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Abstract Recently, a neural networksmethod: physics-
informed neural networks (PINNs) is proposed to solve
nonlinear partial differential equations (NPDEs); this
method obtained the predicted solution by minimizing
the sum of mean square of initial error, boundary error
and residual of equation. It provides a new approach for
solvingNPDEs by neural networks. The complexmod-
ified Korteweg–de Vries (cmKdV) equation is a clas-
sical integrable equation which contains plenty of sig-
nificant properties and occurs in many physical areas.
However, due to its complexity, it is difficult to solve the
high-order rogue waves of them by PINNs, so how to
solve the high-order rogue waves of complex equation
by neural networks method has become a hot research
direction. In this paper, based on PINNs, we propose
two neural networks methods: mix-training physics-
informed neural networks (MTPINNs) and prior infor-
mationmix-training physics-informed neural networks
(PMTPINNs). Numerical experiments have shown that
the original PINNs are completely unable to simulate
the high-order rogue waves of the cmKdV equation,
but our proposed models not only simulate these high-
order rogue waves, but also significantly improve the
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simulation ability, increasing prediction accuracy by
three to four orders of magnitude. The inverse problem
of these models is tested by some noise data, which
also proves that these models have good robustness.
The above results validate the superiority of our pro-
posed models in simulating high-order rogue waves of
cmKdV equation, and these models provide us some
new insights for studying the dynamic characteristics
of high-order roguewaves using neural networksmeth-
ods.

Keywords Physics-informed neural networks ·
cmKdV equation · High-order rogue waves · Mix-
training · Prior information

1 Introduction

Nonlinear problems exist in many fields, such as fluid
mechanics, plasma physics and fiber optic commu-
nications [1–4]. Nonlinear phenomena in nature are
described as simple mathematical physical models and
expressed by nonlinear partial differential equations
(NPDEs).Because of the importance of nonlinear prob-
lems, solving NPDEs has been the focus of researchers
in recent decades.

With the development of computer and the arrival of
the era of big data, due to its powerful “learning” abil-
ity, deep learning has had a significant impact in many
fields, such as computer vision (unmanned driving, face
recognition,VR/AR,medical image analysis, etc.), rec-
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ommendation systems (help users find information that
interests them in an information overload environment
and push it to them) and natural language process-
ing (syntactic semantic analysis, information extrac-
tion, machine translation, information retrieval, etc.)
[5–8]. An important reason behind the success of deep
learning is the use of neural networks. Because the key
step to obtain the predictive solution of NPDEs through
deep learning is to constrain the neural networks tomin-
imize the loss function. Thus, the use of deep neural
networks methods to solve NPDEs has attracted exten-
sive attention, and some models [9–12] optimized on
the basis of them have emerged, greatly promoting the
development of this field. Among theseworks, physics-
informed neural networks (PINNs) proposed by Raissi
et al. [9] are particularly outstanding. This method uses
the standard back-propagation (BP) neural networks,
generating the function through the automatic differ-
entiation method of the BP neural networks, and then
obtain the final predicted solution by minimizing the
sum of mean square of initial error, boundary error
and residual of NPDEs. In addition, compared with
traditional mesh-based methods such as finite differ-
ence method and finite element method, PINNs make
the method meshless because of its automatic differ-
ential method. Therefore, PINNs have attracted much
attention because of their good generalization ability
and prediction performance in solving NPDEs, Bihlo
et al. [13] simulated the shallow-water equations on the
sphere by PINNs. Through PINNs, Luo et al. [14] sim-
ulated data-driven solutions of the Sasa–Satsuma equa-
tion and solved parameter discovery problem. Li et al.
[15] solved the forward and inverse problems of the
nonlinear Schrödinger equation with the generalized
PT -symmetric Scarf-II potential via PINNs. Chen et
al. [16] simulated data-driven vector localizedwaves of
Manakov system by PINNs and solved the parameter
discovery problem of Manakov system.

Despite certain positive outcomes, PINNs have
encountered unforeseen challenges in approximating
potential solutions. Certain equations display dimin-
ished simulation precision and, at times, fail to be
simulated. Consequently, the optimization of neural
networks methodologies to enable novel models to
simulate equation solutions unattainable by conven-
tional PINNs, or to procure more precise predictive
solutions, has emerged as a critical research focus
among scholars. Recently, there have been proposals
for neural networks methods based on PINNs, involv-

ing the optimization of neural networks architectures
or the loss function: Mean Squared Error (MSE). For
instance, Jagtap et al. [17] introduced an advanced
PINNs method by altering the training area of the
PINNs loss function and augmenting the energy conser-
vation law constraint, employing this method to simu-
late the inverse problem in supersonicflow.Mattey et al.
[18] put forth a novel sequential PINNsmodel by incor-
porating additional loss function constraints, simulat-
ing Alan Cahn and Kahn Hilliard equations with this
method. Rezaei et al. [19] amalgamated the finite ele-
ment method, adding the finite element boundary con-
straint to the loss function to propose a hybrid PINNs,
examining issues in heterogeneous domains via this
composite PINNs. Chen and his team [20–23] revised
the loss function by appending a slope recovery term,
proposing an IPNNs method. This approach was used
to simulate data-driven rogue waves and soliton solu-
tions of classical mathematical physics equations such
as the Sin-Gordon equation, nonlinear Schrödinger
equation (NLSE), and derivative NLSE. The team also
employed two identical neural networks, incorporating
the sum of the mean squared deviations of the predic-
tion solutions acquired from the two neural networks
as constraints to the loss function of the second neural
networks, they proposed a two-stage PINNs [24] and
simulated the rational waves of a class of nonlinear
physical equations. Ling et al. [25] altered the training
area, selecting points other than boundary errors, initial
errors, and equation residuals per the established algo-
rithm. They added the sum of the mean square errors
corresponding to these points into the loss function as a
constraining condition, and proposed a pre-fixedmulti-
stage PINNs, thereby obtaining the data-driven vector
soliton solution of coupled NLSE. Yan et al. [26–29]
proposed an enhanced PINNs by modifying the loss
function and incorporating the constraint conditions of
the first-order derivative boundary loss function term,
predicting the peakon solution and periodic solution of
the Camassa–Holm-like equations with this improved
PINNs. Building upon the PINNs model, Li et al. [30–
32] revised the loss function, setting the coefficients of
the boundary loss function and the initial loss function
as variables, thereby proposing a gradient-optimized
PINNs; they also altered the training area by merging
the boundary area with the initial area to create a new
training area, subsequently reducing computer error,
and proposed a mix-training PINNs. These twomodels
further enhance the accuracy of the simulation solution.
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Dai et al. [33–35] proposed the mixed PINNs method
by modifying the training region of PINNs loss func-
tion and increasing the constraint of the energy con-
servation law, simulating the three-component coupled
NLSE, KdV equation, and mKdV equation.

Building on extant research findings, we contem-
plate the possibility of proposing a novel neural net-
works model of superior performance through modi-
fications to the loss function MSE , without altering
the structure of the neural networks. Consequently,
this study amalgamates the initial sampling region
I and boundary sampling region B in the original
PINNs model into a single mix-training sampling
region I B, thereby proposing a mix-training physics-
informed neural networks (MTPINNs) model. Further-
more, predicated on the MTPINNs model, we select
certain sample points from the sharp region of the equa-
tion solution, a region encompassing specific points
that instigate substantial oscillations in preceding and
subsequent solution values. These sample points are
integrated as prior information into the mixed training
sampling region I B, forming a novel sampling region
I BP and leading to the proposition of a prior informa-
tion mix-training PINNs (PMTPINNs).

Rogue waves constitute a compelling physical phe-
nomenon, manifesting in various domains such as
optics, ocean dynamics, and plasma, among others.
Given the instability and unpredictability of rogue
waves, studying them and applying the research find-
ings to practical situations hold significant value. This
could, for instance, include strategies to mitigate the
damages inflicted on ships by rogue waves during mar-
itime voyages, or measures to prevent harm to sea-
faring personnel due to these waves. Recently, sev-
eral scholars have employed neural networks models
to simulate rogue waves of certain classical integrable
equations, procuring commendable results [18,20,23,
27,29]. However, the current neural networks models
are unable to simulate the high-order rogue waves of
some intricate NPDEs, such as the high-order rogue
waves of the cmKdV equation [22]. Thus, our objective
is to propose a neural networks methodology capable
of simulating high-order rogue waves of the cmKdV
equation. In this paper, we will simulate the second-
order and third-order rogue waves of the cmKdV equa-
tion utilizing our proposed MTPINNs and PMTPINNs
models.

The structure of this paper is as follows: in Sect. 2,
we introduce the neural networks’ structure; in Sect. 3,

we first review the PINNs model, then introduce
MTPINNs and PMTPINNs; in Sect. 4, we use PINNs,
MTPINNs and PMTPINNs to simulate second-order
and third-order rogue waves of the cmKdV equation,
and make data-driven coefficient discovery (inverse
problem) for the cmKdV equation. Then, by checking
the numerical results, we found that the PINNs could
not simulate high-order rogue waves of cmKdV equa-
tion, butMTPINNs andPMTPINNsweproposed could
do so, and these models’ performance is good. Finally,
Sect. 5 gives the conclusion and discussion.

2 Neural networks

This section provides an overview of neural networks,
with a specific focus on Backpropagation (BP) neu-
ral networks. The BP neural networks learning algo-
rithm, according to Li et al. [36], is currently the most
triumphant methodology utilized in neural networks
training. Typically, a BP neural networks comprises
input layers, hidden layers, output layers, neurons, and
an activation function.

The process of solution derivation and error exami-
nation within the BP neural networks model is as fol-
lows: Initially, the relevant weights w and biases b are
established. Following this, the input values, such as x
and t , are set, alongwith the quantity of neurons in each
hidden layer. The corresponding weights w and biases
b are then allocated to the inputs x and t . Executing
a sequence of weighted summations on the inputs x
and t yields u(x, t), which, when applied to the activa-
tion function, produces û(x, t), this is then transmitted
to the subsequent layer within the neural networks. It
is worth noting that the implementation of activation
function is used to modify the linear relationship of the
previous data to provide practicability for the layer of
neural networks. This capability enables the networks
to learn complex objects and data, representing nonlin-
ear relationships between the inputs and outputs of any
complex function mapping. This sequence continues
up to the penultimate layer,wherein the activation func-
tion is no longer utilized, and the output layer directly
generates the final predictive solution Y (x, t). Then, an
optimizer is selected to optimize the obtained Y (x, t).
If the mean squared error (MSE) derived from the jux-
taposition of expected and predicted results exceeds ε

or if the iteration count has not reached the maximum
value, the predictive solution Y (x, t) is sent back to the
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Fig. 1 Mix-training physics-informed neural networks (MTPINNs)

input layer to update the weights w and biases b and
repeat the process. The MSE will continue to decrease
until it is less than ε or the iteration count reaches the
maximum value, thereby concluding the loop and pro-
ducing the final predictive solution for the equation.

In essence, the BP neural networks as an “error cor-
rection” function. In this study, we have employed two
optimization algorithms, namely L-BFG-S and Adam,
to achieve optimal results. The Adam optimization
algorithm, as described in [37], is a traditional form
of the stochastic gradient descent algorithm, while the
L-BFG-S optimization algorithm, outlined in [38], is
a full-batch gradient descent optimization algorithm
based on the quasi-Newton method.

As shown in Fig. 1, input and output represent input
layer and output layer, and Hidden1, Hidden2,…, Hid-
denN represent hidden layer. I(x) is an initial value
condition, B(x, t) is a boundary condition. MS f is the
equation residual; MSI B is the loss function on the
mixed region I B, the mixed region I B consists of ini-
tial region I and boundary region B. ε is a control-
lable parameter, and maxiter is the largest step of iter-
ation. The above two parameters are used as the loop-
continuation condition. Finally, the predicted solution
q̂(x, t) is obtained at the end of the loop.

3 Model setup

3.1 PINNs

First, we will briefly introduce the PINNs model. The
NPDEs solved by PINNs are as follows [9]:
⎧
⎪⎨

⎪⎩

qt + N [q] = 0, (x, t) ∈ � × T,

q(x, t) = I(x, t), x ∈ �, t = t0,

q(x, t) = B(x, t), (x, t) ∈ ∂� × T,

(1)

here T and � represent the time domain and spatial
domain of the equation, respectively, and ∂� repre-
sent the boundary region of the equation in the spatial
direction. N [q] is the combination of nonlinear and
linear operators of q(x, t), and I(x), B(x, t) is the ini-
tial condition and boundary condition of the equation,
respectively. In addition, in order to calculate the loss
function subsequently, we let f = qt + N [q] is the
equation residual.

We need to simulate the original equation through
neural networks, so as to simulate the predicted solution
q̂(x, t) of the original equation. Using PINNs to solve
NPDEswith initial conditions and boundary conditions
requires a loss function MSE and gradient descent
method is used to process the loss function, so wemake
the loss function [9] as follows:
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MSEPI NNs = MS f + MSI + MSB

= 1

N f

N f∑

i=1

[ f (xi , t i )]2

+ 1

NI

NI∑

i=1

[q̂(xiI , t0) − q(xiI , t0)]2

+ 1

NB

NB∑

i=1

[q̂(xiB, t iB) − q(xiB, t iB)]2

(2)

where the loss function consists of three parts, namely,
equation residual MS f , initial condition error MSI
and boundary condition error MSB. N f is the number
of sampling points in the whole area, NI is the number
of sampling points in the initial area, and NB is the
number of sampling points in the boundary conditions.

The above sampling points are random sampling in a
specific area. Finally, the two optimizers use the gradi-
ent descent method tominimize the loss functionMSE
until reach convergence.

3.2 MTPINNs

Although the PINNs has achieved success in many
fields, there are still many difficulties in solving some
complex NPDEs. Because the loss function of the
model is calculated by sampling from the whole area
MS f , from the initial value area MSI , and from the
boundary area MSB. Finally, the mean square of the
three parts is added to form thefinal loss functionMSE .
Therefore, when simulating some complexNPDEs, the
accuracy may be too low or the solution of the equation
cannot be simulated.

In this part, we try to combine the boundary region
B and initial value region I into one region I B; that is,
we directly proceed sampling point training from this
new region. In theory, we can continue to reduce the
loss function MSE , and the error of the corresponding
boundary conditions and initial conditions also changes
fromMSB+MSI toMSI B. At this time, the new loss
function [32] is:

MSEMT P I NNs = MS f + MSI B

= 1

N f

N f∑

i=1

[ f (xi , t i )]2

+ 1

NIB

NIB∑

i=1

[q̂(xiIB, t iIB)

− q(xiIB , t iIB)]2. (3)

where the loss function is composed of two parts,
namely equation residuals MS f , error MSI B in the
mixed region I B composed of initial conditions and
boundary conditions. q̂(xiIB , t iIB) is our predicted
solution andq(xiI B , t iI B) is the true solution of the equa-
tion; N f is the number of sampling points in the whole
region, and NIB is the number of sampling points in
the mixed region. In order to better compare the quality
of methods, we make NIB and NI , NB of PINNs to
meet the following conditions:

NIB = NI + NB (4)

The sampling methods are the same, but the sampling
areas are different.

3.3 PMTPINNs

When simulating the existing research results, we
found that sometimes the sampling area is too random,
so many points with large errors are not selected as
training points. Therefore, we consider whether it is
possible to add the constraint conditions for selecting
training points, so that some pointswith large errors can
be selected for training. At this time, we list the sam-
pling points of the sharp area of the equation solution
in advance, and then, they are added as prior informa-
tion to the previous I B training area, generating a new
area I BP . Then, when sampling again, it will be car-
ried out in a new area, so that the method can be further
optimized. This idea combines the idea of adaptive grid
used in the finite difference method. The idea of adap-
tive grid is to reduce the number of grid nodes in the
area with small error, and densify the grid in the area
with large error. At this time, the new loss function [32]
is defined as:
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MSEPMT P I NNs = MS f + MSI BP

= 1

N f

N f∑

i=1

[ f (xi , t i )]2

+ 1

NIBP

NIBP∑

i=1

[q̂(xiIBP , t iIBP )

− q(xiIBP , t iIBP )]2. (5)

where the loss function MSE is composed of two
parts, namely equation residuals MS f and loss func-
tion MSI B. q̂(xiIBP , t iIBP ) is our predicted solution
and q(xiIBP , t iIBP ) is the true solution of the equa-
tion; N f is the number of sampling points in the whole
region, and NIBP is the number of sampling points in
the mixed region. Similarly, we order NIBP = NIB .
In this way, a kind of prior information mix-training
model PMTPINNs is generated by adding the sampling
points of the sharp area of the equation solution to the
training domain in advance.

4 Numerical experiment

In this section, we test the performance of PINNs,
MTPINNs, and PMTPINNs by high-order roguewaves
of the cmKdV equation [39]. In all cases, without los-
ing generality, using a deep neural networks with 6
hidden layers with 80 neurons in each hidden layer,
we define the hyperbolic tangent function (tanh) as the
nonlinear activation equation of the model. By default,
L-BFGS algorithm [38] is used to train 40,000 steps
of the networks, and then Adam optimizer [37] with
default learning rate is used to optimize 40,000 steps
of the networks. The weights w and deviations b in
all models are initialized using the Xavier method [9],
without any additional regularization techniques. It is
worth noting that we use N f = 10, 000, NI = 50
and NB = 50 sample points, respectively, on equa-
tion residuals, initial conditions and boundary condi-
tions to test. For consistency and convenience of sub-
sequent comparison of method performance, we use
NIB = 100 sample points on themixed trainingdataset
from Dirichlet boundary conditions and NIBP = 100
sample points on the mixed dataset from sharp regions
and Dirichlet boundary conditions.

Consider cmKdV equation with Dirichlet boundary
conditions [39]:

⎧
⎪⎨

⎪⎩

qt + 6|q|2qx + qxxx = 0, (x, t) ∈ � × T,

q(x, t) = I(x, t), x ∈ �, t = t0,

q(x, t) = B(x, t), (x, t) ∈ ∂� × T,

(6)

where q(x, t) is an equation containing variables x and
t , which are space variables and time variables, respec-
tively.

4.1 Second-order rogue waves

In this section, we take the second-order rogue waves
of cmKdV equation as an example, and implement two
sets of numerical experiments according to the different
parameters of the roguewaves. The form of the second-
order rogue waves of the cmKdV equation [39] is as
follows:

q[2] = ceia[x+t (a2−6c2)] B(x, t)

C(x, t)
, (7)

where B(x, t) and C(x, t) are polynomials containing
terms a, c, x, t, s0, s1, and the specific values are given
in Appendix A.

4.1.1 a = 1.44, c = 1, s0 = 0, s1 = 100

First, when a = 1.44, c = 1, s0 = 0, s1 = 100, T ∈
[−0.6, 0.8], X ∈ [−8, 8], the corresponding cmKdV
equation with Dirichlet boundary conditions [39] is as
follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qt + 6|q|2qx + qxxx = 0, (x, t) ∈ � × T,

q(x, −0.6) = ceia[x−0.6(a2−6c2)] B(x,−0.6)
C(x,−0.6) , x ∈ [−8, 8],

q(−8, t) = ceia[−8+t (a2−6c2)] B(−8,t)
C(−8,t) , t ∈ [−0.6, 0.8],

q(8, t) = ceia[8+t (a2−6c2)] B(8,t)
C(8,t) , t ∈ [−0.6, 0.8].

(8)

First, we use PINNS, MTPINNS and PMTPINNs
models, combined with the training conditions and
optimization methods described in Sect. 3 to conduct
numerical experiments. However, we find that PINNs
model cannot simulate second-order rogue waves, so
PINNs is not suitable for this. Thenwe conduct numeri-
cal experiments on MTPINNs and find that MTPINNs
has a qualitative leap in simulation ability compared
with PINNs. Table 1 provides a more intuitive and
detailed assessment of MTPINNs’ simulated perfor-
mance.

FromTable 1,we can obtain the experimental results
ofMTPINNs’ prediction performance for second-order
abnormal waves under all neural network conditions.
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Table 1 The relative errors of the two models with respect to
the first kind of second-order rogue waves

Numerical experimental model
Neural network information PINNs MTPINNs

40 Neuron|6 hidden layer 2.47e+00 2.2e−02

60 Neuron|6 hidden layer 2.04e+00 1.665e−02

80 Neuron|6 hidden layer 2.47e+00 7.532e−03

40 Neuron|8 hidden layer 3.56e+00 1.87e−02

60 Neuron|8 hidden layer 2.18e+00 1.041e−02

80 Neuron|8 hidden layer 2.47e+00 4.34e−03

Press the Tab key. FromTable 1, we find thatMTPINNs
was superior to PINNs when the number of neurons
in the hidden layer and each layer was the same.
MTPINNs can not only complete the tasks that PINNs
has not completed, but also has a high accuracy rate.
In order to better and more clearly observe the perfor-
mance ofMTPINNs,we give the exact solution, predic-

tive solution and absolute error of MTPINNs in Fig. 2,
where the black marks in the figure are we selected
training points. In addition, in order to observe the iter-
ative optimization process of the optimizer we set up,
we also draw the loss function shown in Fig. (3). As
can be seen from Fig. 3, the value of the loss function
gradually decreases with the increase of the number
of iterations. And we believe that with the increase of
the number of iterations, the error of the model will be
smaller and smaller, and the accuracy will be higher
and higher.

In addition, in order to test PMTPINNs, we choose
a neural networks with 6 hidden layers and 80 neurons
in each layer, and add some training points in the sharp
area of the rogue waves (Fig. 4 shows the new sam-
pling area). Through Table 2, we find that PMTPINNs
is an order ofmagnitudemore accurate thanMTPINNs,
which is verymeaningful. Based on the results, the con-
cept of model optimization rate is introduced, It meets
the following conditions: 1 − PMT P I NNs L2 errors

MT P I NNs L2 errors
. We

Fig. 2 a Exact solution of equation (8), b predicted solution of equation (8), c absolute error of the second-order rogue waves (8)
simulated by MTPINNs (relative error is 7.532e−03)
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Fig. 3 Training error of the
second-order rogue waves
simulated by MTPINNs,
where Lr and Lu ,
respectively, represent the
mean value of function
residual MS f and the sum
of the mean value of the
initial error and the mean
value of the boundary error

Fig. 4 New sampling area
of the second-order rogue
waves by PMTPINNs

Table 2 Compared with
MTPINNs, the relative
errors and optimization rate
of PMTPINNs

Numerical experimental model MTPINNs PMTPINNs

Neural network information 80 Neuron|6 hidden layer 80 Neuron|6 hidden layer

relative error 7.532e−03 8.415e−04

Model optimization rate – 88.8%

find the model optimization rate of PMTPINNs is also
quite good.

4.1.2 a = 1.44, c = 1, s0 = 0, s1 = 0

Secondly, when a = 1.44, c = 1, s0 = 0, s1 = 0,
T ∈ [−0.5, 0.5], X ∈ [−5, 5], the corresponding
cmKdV equation [39] and the three-dimensional dia-
gram in Fig. 5 are as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qt + 6|q|2qx + qxxx = 0, (x, t) ∈ � × T,

q(x,−0.5) = ceia[x−0.4(a2−6c2)] B(x,−0.4)
C(x,−0.4) , x ∈ [−5, 5],

q(−5, t) = ceia[−3+t (a2−6c2)] B(−3,t)
C(−3,t) , t ∈ [−0.5, 0.5],

q(5, t) = ceia[3+t (a2−6c2)] B(3,t)
C(3,t) , t ∈ [−0.5, 0.5].

(9)

We carried out the same experimental method as
above and also found that PINNs could not simulate
the second-order rogue waves, and the accuracy of
MTPINNs was still excellent. The experimental results
of the prediction performance of MTPINNs for this
second-order rogue waves under all neural networks
conditions are shown in Table 3.

4.2 Third-order rogue waves

In this section, we will simulate the third-order rogue
waves of the cmKdV equation. The form of the third-
order rogue waves of the cmKdV equation [39] is as
follows:
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Fig. 5 Three-dimensional
diagram of Eq. (9)

Table 3 The relative errors of the two models with respect to
the second kind of second-order rogue waves

Numerical experimental model
Neural network information PINNs MTPINNs

40 Neuron|6 hidden layer 1.43e+00 3.885e−02

60 Neuron|6 hidden layer 1.05e+00 1.8e−02

80 Neuron|6 hidden layer 1.43e+00 1.2e−02

40 Neuron|8 hidden layer 1.67e+00 1.743e−02

60 Neuron|8 hidden layer 1.09e+00 1.078e−02

80 Neuron|8 hidden layer 1.43e+00 8.542e−03

q[3] = L1(x, t)

L2(x, t)
ei[

3
2 x− 45

8 t], (10)

where L1(x, t) and L2(x, t) are polynomials contain-
ing terms a, c, x, t, s0, s1, and the specific values are
given in Appendix B.

Due to the limited data, we only implement numeri-
cal experiments on third-order roguewaves in this case.
When a = 1.5, c = 1, s0 = 0, s1 = 0, s2 = 0,
T ∈ [−1.0, 1.5], X ∈ [−10, 10], the corresponding
cmKdV equation with Dirichlet boundary conditions
and the three-dimensional diagram of equations drawn
(Fig. 6) are as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qt + 6|q|2qx + qxxx = 0, (x, t) ∈ � × T,

q(x, −1.0) = L1(x,−0.4)
L2(x,−0.4) e

i[ 32 x+ 45
8 × 2

5 ], x ∈ [−10, 10],
q(−10, t) = L1(−6,t)

L2(−6,t) e
i[−9− 45

8 t], t ∈ [−1, 1.5],
q(10, t) = L1(6,t)

L2(6,t)
ei[9− 45

8 t], t ∈ [−1, 1.5]

(11)

We still use the three models in Sect. 2, combined
with the training conditions and optimization methods

described in Sect. 3, to implement numerical experi-
ments. The relative error of PINNs is still very large,
and the third-order rogue waves of the equation cannot
be simulated. Then we proceeded numerical experi-
ments on the MTPINNs, we found that compared with
the PINNs,MTPINNs still has a good accuracy. Table 4
provides a more intuitive and detailed evaluation of the
prediction performance of the MTPINNs.

From Table 4, when the number of neurons in
the hidden layer and each layer is the same, we can
better confirm that MTPINNs is superior to PINNs.
MTPINNs not only complete the tasks that PINNs
have not completed, but also have high accuracy. From
Table 4, we can obtain the experimental results of the
prediction performance ofMTPINNson the third-order
rogue waves under all neural networks conditions. In
order to better and more clearly observe the perfor-
mance of the model, we still present the exact solution,
predicted solution and absolute error of the equation in
Fig. 7.

In addition, in order to test PMTPINNs model, we
still select the neural networks with 6 hidden layers
and 80 neurons in each layer, and add some training
points (Fig. 8) near the sharp area of the rogue waves in
training area. Through numerical experiments, we find
that PMTPINNs have higher accuracy thanMTPINNs.
Through Table 5, it is found that the optimization rate
of the model relative to MTPINNs is still good, which
is very meaningful.

In conclusion, MTPINNs are better than PINNs in
the simulation of second-order and third-order rogue
waves of cmKdV equation, and PMTPINNs again
improve the accuracy based on MTPINNs.
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Fig. 6 Three-dimensional
diagram of Eq. (11)

Table 4 Relative errors of the two models

Numerical experimental model
Neural network information PINNs MTPINNs

40 Neuron|6 hidden layer 1.672e+00 1.317e−03

60 Neuron|6 hidden layer 1.45e+00 1.15e−03

80 Neuron|6 hidden layer 1.09e+00 9.802e−04

40 Neuron|8 hidden layer 2.31e+00 2.221e−03

60 Neuron|8 hidden layer 1.672e+00 7.234e−04

80 Neuron|8 hidden layer 1.843e+00 6.407e−04

4.3 The inverse problem of cmKdV Equation

In order to explore the unknown parameters [λ1, λ2]
of cmKdV equation, we will use data-driven discov-
ery method to discover NPDEs from MTPINNs deep
learning framework. The specific form of the equation
[39] is as follows:

qt + λ1|q|2qx + λ2qxxx = 0,

(x, t) ∈ � × T . (12)

The potential solution q̂(x, t) = û(x, t) + iv̂(x, t),
[û(x, t), v̂(x, t)] and are the real part and imagi-
nary part, respectively. Then, we make F(x, t) =
iFu(x, t)+Fv(x, t), we approximate the potential solu-
tion by using the reduced value of F(x, t) method.
Here, F(x, t), Fu(x, t) and Fv(x, t) satisfy

F(x, t) = qt + λ1|q|2qx + λ2qxxx ,

Fu(x, t) = vt + λ1u
2vx + λ1v

2vx + λ2vxxx ,

Fv(x, t) = ut + λ1u
2ux + λ1v

2ux + λ2uxxx . (13)

The unknown parameters [λ1, λ2] are trained by
using input data sets [u(x, t), v(x, t)] from initial val-

uesI(x, t) = u0(x, t0)+v0(x, t0) and boundary condi-
tionsB(x, t) = uB(x, t)+vB(x, t), and the undetected
solution q̂(x, t) = û(x, t) + iv̂(x, t) is approximated
by minimizing the loss function MSE :

MSE = 1

NR

NR∑

i=1

(∣
∣
∣ fu(x

i
R, t iR)

∣
∣
∣
2 +

∣
∣
∣ fv(x

i
R, t iR)

∣
∣
∣
2)

+ 1

NS

NS∑

i=1

( ∣
∣
∣û(x j

S , t
j
S ) − u(x j

S , t
j
S )

∣
∣
∣
2

+
∣
∣
∣v̂(x j

S , t
j
S ) − v(x j

S , t
j
S )

∣
∣
∣
2)

, (14)

here NR has beenmentioned above, NS = NI+NB =
NIB = 100. For simplicity, we will directly use the
neural network parameters used in Sect. 2 for training.
It is worth mentioning that in addition to the clean data,
we also add 2 and 5%noise data to simulate the second-
order and third-order rogue waves of the cmKdV equa-
tion, the final numerical results shown in Tables 6 and
7. As can be seen from the numerical experimental
results in Tables 6 and 7, MTPINNs not only has a
very superior ability in solving inverse problems with
clean data; when adding noise data, MTPINNs still has
a superior simulation ability in solving inverse prob-
lems, which indicates that our model has good robust-
ness and undoubtedly confirms the great advantages of
our model again.

5 Conclusion

In this work, based on PINNs, we combine initial con-
dition region I and boundary condition region B into a
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Fig. 7 a Exact solution of equation (11), b predicted solution of equation (11), c absolute error of the third-order rogue waves (11)
simulated by MTPINNs (relative error is 9.802e−04)

Fig. 8 New sampling area
of third-order rogue waves
by PMTPINNs
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Table 5 Compared with
MTPINNs, the relative error
and optimization rate of
PMTPINNs

Numerical experimental model MTPINNs PMTPINNs

Neural network information 80 Neuron|6 hidden layer 80 Neuron|6 hidden layer

Relative error 9.802e−04 4.146e−04

Model optimization rate – 57.7%

Table 6 Second-order rogue waves: the correct cmKdV equation and the identified one obtained by learning λ1 and λ2 and their relative
errors

NPDEs Item
The cmKdV equation Relative error [λ1, λ2] (%)

Correct qt + 6.0|q|2qx + 1.0qxxx = 0 [0, 0]

MTPINNs: identified (clean data) qt + 6.00248|q|2qx + 1.00229qxxx = 0 [0.041318, 0.228977]

MTPINNs: identified (2% noise) qt + 6.03350|q|2qx + 0.95910qxxx = 0 [0.558376, 4.090452]

MTPINNs: identified (5% noise) qt + 6.03552|q|2qx + 0.95584qxxx = 0 [0.591969, 4.416352]

Table 7 Third-order rogue waves: the correct cmKdV equation and the identified one obtained by learning λ1 and λ2, and their relative
errors

NPDEs Item
The cmKdV equation Relative error [λ1, λ2] (%)

Correct qt + 6.0|q|2qx + 1.0qxxx = 0 [0, 0]

MTPINNs: identified (clean data) qt + 6.00915|q|2qx + 1.00172qxxx = 0 [0.152508, 0.172484]

MTPINNs: identified (2% noise) qt + 5.90552|q|2qx + 1.02934qxxx = 0 [1.574747, 2.934206]

MTPINNs: identified (5% noise) qt + 5.88343|q|2qx + 1.10192qxxx = 0 [1.942833, 10.191547]

new training region IB and propose MTPINNs. Then,
we use an adaptive search algorithm to find sample
points in the sharp region of roguewaves in the cmKdV
equation. These new sample points are added into the
training area IB as priors to form a new training area
IBP , and PMTPINNs is proposed.

Taking the second-order and third-order roguewaves
of cmKdV equation as examples, the numerical exper-
iments show that the original PINNs cannot simulate
the high-order rogue waves of cmKdV equation at all.
However, our proposedmodels not only accomplish the
task that PINNs cannot, but also significantly improve
the simulation capability. And the prediction accuracy
improved by three or four orders of magnitude. We
verify the inverse problem of cmKdV equation with
the proposed model; the numerical results in Tables 6
and 7 show that proposed models have good perfor-
mance. In addition, we found that after adding noise
data, our proposed models still have good simulation

ability, which also proves that these models have good
robustness.
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Appendix A: (B(x, t) and C(x, t) of second-order
rogue waves)

B(x, t) = 2239488a4c14t6 + 46656a12c6t6
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+2985984c18t6

+ 559872a8c10t6 + 746496a6c10t5x

+ 93312a10c6t5x − 1492992a4c12t5x

− 186624a8c8t5x + 1492992a2c14t5x

− 2985984c16t5x + 1244160c14t4x2

−248832a6c8t4x2 − 995328a2c12t4x2

+ 622080a4c10t4x2 + 77760a8c6t4x2

− 276480c12t3x3 + 34560a6c6t3x3

− 124416a4c8t3x3 + 248832a2c10t3x3

+ 34560c10t2x4 + 8640a4c6t2x4

− 27648a2c8t2x4 + 1152a2c6t x5

−2304c8t x5 + 64c6x6 − 331776c6a6t4

− 518400c12t4 + 155520c8a4t4

−11664c4a8t4

+ 290304c10t3x − 15552c4a6t3x

+ 103680c8a2t3x − 176256c6a4t3x

−58752c8t2x2

− 6912c6a2t2x2 − 7776c4a4t2x2

+ 4992c6t x3 − 1728c4a2t x3 − 144c4x4

+ 124416ac10s1t
3 + 31104a5c6s1t

3

− 165888a3c8s1t
3 + 20736a3c6s1t

2x

−41472ac8s1t
2x

+ 3456ac6s1t x
2 − 18000c6t2

− 1620c2a4t2 − 1080c2a2t x

+5616c4t x − 180c2x2

+ 864c4as1t + 144c4s21
+ 45 + i(2985984ac14t5 + 1492992a5c10t5

+ 186624a9c6t5 − 497664a5c8t4x

+ 995328a3c10t4x − 1990656ac12t4x

+ 248832a7c6t4x − 331776a3c8t3x2

+ 124416a5c6t3x2 + 497664ac10t3x2

− 55296ac8t2x3 + 27648a3c6t2x3

+ 2304ac6t x4 + 207360c8at331104c4a5t3

− 13824c6at2x − 20736c4a3t2x

− 3456c4atx2 + 20736c8s1t
2

− 41472a2c6s1t
2 + 5184a4c4s1t

2

+ 3456a2c4s1t x − 6912c6s1t x + 576c4s1x
2

− 2160ac2t + 144s1c
2)

and

C(x, t) = 2239488a4c14t6 + 2985984c18t6

+ 46656a12c6t6

+ 559872a8c10t6 + 746496a6c10t5x

− 1492992a4c12t5x − 186624a8c8t5x

− 2985984c16t5x + 93312a10c6t5x

+ 1492992a2c14t5x + 1244160c14t4x2

− 995328a2c12t4x2 + 622080a4c10t4x2

+ 77760a8c6t4x2 − 248832a6c8t4x2

+ 248832a2c10t3x3 + 34560a6c6t3x3

− 124416a4c8t3x3 − 276480c12t3x3

− 27648a2c8t2x4 + 8640a4c6t2x4

+ 34560c10t2x4 − 2304c8t x5

+ 1152a2c6t x5 + 64c6x6

+995328c10a2t4 + 279936c8a4t4

−82944c6a6t4 + 3888c4a8t4

− 269568c12t4 + 124416c10t3x

+ 5184c4a6t3x − 51840c6a4t3x

− 145152c8a2t3x

− 17280c8t2x2 − 6912c6a2t2x2

+ 2592c4a4t2x2 + 384c6t x3 + 576c4a2t x3

+ 48c4x4 − 165888a3c8s1t
3

+ 124416ac10s1t
3 + 31104a5c6s1t

3

+ 20736a3c6s1t
2x

− 41472ac8s1t
2x

+ 3456ac6s1t x
2 + 20016c6t2

+ 972c2a4t2 + 6912c4a2t2

+ 648c2a2t x − 2448c4t x

+ 108c2x2 − 2592c4as1t + 144c4s21 + 9.

Appendix B: (L1(x, t) and L2(x, t) of third-order
rogue waves)

L1(x, t) = −4939273445868140625t12

− 545023276785450000t11x

− 388407392651700000t10x2

− 34025850934560000t9x3

− 12374529519456000t8x4

− 841946352721920t7x5

− 204871837925376t6x6

−10322713903104t5x7

− 1860148592640t4x8

− 62710087680t3x9 − 8776581120t2x10

− 150994944t x11 − 16777216x12

+ 2300237292280725000t10
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+ 500080291038360000t9x

+ 178207653254544000t8x2

+ 20160748631347200t7x3

+ 4231975119851520t6x4

+ 253682249269248t5x5

+ 40317552230400t4x6

+880347709440t3x7

+ 141203865600t2x8 − 1447034880t x9

+ 75497472x10 + 257120426548112400t8

− 88521031030049280t7x

− 1841385225323520t6x2

−617799343104000t5x3

− 88747774156800t4x4

− 8252622766080t3x5

−200693514240t2x6

+ 1415577600t x7 + 235929600x8

+ 12647412412496640t6

+42148769126400t5x

− 2996161228800t4x2

− 15902996889600t3x3

+313860096000t2x4

− 8139571200t x5 + 707788800x6

− 149676507590400t4

+2148738969600t3x

− 1622998425600t2x2 + 31186944000t3x

− 928972800x4 − 95215564800t2

+21598617600t x

− 464486400x2 + 58060800

+ i(−6540279321425400000t11

− 601404995073600000t10x

− 423057306879360000t9x2

−29901007761408000t8x3

− 10648770814771200t7x4

− 552411244265472t6x5

−130559642173440t5x6

− 4494741995520t4x7

− 779700142080t3x8 − 13589544960t2x9

− 1811939328t x10

−303419904173280000t9

+ 263517097430016000t8x

+29562711599923200t7x2

+ 7820253397647360t6x3

+ 799710056939520t5x4

+58500443013120t4x5

+ 5243865661440t3x6

+ 40768634880t2x7 + 6794772480t x8

+ 10822374648023040t7

− 15805156998758400t6x

−366298181959680t5x2

+ 157459297075200t4x3

− 6736379904000t3x4 − 249707888640t2x5

+ 16986931200t x6

+ 2321279745269760t5

−164322282700800t4x

+ 7849554739200t3x2

− 700710912000t2x3 + 38220595200t x4

+4992863846400t3

− 967458816000t2x

− 33443020800t x2 − 8360755200t)

L2(x, t) = 4939273445868140625t12

+ 545023276785450000t11x

+388407392651700000t10x2

+ 34025850934560000t9x3

+ 12374529519456000t8x4

+841946352721920t7x5

+ 204871837925376t6x6

+ 10322713903104t5x7

+1860148592640t4x8

+ 62710087680t3x9 + 8776581120t2x10

+ 150994944t x11 + 16777216x12

+ 1671541529351175000t10

−201221180459640000t9x

+ 29583374214960000t8x2

− 8646206984294400t7x3

−205872145551360t6x4

− 102185078390784t5x5

− 5361951375360t4x6 − 141416202240t3x7

− 16349921280t2x8 + 2202009600t x9

+ 25165824x10 + 214192109547903600t8

+ 4346367735790080t7x

+ 3783154346910720t6x2

−1075635551969280t5x3

+ 40942170316800t4x4

+ 1840480911360t3x5 + 84333035520t2x6

+ 849346560t x7 + 141557760x8
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+ 3537485306138880t6

+789853361080320t5x

+ 130057245388800t4x2

− 11222478028800t3x3

+402245222400t2x4

− 4034396160t x5 + 613416960x6

+ 90779142700800t4 − 6216180019200t3x

− 269186457600t2x2 + 11988172800t x3

+ 221184000x4 + 213178521600t2

− 5009817600t x + 199065600x2

+8294400
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