)
i,k −

j−1∑

k=1

ci,k2z
2(pi+3)
i,k

+z
pi+3
pi, j−1
i, j ρi, j−1,1

+z pi+3
i, j ρi, j−1,2 − 1

λi
θ̃i

(
˙̂
θi −

j−1∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k

STi,k(X̂i,k)Si,k(X̂i,k)) + Di, j−1

+z
pi−pi, j+3
i, j (x

pi, j
i, j+1 + hi, j − α̇i, j−1)

+1

2
(pi − pi, j + 3)z

pi−pi, j+2
i, j ‖gi, j‖2 (41)

According to the Young’s inequality, one holds

1

2
z
pi−pi, j+2
i, j ‖gi, j‖2 ≤ 1

4
z
2(pi−pi, j+2)
i, j ‖gi, j‖4 + 1

4
(42)

z
pi−pi, j+3
i, j hi, j ≤ 1

2
z
2(pi−pi, j+3)
i, j �2

i, j + 1

2
(43)

Substituting (42) and (43) into (41) gets

LVi, j ≤ −
j−1∑

k=1

z
3
4 (pi+3)
i,k −

j−1∑

k=1

ci,k2z
2(pi+3)
i,k + Di, j−1

− 1

λi
θ̃i (

˙̂
θi −

j−1∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) + z
pi−pi, j+3
i, j (x

pi, j
i, j+1 + f̄i, j (Ẑi, j ))

−1

2
z
2(pi−pi, j+3)
i, j + 1

4
(pi − pi, j + 3) + 1

2

−z pi+3
i, j (44)

where f̄i, j (Ẑi, j ) = 1
2 z

pi−pi, j+3
i, j �2

i, j − α̇i, j−1+ 1
4 (pi −

pi, j+3)z
pi−pi, j+1
i, j ‖gi, j‖4+z

pi+3
pi, j−1

−(pi−pi, j+3)

i, j ρi, j−1,1+
z
pi, j
i, j ρi, j−1,2 + z

pi, j
i, j + 1

2 z
pi−pi, j+3
i, j with Ẑi, j = [xi, j ,

yi,d , ẏi,d , ..., y
( j)
i,d ]T .

With the help of Lemma 5, the unknown packaged
function f̄i, j (Ẑi, j ) can be solved by the fuzzy logic
system WT

i, j Si, j (Ẑi, j )

f̄i, j (Ẑi, j ) = WT
i, j Si, j (Ẑi, j ) + δi, j (Ẑi, j ),

|δi, j (Ẑi, j )| ≤ εi, j . (45)

where δi, j (Ẑi, j ) denotes a estimation error and εi, j >

0.
Then, we can obtain by using Young’s inequality

z
pi−pi, j+3
i, j f̄i, j (Ẑi, j )

= z
pi−pi, j+3
i, j (WT

i, j Si, j (Ẑi, j ) + δ j (Ẑi, j ))

≤ z
pi−pi, j+3
i, j (‖WT

i, j‖‖Si, j (Ẑi, j )‖ + εi, j ))

≤ z
pi−pi, j+3
i, j (‖WT

i, j‖‖Si, j (X̂i, j )‖ + εi, j ))

≤ 1
2a2i, j

z
2(pi−pi, j+3)
i, j θi STi, j (X̂i, j )Si, j (X̂i, j )

+ 1
2a

2
i, j + 1

2 z
2(pi−pi, j+3)
i, j + 1

2ε
2
i, j

(46)

where ai, j > 0 is a given parameter.
With the help of (46), one holds

LVi, j ≤ −
j−1∑

k=1

z
3
4 (pi+3)
i,k −

j−1∑

k=1

ci,k2z
2(pi+3)
i,k + Di, j−1

123



Fixed-time adaptive fuzzy control 17085

− 1

λi
θ̃i (

˙̂
θi −

j−1∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) + z
pi−pi, j+3
i, j (x

pi, j
i, j+1 − α

pi, j
i, j + α

pi, j
i, j

+ 1

2a2i, j
z
pi−pi, j+3
i, j θi S

T
i, j (X̂i, j )Si,1(X̂i, j )) − z pi+3

i, j

+1

2
+ 1

4
(pi − pi, j + 3) + 1

2
a2i, j + 1

2
ε2i, j (47)

Choose virtual control signal αi, j as

αi, j = (−ci, j1z
pi, j
i, j − ci, j2z

2(pi+3)−(pi−pi, j+3)
i, j

− 1

2a2i, j
z
pi−pi, j+3
i, j θ̂i S

T
i, j (X̂i, j )Si, j (X̂i, j ))

1
pi, j

(48)

where ci, j1 and ci, j2 are both positive given parameters.
So, the LVi, j is further rewritten as

LVi, j ≤ −
j−1∑

k=1

z
3
4 (pi+3)
i,k −

j∑

k=1

ci,k2z
2(pi+3)
i,k + Di, j−1

− 1

λi
θ̃i (

˙̂
θi −

j∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) − ci, j1z
pi+3
i, j + z

pi−pi, j+3
i, j (x

pi, j
i, j+1

−α
pi, j
i, j ) − z pi+3

i, j + 1

2
+ 1

4
(pi − pi, j + 3)

+1

2
a2i, j + 1

2
ε2i, j (49)

Similar to the Step 1, one holds

z
pi−pi, j+3
i, j (x

pi, j
i, j+1 − α

pi, j
i, j )

≤ pi, j‖zi, j‖pi−pi, j+3(2pi, j−1 + 1)|zi, j+1||αi, j |pi, j−1

+pi, j‖zi, j‖pi−pi, j+32pi, j−1|zi, j+1|pi, j

≤ z pi+3
i, j + z

pi+3
pi, j
i, j+1ρi, j1 + z pi+3

i, j+1ρi, j2

(50)

where ρi, j1 = (2pi, j−1+1)p2i, j
pi+1 (

pi+3
pi−pi, j+3

1
pi, j2

pi, j )
− pi−pi, j+3

pi, j α

(pi+3)(pi, j−1)
pi, j

i, j andρi, j2 = pi, j2pi, j−1

(
pi+3

pi−pi, j+3 × 1
pi, j2

pi, j )
− pi−pi, j+3

pi, j .

Next, substituting the above equation into (49) gives

LVi, j ≤ −
j−1∑

k=1

z
3
4 (pi+3)
i,k −

j∑

k=1

ci,k2z
2(pi+3)
i,k + Di, j−1

− 1

λi
θ̃i (

˙̂
θi −

j∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) − ci, j1z
pi+3
i, j + z

pi+3
pi, j
i, j+1ρi, j1 + z pi+3

i, j+1ρi, j2

+1

2
+ 1

4
(pi − pi, j + 3) + 1

2
a2i, j + 1

2
ε2i, j (51)

With the support of Lemma 2, one has

z
3
4 (pi+3)
i, j ≤

3
4 (pi + 3)

pi + 3

pi + 3
3
4 (pi + 3)

ci, j1z
pi+3
i, j

+ (pi + 3) − 3
4 (pi + 3)

pi + 3
(
ci, j1
3
4

)

3
4 (pi+3)

(pi+3)− 3
4 (pi+3)

≤ ci, j1z
pi+3
i, j + 1

4
(
4ci, j1
3

)−3 (52)

Therefore, LVi, j becomes

LVi, j ≤ −
j∑

k=1

z
3
4 (pi+3)
i,k −

j∑

k=1

ci,k2z
2(pi+3)
i,k + Di, j − 1

λi
θ̃i

(
˙̂
θi −

j∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)Si,k(X̂i,k))

+z
pi+3
pi, j
i, j+1ρi, j1 + z pi+3

i, j+1ρi, j2 (53)

where Di, j = Di, j−1 + 1
2 + 1

4 (pi − pi, j +3)+ 1
2a

2
i, j +

1
2ε

2
i, j + 1

4 (
4ci, j1
3 )−3.

Step i, ni . The derivative of zni becomes

dzi,ni = (di (t)u
pi,ni
i + hi,ni − α̇i,ni−1)dt

+gTi,ni (xi,ni )dw (54)

Take into account the Lyapunov function as follows:

Vi,ni = Vi,ni−1 + z
pi−pi,ni +4
i,ni

pi − pi,ni + 4
(55)

The time derivative of Vi,ni can be expressed by

LVi,ni ≤ −
ni−1∑

k=1

z
3
4 (pi+3)
i,k −

ni−1∑

k=1

ci,k2z
2(pi+3)
i,k

+z

pi+3
pi,ni−1

i,ni
ρi,ni−1,1 + z pi+3

i,ni
ρi,ni−1,2

− 1

λi
θ̃i (

˙̂
θi −

ni−1∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k

STi,k(X̂i,k)Si,k(X̂i,k)) + Di,ni−1

+z
pi−pi,ni +3
i,ni

(di (t)u
pi,ni
i + hi,ni − α̇i,ni−1)

+1

2
(pi − pi,ni + 3)z

pi−pi,ni +2
i, j ‖gi,ni ‖2 (56)

According to the Young’s inequality, one holds

1

2
z
pi−pi,ni +2
i,ni

‖gi,ni ‖2 ≤ 1

4
z
2(pi−pi,ni +2)
i,ni

‖gi,ni ‖4 + 1

4
(57)
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z
pi−pi,ni +3
i,ni

hi,ni ≤ 1

2
z
2(pi−pi,ni +3)
i,ni

�2
i,ni + 1

2
(58)

Substituting (57) and (58) into (56) gets

LVi,ni ≤ −
ni−1∑

k=1

z
3
4 (pi+3)
i,k −

ni−1∑

k=1

ci,k2z
2(pi+3)
i,k + Di,ni−1

− 1

λi
θ̃i (

˙̂
θi −

ni−1∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) + 1

4
(pi − pi,ni + 3) − z pi+3

i,ni

+z
pi−pi,ni +3
i,ni

(di (t)u
pi,ni
i + f̄i,ni (Ẑi,ni ))

−1

2
z
2(pi−pi,ni +3)
i,ni

+ 1

2
(59)

where the unknown nonlinear function is f̄i,ni (Ẑi,ni ) =
1
2 z

pi−pi,ni +3
i,ni

�2
i,ni

− α̇i,ni−1 + pi−pi,ni +3
4 z

pi−pi,ni +1
i,ni

‖gi,ni ‖4+z

pi+3
pi,ni−1

−(pi−pi,ni +3)

i,ni
ρi,ni−1,1+z

pi,ni
i,ni

ρi,ni−1,2+
z
pi,ni
i,ni

+ 1
2 z

pi−pi,ni +3
i,ni

with Ẑi,ni = [xi,ni , yi,d , ẏi,d , ...,
y(ni )
i,d ]T .
On the basis of Lemma 5, the unknown function

f̄i,ni (Ẑi,ni ) is handled by using the fuzzy logic system
WT

i,ni
Si,ni (Ẑi,ni )

f̄i,ni (Ẑi,ni ) = WT
i,ni Si,ni (Ẑi,ni ) + δi,ni (Ẑi,ni ),

|δi,ni (Ẑi,ni )| ≤ εi,ni . (60)

with δi,ni (Ẑi,ni ) being an approximation error and
εi,ni > 0 being a positive constant.

Then, we can obtain by using Young’s inequality

z
pi−pi,ni +3
i,ni

f̄i,ni (Ẑi,ni )

= z
pi−pi,ni +3
i,ni

(WT
i,ni

Si,ni (Ẑi,ni ) + δni (Ẑi,ni ))

≤ z
pi−pi,ni +3
i,ni

(‖WT
i,ni

‖‖Si,ni (Ẑi,ni )‖ + εi,ni ))

≤ z
pi−pi,ni +3
i,ni

(‖WT
i,ni

‖‖Si,ni (X̂i,ni )‖ + εi,ni ))

≤ 1
2a2i,ni

z
2(pi−pi,ni +3)
i,ni

θi STi,ni (X̂i,ni )Si,ni (X̂i,ni )

+ 1
2a

2
i,ni

+ 1
2 z

2(pi−pi,ni +3)
i,ni

+ 1
2ε

2
i,ni

(61)

where ai,ni > 0 is a given parameter.
With the help of (61), we can obtain

LVi,ni ≤ −
ni−1∑

k=1

z
3
4 (pi+3)
i,k −

ni−1∑

k=1

ci,k2z
2(pi+3)
i,k + Di,ni−1

− 1

λi
θ̃i (

˙̂
θi −

ni−1∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) + 1

4
(pi − pi,ni + 3) + 1

2
a2i,ni

+z
pi−pi,ni +3
i,ni

(
di (t)u

pi,ni
i + z

pi−pi,ni +3
i,ni

2a2i,ni
θi

STi,ni (X̂i,ni )Si,ni (X̂i,ni )
)

+ 1

2
+ 1

2
ε2i,ni (62)

Choose virtual control signal ui as

ui = [NKi (ci,ni ,1z
pi,ni
i,ni

+ ci,ni ,2z
(pi−pi,ni +3)
i,ni

+ z
pi−pi,ni +3
i,ni

2a2i,ni
θ̂i S

T
i,ni (X̂i,ni )Si,ni (X̂i,ni ))]

1
pi,ni (63)

K̇i ≤ ci,ni ,1z
pi+3
i,ni

+ ci,ni ,2z
2(pi+3)
i,ni

+ 1

2a2i,ni
z2(pi+3)
i,ni

θ̂i S
T
i,ni (X̂i,ni )Si,ni (X̂i,ni ) (64)

with ci,ni ,1 > 0 and ci,ni ,2 > 0 being the given param-
eters.

So, LVi,ni can be further written as

LVi,ni ≤ −
ni−1∑

k=1

z
3
4 (pi+3)
i,k −

ni∑

k=1

ci,k2z
2(pi+3)
i,k + Di,ni−1

− 1

λi
θ̃i (

˙̂
θi −

ni∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) − ci,ni ,1z
pi+3
i,ni

+ [di (t)N (Ki ) + 1]K̇i

+1

2
a2i,ni + 1

2
ε2i,ni + 1

4
(pi − pi,ni + 3) + 1

2
(65)

With the support of Lemma 2, one has

z
3
4 (pi+3)
i,ni

≤
3
4 (pi + 3)

pi + 3

pi + 3
3
4 (pi + 3)

ci,ni ,1z
pi+3
i,ni

+ (pi + 3) − 3
4 (pi + 3)

pi + 3
(
ci,ni ,1

3
4

)

3
4 (pi+3)

(pi+3)− 3
4 (pi+3)

≤ ci,ni ,1z
pi+3
i,ni

+ 1

4
(
4ci,ni ,1

3
)−3 (66)

So, LVi,ni becomes

LVi,ni ≤ −
ni∑

k=1

z
3
4 (pi+3)
i,k −

ni∑

k=1

ci,k2z
2(pi+3)
i,k + Di,ni

− 1

λi
θ̃i (

˙̂
θi −

ni∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)

Si,k(X̂i,k)) + [di (t)N (Ki ) + 1]K̇i (67)

where Di,ni = Di,ni−1 + 1
2 + 1

4 (pi − pi,ni + 3) +
1
2a

2
i,ni

+ 1
2ε

2
i,ni

+ 1
4 (

4ci,ni ,1
3 )−3.

The adaptive laws are given by

˙̂
θi =

ni∑

k=1

1

2a2i,k
z
2(pi−pi,k+3)
i,k STi,k(X̂i,k)Si,k(X̂i,k)
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−σi θ̂i − ιi

λi
θ̂3i (68)

where σi and ιi are known positive parameters.
Therefore, we can obtain

LVi,ni ≤ −
ni∑

k=1

z
3
4 (pi+3)
i,k −

ni∑

k=1

ci,k2z
2(pi+3)
i,k + Di,ni

+[di (t)N (Ki ) + 1]K̇i + σi

λi
θ̃i θ̂i + ιi

λ2i
θ̃i θ̂

3
i

(69)

Theorem 1 Consider the nonlinear interconnected
high-order stochastic system (1) with Assumption 1-
3, the virtual control input αi, j , j = 1, ..., ni − 1 (48),

real controller ui (64), and adaptive law ˙̂
θi (68), all

signals of the controlled system can remain fixed-time
stable and the tracking error can converge into a small
area at the fixed time.

Proof For an known constant 0 < μ < 1, based on
Lemma 2, we definem = 3

4 (pi − pi,1+4), n = 3
4 (pi +

3) − 3
4 (pi − pi,1 + 4), x = zi,1, y = μ, one has

z
3
4 (pi−pi,1+4)
i,1 μ

3
4 (pi+3)− 3

4 (pi−pi,1+4) ≤ pi−pi,1+4
pi+3 z

3
4 (pi+3)
i,1

+ pi+3−(pi−pi,1+4)
pi+3 μ

3
4 (pi+3)
1

(70)

It can be converted in the following form:

− z
3
4 (pi+3)
i,1 ≤ −μ

3
4 (pi+3−(pi−pi,1+4))

(pi + 3)z
3
4 (pi−pi,1+4)
i,1

pi − pi,1 + 4

+ pi + 3 − (pi − pi,1 + 4)

pi + 3
μ

3
4 (pi+3)
1 (71)

By considering Lemma 3 and Lemma 4, we can
obtain

−
N∑

i=1

ni∑

k=1

z
3
4 (pi+3)
i, j ≤ −

N∑

i=1

ni∑

k=1

μ
3
4 (pi+3−(pi−pi,k+4))
i,k

×z
3
4 (pi−pi,k+4)
i,k

+
N∑

i=1

ni∑

k=1

pi + 3 − (pi − pi,k + 4)

pi + 3

×μ
3
4 (pi+3)
i,k (72)

In the same way, we can get

−∑N
i=1

∑ni
k=1 ci, j2z

2(pi+3)
i, j

≤ −∑N
i=1

∑ni
k=1 μ

2(pi+3−(pi−pi,k+4))
i,k z

2(pi−pi,k+4)
i,k

+∑N
i=1

∑ni
k=1

pi+3−(pi−pi,k+4)
pi+3 μ

2(pi+3)
i,k

(73)

Thus, LVi can be rewritten as

LVi ≤ −
N∑

i=1

ni∑

k=1

c̄i,1z
3
4 (pi−pi,k+4)
i,k + [di (t)N (Ki ) + 1]K̇i

−
N∑

i=1

ni∑

k=1

c̄i,2z
2(pi−pi,k+4)
i,k + σi

λi
θ̃i θ̂i + ιi

λ2i
θ̃i θ̂

3
i

+Di (74)

where c̄i,1 = ∑N
i=1

∑ni
k=1 μ

3
4 (pi+3−(pi−pi,k+4))
i,k , c̄i,2 =

∑N
i=1

∑ni
k=1 ci,k2μ

2(pi+3−(pi−pi,k+4))
i,k , Di = ∑N

i=1
∑ni

k=1
pi+3−(pi−pi,k+4)

pi+3 μ
3
4 (pi+3)
i,k + ∑N

i=1
∑ni

k=1
pi+3−(pi−pi,k+4)

pi+3 μ
2(pi+3)
i,k + Di,ni .

Since θ̂i θ̃i ≤ − θ̃2i
2 + θ2i

2 , we have

σi

λi
θ̂i θ̃i ≤ − σi

2λi
θ̃2i + σi

2λi
θ2i (75)

By subtracting and adding the term (
σi
2λi

θ̃2i )
3
4 , com-

bining (75) with (74), we can get

LVi ≤ −
N∑

i=1

ni∑

k=1

c̄i,1z
3
4 (pi−pi,k+4)
i,k − (

σi

2λi
θ̃2i )

3
4

−
N∑

i=1

ni∑

k=1

c̄i,2z
2(pi−pi,k+4)
i,k + (

σi

2λi
θ̃2i )

3
4

− σi

2λi
θ̃2i + σi

2λi
θ2i + ιi

λ2i
θ̂3i θ̃i

+[di (t)N (Ki ) + 1]K̇i + Di (76)

According to Lemma 2, choosing φ = 1, ϕ =
σi
2λi

θ2i , p = 1 − γ, q = γ,m = e(γ /(1−γ )) ln γ , one
holds
( σi

2λi
θ̃2i

)γ ≤ (1 − γ )γ
γ

1−γ + σi

2λi
θ̃2i (77)

Now, (77) can be rewritten by designing γ = 3
4 .

( σi

2λi
θ̃2i

) 3
4 ≤ γ1 + σi

2λi
θ̃2i (78)

where γ1 = 27
256 > 0.

Substituting (78) into (76), one holds

LVi ≤ −
N∑

i=1

ni∑

k=1

c̄i,1z
3
4 (pi−pi,k+4)
i,k + [di (t)N (Ki ) + 1]K̇i

−
N∑

i=1

ni∑

k=1

c̄i,2z
2(pi−pi,k+4)
i,k − (

σi

2λi
θ̃2i )

3
4 + ιi

λ2i
θ̂3i θ̃ j

+D̃i (79)
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where D̃i = Di + σi
2λi

θ2i + γ1

For the term ιi
λ2i

θ̃i θ̂
3
i , it can be dealt with as follows:

− ιi

λ2i
θ̃i θ̂

3
i = − ιi

λ2i
θ̃i (θ̃i + θi )

3

≤ − ιi

λ2i
θ̃4i + 3ιi

λ2i
θ̃3i θi − 3ιi

λ2i
θ̃2i θ2j + ιi

λ2i
θ̃iθ

3
i

(80)

So, (79) can be rewritten as

LVi ≤ −
N∑

i=1

ni∑

k=1

c̄i,1z
3
4 (pi−pi,k+4)
i,k + [di (t)N (Ki ) + 1]K̇i

−
N∑

i=1

ni∑

k=1

c̄i,2z
2(pi−pi,k+4)
i,k + D̃i −

(
σi

2λi
θ̃2i

) 3
4

− ιi

λ2i
θ̃4i + 3ιi

λ2i
θ̃3i θi − 3ιi

λ2i
θ̃2i θ2i + ιi

λ2i
θ̃iθ

3
i (81)

By utilizing the Yong’s inequality, we can get

3ιi
λ2i

θ̃3i θi ≤ 9ιiε
4
3

4λ2i
θ̃4i + 3ιi

4ε4λ2i
θ4i (82)

ιi

λ2i
θ̃iθ

3
i ≤ 3ιi

λ2i
θ̃2i θ2i + ιi

12λ2i
θ4i (83)

Therefore, we can obtain

LVi ≤ −
N∑

i=1

ni∑

k=1

c̄i,1z
3
4 (pi−pi,k+4)
i,k −

(
σi

2λi
θ̃2i

) 3
4

+[di (t)N (Ki ) + 1]K̇i − (4ιi − 9ιiε
4
3 )

(
θ̃2i

2λi

)2

−
N∑

i=1

ni∑

k=1

c̄i,2z
2(pi−pi,k+4)
i,k + Ďi

≤ −
N∑

i=1

ni∑

k=1

či,1(
z
pi−pi,k+4
i,k

pi − pi,k + 4
)
3
4 − (

σi

2λi
θ̃2i )

3
4

−
N∑

i=1

ni∑

k=1

či,2(
z
pi−pi,k+4
i,k

pi − pi,k + 4
)2 − (4ιi − 9ιiε

4
3 )

(
θ̃2i

2λi
)2 + [di (t)N (Ki ) + 1]K̇i + Ďi (84)

where Ďi = 3ιi
4ε4λ2i

θ4i + ιi
12λ2i

θ4i + D̃i , či,1 = ∑N
i=1

∑ni
k=1 c̄i,1(pi − pi,k + 4)

3
4 , či,2 = ∑N

i=1
∑ni

k=1 c̄i,2c̄i,1
(pi − pi,k + 4)2

Defining ĉ1 = min{∑N
i=1 c̃1, σi }, ĉ2 =

min{∑N
i=1 c̄i,2, 4ιi − 9ιiε

4
3 }, we have

LVi ≤ −ĉ1
(
(

∑N
i=1

∑ni
k=1 z

pi−pi,k+4
i,k

pi − pi,k + 4
)
3
4 + (

1

2λi
θ̃2i )

3
4

)

−ĉ2
(
(

∑N
i=1

∑ni
k=1 z

pi−pi,k+4
i,k

pi − pi,k + 4
)2 + (

1

2λi
θ̃2i )2

)

+[di (t)N (Ki ) + 1]K̇i + Ďi (85)

Thewhole Lyapunov function candidate can be cho-
sen as

Vi =
N∑

i=1

ni∑

k=1

z
pi−pi,k+4
i,k

pi − pi,k + 4
+ 1

2λi
θ̃2i (86)

Hence, we can get

LVi ≤ −ĉ1V
3
4
i − ć2V

2
i + [di (t)N (Ki ) + 1]K̇ + Ďi

(87)

where ć2 = ĉ2
2n

The whole proof process is divided into two parts:
Part 1: the boundedness of Vi and Part 2: the fixed-time
convergence of Vi .

Part 1: According to (87), one obtains

LVi ≤ −ć2Vi + [di (t)N (Ki ) + 1]K̇i + Ďi (88)

Multiplying both sides of (88) by eć2t and integrating
it over [0, t], one has
d

dt
(eć2t Vi ) ≤ eć2t [di (t)N (Ki ) + 1]K̇i + eć2t Ďi dw

(89)

Integrating (89) over [0, t1], we have

Vi ≤ Vi (0) + e−ć2t
∫ t1

0
eć2t [di (t)N (Ki ) + 1]K̇i dt

+e−ć2t
∫ t1

0
eć2t

Ďi

ć2
dw (90)

FromLemma8, it canbe seen that e−ć2t
∫ t1
0 eć2t Ďi

ć2
dw

is a real-valued continuous localmartingale. So, we can
get Vi (t), Ki (t) and

∫ t1
0 eć2t [di (t)N (Ki ) + 1]K̇i dt are

guaranteed to be bounded. Let η be the upper bound
of the term e−ć2t

∫ t1
0 eć2t [di (t)N (Ki ) + 1]K̇i dt , we

can obtain e−ć2t
∫ t1
0 E(di (t)N (Ki ) + 1)K̇i eć2t dt ≤

∫ t1
0 E(di (t)N (Ki ) + 1)K̇i eć2(t−t1)dt ≤ η with E(·)
being the expectation operator. By using the expecta-
tion of (90), we can get EVi ≤ EVi (0)+η. Hence, zi, j
and xi, j are bounded. In short, it can be indicated that
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tracking error approaches to a small residual set within
a fixed time and all the signals of the controlled system
remain bounded.

Part 2: Based on Lemma 1, we can conclude that
the tracking errors will converge to a small region D̂i +
e−ć2t

∫ t1
0 eć2t [di (t)N (Ki ) + 1]K̇i dt in fixed time T .

T ≤ Tmax = 4

ĉ1
+ 1

(1 − τ)c̃2

where 0 < τ < 1. 	


4 Simulation

Example 1: Numerical Example
To test the effectiveness of the control strategy, two con-
trol methods are used to carry out simulation and com-
parison experiments: (a) fixed-time control method and
(b) controlmethodwithout considering fixed-time. The
considered nonlinear interconnected high-order system
is selected as follows
⎧
⎨

⎩

dxi,1 = (x
pi,1
i,2 + hi,1(x̄i ))dt + gi1(x̄i,1)dw,

dxi,2 = (u
pi,2
i + hi,2(x̄i ))dt + gi,2(x̄i,2)dw,

yi = xi,1,
(91)

with hi,1(x̄i ) = sin(xi,1xi,2), hi,2(x̄i ) = cos(xi,1xi,2),
gi,1(x̄i,1) = 0.01 sin(xi,1), gi,2(x̄i,2) = 0.01 sin(xi,2)
for i = 1, 2. The desired trajectory can be chosen as
yi,d = sin(t).

Afterward, fuzzy control scheme is introduced to
handle the unknown nonlinearities, where the fuzzy
sets are designed in the interval [-5, 5]. Fuzzy member-
ship functions canbe selected asμi,1 = e−0.5(x1− j)2 , j =
−5,−4, ..., 4, 5, μi,2 = e−0.5(x1− j)2−0.5(x2−l)2 , j, l =
−5,−4, ..., 4, 5. The initial conditions are x1,1(0) =
0, x1,2(0) = 0, x2,1(0) = 0, x2,2(0) = 0, θ̂1(0) =
θ̂2(0) = 0, K1(0) = 0.1, K2(0) = 1.25.

(a) Fixed-time control method: the fixed-time adap-
tive fuzzy controllers are constructed whose con-
trol parameters are chosen as follows: ci,11 =
40, ci,12 = 15, ci,21 = 15, ci,22 = 20, λ1 = λ2 =
1, ι1 = ι2 = 1, σ1 = σ2 = 5, a1 = a2 = 1.

(b) Control method without considering fixed-time:
adaptive control approachwithout consideringfixed-
time is proposed to compare with the control
method in this paper. The corresponding control
parameters are selected as: ci,11 = 2.5, ci,12 =
0.5, ci,21 = 2.5, ci,22 = 0.5, λ1 = λ2 = 1, ι1 =
ι2 = 1, σ1 = σ2 = 5, a1 = a2 = 1.

Fig. 1 Block diagram of the design procedure for the proposed
controller

0 5 10 15 20 25 30
Time(Sec)

-1

-0.5

0

0.5

1

1.5
x11 with fixed-time
x11 without fixed-time
y1d

Fig. 2 The system output y1 and reference signal y1d with fixed-
time controller and without fixed-time controller

Figures 1, 2, 3, 4, 5, 6 and 7 show the simulation
comparison results. Figures 2, 3, 4 and 5 introduce the
tracking performance of xi,1 and yd and the tracking
error zi,1 with andwithout fixed-time control. Figures 6
and 7 propose the boundedness of adaptive parameter
θ̂i (i = 1, 2) and actual control input ui (i = 1, 2),
respectively. Finally, Fig. 8 indicates the system state
xi,2. It can be seen that the controlled system is semi-
global fixed-time stable and the tracking error con-
verges to a small area at fixed time.

Example 2: Practical Example
The practical control system of two inverted pendu-
lums connected by a spring is employed [41]. Let
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0 5 10 15 20 25 30
Time(Sec)

-1

-0.5

0

0.5

1

1.5
x21 with fixed-time
x21 without fixed-time
y2d

Fig. 3 The system output y2 and reference signal y2d with fixed-
time controller and without fixed-time controller

0 5 10 15 20 25 30
Time(Sec)
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-0.6
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-0.2

0

0.2

0.4

0.6
$z1,1$ with fixed-time

$z1,1$ without fixed-time

Fig. 4 The trajectories of the tracking error z1 with fixed-time
controller and without fixed-time controller
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Time(Sec)
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0.4

0.6
$z2,1$ with fixed-time

$z2,1$ without fixed-time

Fig. 5 The trajectories of the tracking error z2 with fixed-time
controller and without fixed-time controller
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Time(Sec)
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0.002

0.004
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0.008

0.01

0.012

0.014

0.016
θ̂1
θ̂2

Fig. 6 The adaptive parameter θ̂1, θ̂2

0 5 10 15 20 25 30

Time(Sec)

0

1

2

3

4

5

6
u1

u2

Fig. 7 The actual control inputs u1 and u2

θ1 = x1,1, θ2 = x2,1, θ̇1 = x1,2, θ̇2 = x2,2, and the
system model of the inverted pendulum with distur-
bances gi,1 = 0.01 sin(x1,1) and gi,2 = 0.01 sin(x1,2).
Therefore, the model can be described as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dxi,1 = (x
pi,1
i,2 + x2i,1 sin(xi,1xi,2)dt + gi1(x̄i,1)dw,

dxi,2 = ( 1
Ji
u
pi,2
i + (

mi gr
Ji

− kr2
4Ji

) sin(xi,1)

+ kr
2Ji

(l − b) + kr2
4Ji

sini,1)dt + gi2(x̄i,2)dw,

yi = xi,1,

(92)

where the outputs y1 and y2 are the angular displace-
ments of the pendulum from the vertical reference. The
pendulum masses are given as: the end masses of pen-
dulum are m1 = 2 kg and m2 = 2.5kg, the moments
of inertia are J1 = 0.5kg and J2 = 0.625kg, the con-
stant of connecting spring is k = 100N/m, the pen-
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Time(Sec)
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0
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Fig. 8 The system states x1,2 and x2,2
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x21

y2d

Fig. 9 The system output yi and reference signal yid

dulum height is r = 0.5m, the natural length of the
spring is l = 0.5m, and the gravitational accelera-
tion is g = 9.8m/s2. The distance between the pen-
dulum hinges is b = 0.4m. gi2(x̄i,2) = 0.01 sin(xi,2)
for i = 1, 2.

The design parameters are chosen as ci,11 =
40, ci,12 = 15, ci,21 = 15, ci,22 = 20, λ1 = λ2 =
1, ι1 = ι2 = 1, σ1 = σ2 = 5, a1 = a2 = 1.
The initial conditions and reference signals are cho-
sen as x1,1(0) = 0.1, x1,2(0) = 0.3, x2,1(0) =
0.1, x2,2(0) = 0.3, θ̂1(0) = θ̂2(0) = 0, K1(0) =
0, K2(0) = 0. The simulation results are shown in
Figs. 9, 10, 11, 12 and 13. Based on the above simula-
tion results, we can conclude that the signals within the
closed-loop system remain fixed-time bounded, which
implies that the good tracking performance is acquired.

0 5 10 15 20 25 30
Time(Sec)

-0.05

0

0.05

0.1

$z1$

0 5 10 15 20 25 30
Time(Sec)

-0.05

0

0.05

0.1

$z2$

Fig. 10 The trajectory of the tracking error z1
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Fig. 11 The adaptive parameter θ̂1, θ̂2
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Fig. 12 The actual control inputs u1 and u2
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Fig. 13 The system states x1,2 and x2,2

5 Conclusion

In this paper, a novel fixed-time adaptive fuzzy con-
troller is designed for a class of nonlinear intercon-
nected high-order stochastic system with unknown
control direction. The unknown nonlinear functions
and stochastic disturbances of the closed-loop system
are handled by utilizing the fuzzy logic system. By
combining the technique of adding the power integra-
tor andNussbaumgain functions, an adaptive backstep-
ping control scheme is proposed for nonlinear intercon-
nected high-order system, where the high-order terms
and the design difficulties of unknown control direc-
tions are both handled. Based on the fixed-time theory,
the fixed-time control strategy is designed for a class
of nonlinear interconnected high-order system, which
can ensure the property of fixed-time convergence and
all the signals of the controlled system are fixed-time
bounded. This paper considers both unknown control
direction and stochastic disturbances, which can bet-
ter meet the practical requirements. The validity of the
presented control scheme can be tested by theoretical
analysis along with simulation results.

In addition, the impact of the senor faults and actua-
tor faults is not considered in this paper. More attention
should be paid to the adaptive fixed-time control for the
large-scale stochastic system with faults, which will be
considered in our future research.
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