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Abstract We obtain the nondegenerate one- and
two-soliton solutions of the nonlocal nonlinear
Schrédinger equation by using the nonstandard Hirota
method. This unconventional method is used to
bilinearize the nonlocal nonlinear Schrédinger equa-
tion and its related auxiliary equations, and some
novel interaction properties of parity-time-symmetric
two-soliton solutions are derived. The detailed asymp-
totic analysis is used to reveal the characteristics of
energy conservation and energy redistribution before
and after the collision between nondegenerate soli-
tons. Experimental scheme to observe nondegenerate
solitons is also proposed. This provides potential
applications for the soliton interaction in the nonlocal
wave model.

Keywords Hirota method - Nondegenerate soliton
collision - Experimental scheme

K.-L. Geng - B.-W. Zhu - Q.-H. Cao -

C.-Q. Dai (X)) - Y.-Y. Wang (IX)

College of Optical, Mechanical and Electrical
Engineering, Zhejiang A&F University, Lin’an 311300,
Zhejiang, People’s Republic of China

e-mail: dcq424@126.com

Y.-Y. Wang
e-mail: wangyy424@163.com

1 Introduction

We all know that nonlinear Schrodinger (NLS) systems
are an awfully significant class of nonlinear systems [1-3].
The formation of solitons governed by NLS systems [4, 5]
benefits from a unique balance between dispersion and
nonlinear effects which are the key effect to control the
propagation in dispersive media through the cross-phase
modulation and coherent energy exchange. So far,
different aspects of vector solitons described by NLS
systems have been extensively studied [6—8]. NLS system
is not only used for all-optical switch [9], logical
calculation [10] and optical fiber communication system
[11]. It also widely appears in atomic condensation [12]
and plasma physics [13].

In 2013, a nonclassical integrable nonlocal nonlinear
Schrodinger (NNLS) equation was recommended by
Mussliani and Ablowitz, and was turned out that it is
parity-time(PT)-symmetric [14]. In recent years, the
NNLS equation has been deeply studied in nonlinear
optics [15-17]. Horikis et al. [15] found various elastic
interactions between dark solitons or anti-dark solitons of
NNLS equation in the continuous wave background.
Yang [16] studied bright solitons and multiple solitons of
NNLS equation under the framework of Riemann—Hilbert
formula. Rao et al. [17] constructed interesting soliton
collision dynamics in the zero background of the NNLS
equation. To sum up, this nonclassical nonlocal equations
have been concluded to dominate multiple types of
solutions. From these studies, in all modes, the collisions
between solitons with the equivalent wave number have
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been well discussed [18]. Nevertheless, to our knowledge,
this nonlocal equation with specific physical background
has not considered to study solitons which govern
inconsistent wave numbers. Therefore, we intend to
unveil the effect of this supplemental wave number which
is applied to the soliton structure and collision scene.

In practical physics, the redistribution of energy
between multipeaked solitons is an important topic. In
the coupled model, the solution with the identical
wave number of a single component is degenerate
soliton [19-21], while the solution with distinct wave
numbers is nondegenerate soliton [22]. Nondegener-
ate solitons allow multipeaked distribution and can
realize the construction of optical logic gates [23].
Stalin et al. introduced unequal wave numbers into
several distinct systems such as Manakov system [24]
and 2-coupled NLS equations [25] to construct
nondegenerate solitons. Later, nondegenerate solitons
have also been studied in the multi-component Bose—
Einstein condensation(BEC) [26] and so on. The
multipeaked structure in nondegenerate solitons has
been applied to various nonlinear models of coupled
fields [27]. Whether multipeaked nondegenerate soli-
tons are governed by the coupled NNLS(CNNLS),
equation is the question that we intend to discuss.

In this paper, we construct the nondegenerate bright
solitons of integrable CNNLS system which is derived
from a reduction in the Manakov system with specific
physical significance [16]. The nonstandard Hirota
method [28, 29] of CNNLS equation is introduced in
detail in Sect. 2. In Sect. 3, the specific one- and two-
soliton solutions of the CNNLS equations are given, and
their asymptotic analysis is made in detail to illustrate their
soliton dynamics. Next, we also reveal the interesting
phenomenon that nondegenerate solitons and degenerate
solitons coexist. We summarize the results and discuss
how nondegenerate solitons can be realized experimen-
tally. Finally, we introduce the explicit form of some
parameters that appear in the paper in the appendix.

2 Hirota method for CNNLS equation with PT
symmetry

The traditional coupled NLS equation is

2

iqj,t+‘]j,xx+202|¢]p‘2qj :07]: 1’2 (1)
p=1
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with ¢ = +1. When ¢ =1, the Manakov system
allows various soliton solutions, which can be used to
simulate the tunable transmission of optical dielectric
solitons and the optimization of optical devices [30].
Optical logic gates which could be NOR gate and OR
gate [31] can be constructed theoretically through the
energy sharing collision of solitons. This collision also
can be used to physical systems, such as non-ideal
Bose gas [32], BEC [33], and so on. When ¢ = —1,
Eq. (1) becomes the defocusing coupled NLS equa-
tion which admits dark—dark and bright—dark soliton
solutions[34, 35].

Considering the PT symmetry, CNNLS equation
becomes

iqj,t(xa t) + qj‘xx(xa t)
2

+20 Z [Q;(_xv t)CIp(x7 t)‘lp (x> t)]

p=1

=0,j=1,2. (2)

In Eq. (2), “%” represents the complex conjuga-
tion,x and ¢ denote normalized distance and delay
time, respectively. The self-induced potential V =
q,(—x,1)qp(x,1),p = 1,2 satisfies the PT symmetry
condition V*(—x,t) = V(x,t), which is the parity-
charge symmetry for a more precise statement in Ref.
[36], and here, we still use the habitual statement as the
PT symmetry. ¢;(x,¢),j = 1,2 are two complex func-
tions of real variables x and t. Equation (2) which
possess the law of conservation of infinite quantity is
integrable [14]. After the substitution x — —x,
t — —t, Eq. (2) remains unchanged and has symmetry
and complex conjugation. It is obvious that the PT
symmetry is one of the properties of the new nonlocal
equation, which is equivalent to the invariance of the
so-called self-induced potential in classical optics.

The nondegenerate exact solutions of the CNNLS
equation will be derived by Hirota method [37]. In this
paper, the nonstandard bilinear process [38] is used to
generate more general soliton solutions of the CNNLS
equation. We first introduce rational transformation

) ()
i) =5 g (=) =", )
where f,s,g", hY) j=1,2 are complex functions.
We obtain the bilinear form of Eq. (2) by introducing
SV (—x,1),j=1,2. We can match the number of
unknown functions with the number of bilinear
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equations [39] by introducing S¥)(—x,1),j = 1,2. The
bilinear form is as follows

(iD, = D?) gV (h
DYf(s) - f(s)

In the above formula, D, and D, are defined by the
following expression
0 0 o 0
DmDn . :___m___" t
X t(f g) (ax ax/) (6t at,) f(x, )

g(xl7 tl) |x=x',1=1""

(i)) f = :Fzg(/')(h(i)) sV
=480 .5,j=1,2.

(4)
(5)

The auxiliary functions are

SU) M = ig

—x,t), M
n=1
f(=x1),j=1
{ f(5,1), Jiz (6)

We truncate and expand functions f, s, g/, hV) | j =
1,2 into
gV =g+ el + . h =y P+
f(s) =1+ +far' + o
SO(—x,1) = 8V 72 + 597" + ..,

0.3

(7)

and y as a parameter of series expansion is used to
bring the truncated expansion into the bilinear equa-
tion. A set of equations that can be solved is obtained
by collecting the coefficients of the same power of y.
Then, these linear partial differential equations are
solved recursively, and the relevant explicit form of
f.s,89, hY) j =1,2 obtained constitutes the funda-
mental soliton solution.

3 Nondegenerate soliton
3.1 One-soliton

3.1.1 Solution expression

We expand the truncated expansion to the following
form to get nondegenerate soliton solutions

2 2
g(l) = Zé’zn—llznila nh = Z’bn—]lznil
n= n=1

2 2 2
F=14d fur s =143 sy 89 =Y S j=1.2.
n=1 n=1

n=1

(3)

We consider unequal fundamental solutions of all

= f,€° and set solution
forms; thus, one-soliton solution reads

modes as gsl) =age, hgl)

g +g aeh + Alem+a+é
gl 1) = = = - = —
T+h+f 1+ B}g’7|+’7| + leeqﬁrq + Clen*i+ata
hy+h /jleil 4+ A2eSiHm
q (—x,1) = = - — —,
L+s,+s 1+ B2em T 4 B2+  C2emHmtatd

©)
where 77, £; the wave number of soliton, which affects
the velocity of soliton motion. 7;, &, represent the
complex conjugate of wave number #,, &;. A}, B!}, C'
are parameters that cannot be missing in the one-
soliton of the required solution. The detailed expres-
sions of 1,7, &, él,A ,Bl,,Cl" are listed in the
appendix. When x; = 11, the degenerate one-soliton
solutions are the same as that obtained in [40].

3.1.2 Asymptotic analysis

We study the dynamics of nondegenerate solitons by
making the following asymptotic analysis of solitons.
We consider Eq. (8) with conditions
Kig > 0,k <0, K}, > K, > 0 and apply the asymp-
totic form of wave number &g, &g in (9). The
following asymptotic expression for one-soliton is
obtained by considering the dominant term alone:
Before(After)

collision:t — F00, g, 71z ~ 0, &g, E1r — FOO,

el 2a1716i 1R~ ’71R+'(ﬁ|1;’7117
1
X, 1)~ == — - ,
qx.1) 1+ Blem+i — 2i[cosh(¢F) cos(¢T) + isinh(¢7) sin(dF)]’
I o4 2a2—Kike?lnzélkJr'\'zllzéylv
« 1€ ;
—x, 1)~ = — - ,
al ) 1+ Blearth 2i[cosh(¢T) cos(pF) + isinh(¢F) sin(pF)]
(10)
’71R+”1R+A 7
where ¢ ="k pF =Tt LAR) oF =
Eptéipthdy o C,llJrfuJFA,i 1+ _ i _lna-AX
2 ) - 2 a — 1l “
2 J Ky 4K,
24+ iil elnﬁ—— AJ =1In a{, NT

J M+ 2

=InC/—InB/,lj=1,2.
1 1
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Fig.1 Nondegenerate one-soliton. a Value of the wave number
of soliton, and quasi-intensity of nondegenerate one-soliton
with, b |Irn(;c})| = |Im(K%)| =01, ¢ |Im(;c})| =04,

From the above asymptotic analysis, we can

conclude that a}(x}-l—f})/Zi,q}:oc] RVAE

af = B,/1/|efy)?,j, 1 = 1,2 are the complex ampli-
tudes of the solitons. The unit polarization vectors
aJl.,j7 [l = 1,2 are given in Eq. (10). The central posi-

tion is Ag/k} + %|.
3.1.3 Dynamics of nondegenerate one-solitons

The real part of the wave number influences the
velocity of the soliton and thus, affects the distance

@ Springer

[Im(x})| = 0.2, d [Im(x}) |=|Im(x})| = 0.45. Other parameters
are oy = 0.4540.5i, o = 0.5 + 0.55i, Re(;c}> =04

between the solitons in Ref.[41]. Nevertheless, we find
that not only the real part of the wave number can
affect the velocity of the solitons in the CNNLS
equations, but also the imaginary part of the wave
number can. The quasi-intensity of nondegenerate
one-soliton is shown in Figs. 1 and 2, respectively.
Figure la shows the wave number of soliton for
two components [39] when we fix the real part of the
wave number to 0.4 and adjust the value of the
corresponding imaginary part. Here, Re and Im
represent the real and imaginary part of the wave
number w. Points C and D in Fig. la correspond to
Fig. 1b, points B and E correspond to Fig. 1c, and
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Fig. 2 Nondegenerate one-soliton. a Value of the wave number
of soliton, and quasi-intensity of nondegenerate one-soliton
with, b Re(x!) = Re(xl) = 0.4, ¢ Re(xl) =0.3,Re(x}) =

points A and F correspond to Fig. 1d. From Fig. la,
when the real part of the wave number affecting the
soliton velocity is fixed, the farther the value of
imaginary part is from O, the closer two peaks are.
Furthermore, with the increase in the absolute value of
the imaginary part, the distance between two peaks
will continue to shorten, and finally, change from a
double-peaked structure to a single-peaked structure
from Fig. 1b, ¢ and d. We will get the symmetric
structure when the absolute values of the imaginary
parts are equal.

However, the effect of the real part of the wave
number on the distance between the two peaks is just
opposite to the imaginary part of the wave number.

o] oo

(b) !

0.084

0.044 / \ \
0.021 7 i}

0.35, d Re(xl) =Re(x}) =0.3. Other parameters are
o1 = 0.45 + 0.5i,05 = 0.5 + 0.5, ‘Im(;c})’ ~0.1.

Figure 2a shows the wave number of soliton for two
components when we fix the imaginary part of the
wave number to 0.1 and adjust the value of the
corresponding real part. Points B and E in Fig. 2a
correspond to Fig. 2b, points A and D correspond to
Fig. 2c, and points A and C correspond to Fig. 2d.
When the value of real part decreases, the distance
between two peaks will also be shortened, and the
double-peaked structure will eventually become a
single peak in Fig. 2b—d. Correspondingly, we will
obtain the symmetric structure when the real parts are
the same. We find the condition of the double-peaked
soliton state for both components. That is, when the
absolute value of the imaginary part of the wave
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number is small enough or the real part is large
enough, the nondegenerate soliton will have a double-
peaked structure. When the tunable double-peaked
nondegenerate soliton is used as the signal carrier, a
communication system with four stages (00, 01, 10,
11) can be realized [23].

3.2 Two-soliton
3.2.1 Solution expression

We truncate and expand equations to the following
number of terms

Zan 17n : h

n=1

Zth Ve

4
f=1+> ™ (11)
n=1

ZS(HA

We give the seed solution

4
s=14+> 85,780 =
n=1

& = O(lzeé] + Oﬁzzeéz,hl =oye™ + ope™. (12)
and derive the nondegenerate two-soliton solution

81 t8&t8T&
L+fh+fatfo+f’
h1+h3+h5+h7
1+s,+5,+ 56+

q(x,t) =
(13)

q*(_xa t) =

where g1 = dpes + dzzeiz,hl = oqeh
2 = _
+ogre, g3 = Y D&(l})en,ﬁ;mﬂp + E} eMHmtin,
m,n.p=1

2 _ 2
n(p) platemtSp L2 oM tin oo — mn

hy= E : dm(”)e7 P B2 M g — E : Jmn e

m,n.p=1 munM=1

2 2

9

In the above formula, superscript represents
the conjugate. The detailed form of N, P},

m?
Dl n n ymn on mn
w0 ) Tt Fivoms Koy Ly Cy Filion, Fo,
Hl

m”,H2 w1th m,n,p,M,N = 1,2 is given in the
appendix. In [39], the soliton dynamics of degenerate
two-soliton solutions in [40] are introduced, including
soliton collisions, bound state solitons. When we set
K; = 1j,j = 1,2, we can obtain degenerate two-soliton
solution. We can obtain the soliton dynamics that are
completely consistent with the degenerate two-soliton
solution when we take the same parameters in [39].

3.2.2 Asymptotic analysis

We consider the interaction of nondegenerate two-
solitons by making a detailed asymptotic analysis of
nondegenerate two-soliton solutions (13). We derive
the explicit form of two-soliton at limit 1 — FFoo with
Kjp > 0,j,1 = 1,2.k{, <xj,. The wave numbers r;; =
—Kjr(x 4+ 2xjrt),  Er = —1(x 4+ 21gt)  gradually
behave as (i) soliton Si: t — Fo0, 41k, E1r = 0, g,
&yp — to0, and (ii) soliton Sy:t — Foo, 1k, E1r = 0,
Nars Cor — F00.

Correspondingly, two solitons have the following
asymptotic form.

Before collision: t— —00,1z,&1r >0,125, E2p —
—0o0,

2

Tzn+m,+2n+cfm+nM7h5: }: jmzmeﬁ,,+n,,,+2tn+im+@7

mpn,M=1
2

g1= § [(me’h+'Im+'72+€|+€|+€2+s27h7: § Lme’h+’71+’12+’7z+€1+€m+€2 f2:S2: § N;'Ilenm+”n +P”me‘>m+‘:n7

m=1 m=1

2

m,n=1

fr=s4= E B N R Y Ry - A A A A A - e A A

mn,M,N=1

fa=ss :Mem+ﬁ|+flz+ﬁz+f|+g1+iz+gz .

(14)
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1 2y(2 4 7=l J_ (2 1l
1 K — K7) (K +K; K| — 1) (K) + 1
\/h bcosh( ’1,R+C1R+¢/])+\/h cosh(njk—kjk+¢/2|) el = ( X / j) ( 1‘ ) [, ])’
(1) (6} =~ R0} + &)/ (]~ )]+ )
YR I SN
= szzapf 07j=2-,]~, = 1,2 .

2a} Kipe U0 ) cosh (& g+ D)

Siiqr (x,8) A ,
’ 24 /b3 cosh(+ &+ $2)+\ b1 /bricosh(n—E et 42) o)

2a;"1 ke €140 cosh (i + 5 )
G2 (x,t)~

\/ 02 2 /b 2COSh(’7/R+5JR+¢]1)+\/b {/by; COSh(’?JR @R‘Hlyz)

. K,n—l ;cj,mzl
b =N+MM={ N=2 !
7] —
Kz,n—E Ky,m=2
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40

(a)

40

(d)

Fig. 3 Quasi-intensity distribution of nondegenerate two-solitons for agi(x,7), b qa(x,1), ¢qi(—x,1), d ¢5(—x,t) with
K} =0.31+ i, K% =0.3-— i, K; =03+ 141, K% =0.31-— l.4i,0(11R = 0Rr = O.S,OCZIR = 012R = 0.55,0{,‘1‘1 =1.

After collision:
— 400,

The intensity of S; and S, is the same as long as the
phase condition ¢/' = ¢2 jm=1,2 are satisfied
before and after the collision from the above asymp-
totic analysis. This means that the initial amplitude
remains invariant after the collision. It can also be

clearly seen from the calculated transition amplitude

t — 400,11z, Cir = 0, Mpr, Sor

le = ajl-+ /a]lf,j,l = 1,2, and j represents two compo-
nents, and /4 represents the asymptotic state when
t — +o0o. The strength of nondegenerate solitons
remains unchanged during the collision. And the
strength of each soliton is conservative and can be

2 2
obtained from ’aj’f‘ = ‘ajl*‘ . The strength of each

@ Springer

mode is also conservative according to the calculated

2 2 2 2
formula ‘a}“ +‘af“ = ‘a_}*‘ + af*‘ gyl =1,2.

3.2.3 The interaction of nondegenerate two-solitons

Figure 3 shows the collision of nondegenerate two-
solitons. In order to more clearly analyze the energy
distribution before and after the soliton collision, we
draw a projection map of quasi-intensity in Fig. 3. For
the local quantity ¢q;, the soliton S;(S;) has a small
(large) transition amplitude value before the collision.
After the collision, their energy is redistributed,
namely the soliton S; is suppressed while soliton S
is increased correspondingly. We observe the opposite
situation for the component g,. The soliton S; is
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Fig. 4 Quasi-intensity distribution of nondegenerate two-solitons
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(d)
20
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and degenerate solitons for agq;(x,7), bqa(x,1),

Cc qT(*)Q l), d q;(*x, l) with K} =05+ i K% =0.5- i K% =05+ i,K% =0.51 — 1.05i,0(1]R = Opr = 057 021R = Ol12R = 0557

Ojr = 1.

increased, while the soliton S, is suppressed after the
collision. The total energy is conserved after the
collision. For two nonlocal quantities g} and g5, we
observe a phenomenon similar to components g; and
q». The soliton S, is suppressed, and the soliton S, is
increased correspondingly in gj. The soliton S is
increased, while the soliton S, is suppressed in g;.
From the previous asymptotic analysis, we can see that
the total energy of the whole system is conservative for
four components g1, g2, g7, ¢5. The situation caused by
this collision is not observed in the local NLS
equation.

3.3 Interaction between nondegenerate two-
solitons and degenerate solitons

In order to make degenerate solitons and nondegenerate
solitons exist at the same time in NNLS equation, we
limit the wave number of solitons, that is, set one group
of wave numbers equal to obtain degenerate solitons,
and make the other group of wave numbers different to
obtain nondegenerate solitons. Here, we enumerate one
of the cases with k} =k}, k} # k3 and 0, = &, 1, #
&, for the limitation. It can be observed from Fig. 4a
and b that the intensity of S is suppressed after the
collision of component g;, while it is enhanced in
component ¢p. As expected, degenerate solitons
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undergo energy redistribution between components g
and ¢,. For degenerate solitons, the polarization vector
Af = o/ (o oy )72
it possible to change the shape of solitons.

The nondegenerate asymmetric double-peaked
soliton S, shows the characteristics of collision as
shown in Fig. 4. For two components ¢g; and g, the
interaction between nondegenerate soliton S, and
degenerate soliton will have a strong impact. As a
result, the strength of nondegenerate soliton S,
increases after the collision in component g,. It is
suppressed in the component ¢;. We also note that
when nondegenerate solitons interact with degenerate
solitons, nondegenerate solitons lose their asymmetric
double-peaked structure and become another form of
asymmetric double-peaked profile, which is shown by
soliton S, in the projection figure of Fig. 4c.

The characteristics of intensity variation in ¢; and
q» are similar to those previously observed in the 2-
coupled mixed derivative NLS equation. The expan-
sion of nondegenerate solitons with single peak can be
seen as an implementation of signal amplification, in
which the degenerate solitons act as pump waves [41].
Soliton §; becomes a double-peaked structure after
collision in nonlocal quantities ¢}(—x,1),q5(—x,1).
This energy sharing collision provides the foundation
for the realization of optical logic gates [31].

plays a key role in making

3.4 Experimental realization of nondegenerate
solitons

In order to observe experimentally the existence of
nondegenerate solitons, the incoherent process given
in [22] can be considered. We use two different laser
sources to give two laser beams with different
wavelengths, either ordinary laser or special laser.
We then use a polarization fraction to split these two
different laser beams into four independent incoherent
fields. To expand, the first laser source is divided into
two different fields g, and g, by the polarization beam
splitter. Similarly, the second laser beam given is
divided by a beam splitter into two other incoherent
fields ¢} and g;. The intensity of four fields is different.
Two independent nondegenerate solitons are given in
g1 and g,, and another two nondegenerate solitons are
formed in ¢} and g;. Another beam splitter can be used
to couple ¢; and g;. The same operation applies to ¢»
and ¢;. Before output to the imaging system, the

@ Springer

generated field beam can be focused by two separate
cylindrical lenses. It should be noted that the collision
angle must be large enough to observe the collision of
two nondegenerate solitons [42]. The occurrence of
multimode and multipeaked solitons in dispersive
nonlinear media can be observed using the experi-
mental program of a single laser [43].

4 Conclusion

In short, we obtain the nondegenerate one- and two-soliton
solutions of the NNLS equation by using the nonstandard
Hirota bilinear method with auxiliary functions. We show
the difference of nondegenerate one-solitons between
nonlocal and local equations [25], that is, the velocity of the
nondegenerate solitons is not only affected by the
imaginary part of the wave number, but also affected by
the real part of the wave number in the nonlocal case. The
nondegenerate one-solitons with different structures we
obtained can be used as the signal carrier proposed in [23]
to improve the transmission rate and realize the four stage
(00, 01, 10, 11) communication system.

We also study the collision between two nonde-
generate two-solitons and find the phenomenon that is
not observed in the local state, namely, the local and
nonlocal two components have the same intensity
change, but the energy of the whole system is
conserved. The double-peaked properties of nonde-
generate solitons provide the possibility for the
realization of information processing. Finally, we
investigated that nondegenerate and degenerate soli-
tons can exist together. However, the shape change
during the collision of nondegenerate and degenerate
solitons indicates that they cannot coexist in commu-
nication systems. In the nonlocal quantities, degener-
ate solitons become double-peaked structures after
collisions, and this multipeaked structure can be used
to send information about dense data [44]. In future
work, we will try to use bilinear residual network
method [45] to further study the dynamic behavior
between nondegenerate solitons in nonlocal systems
and will analyze the phenomenon caused by soliton
collisions in more detail.
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