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Abstract Identification of multiple mechanical

faults from vibration signals has always been one of

the most challenging tasks in the field of condition

monitoring and fault diagnosis. This study proposes a

new fault-oriented vibration signal decomposition

method, called adaptive feature mode decomposition

(AFMD), to identify multiple localized faults in

rotating machines interfered by strong periodic har-

monics in a robust and effective manner. The autore-

gressive model is first introduced as a preprocessing

technique for initially reducing deterministic compo-

nents of the raw signal. Then, for signal decomposi-

tion, an adaptive finite impulse response (FIR) filter

bank is designed utilizing the blind deconvolution

theory. The filter coefficients of the FIR filter bank are

iteratively updated to make each filtered sub-signal

infinitely approach their deconvolution objective

functions based on the correlated kurtosis. Meanwhile,

the filter length is adaptively determined using the

developed evaluation indicator termed as the weighted

squared envelope harmonic-to-noise ratio. Finally,

several decomposed modes focusing on fault signa-

tures can be acquired automatically, using the newly

proposed mode selection strategy that considers signal

similarity across multiple domains. The proposed

AFMD method can significantly reduce the likelihood

of incorrect diagnoses, as demonstrated by two

simulated and two experimental datasets with multiple

localized bearing and gear faults. The analysis results

show that the proposed method outperforms over the

state-of-the-art feature mode decomposition and the

most popular variational mode decomposition in

multi-fault feature extraction and weak fault detection,

when interfered by strong periodic harmonics as well

as other background noise.
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1 Introduction

Due to harsh and complicated working conditions, the

components of rotating machines are prone to damage
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during their service lives, which may lead to equip-

ment collapse and even major safety accidents [1]. It is

of great significance to develop effective fault diag-

nosis methods to ensure the safe operation of mechan-

ical equipment and prevent accidents. Vibration-based

signal processing techniques [2] have been widely

applied for rotating machinery fault diagnosis in the

past few decades, with a series of remarkable contri-

butions made by many researchers [3–6]. Benefiting

from a solid mathematical foundation, excellent

interpretability and smaller amounts of captured data,

advanced signal processing methods for condition

monitoring and fault diagnosis still have significant

research value and irreplaceable engineering applica-

tion requirements in the era of deep learning.

Gears and rolling element bearings are the most

used components in rotating machines. When a

localized fault occurs on the contact surface of such

a rotating component, the defect position will result in

periodic sudden impacts during operation that stimu-

late the damped free vibration of the system according

to its natural frequency, thus generating a series of

consecutive impulses in the vibration signal [7].

However, besides fault-induced impulses, periodic

harmonics caused by shaft rotation and gear mesh as

well as complex background noise and random shocks

are also contained in the measured vibration signal,

especially in modern equipment with higher integra-

tion whose complexity significantly increases the

difficulty of fault feature extraction. This has brought

more challenges to traditional feature extraction

methods such as statistical characteristic analysis

and frequency spectrum analysis.

Using signal decomposition methods to divide the

measured vibration signal into a series of sub-signals

with explicit physical meaning is a reasonable and

effective way for further extraction of hidden fault

features. It should be mentioned that the adaptive

signal decomposition method represented by the

empirical mode decomposition (EMD) proposed by

Huang et al. [8] has attracted much attention in recent

years, achieving many beneficial results in the field of

mechanical fault diagnosis [9, 10]. Different from

wavelet transform and other traditional signal decom-

position methods through basis function expansion,

EMD is completely data-driven. It does not need to

construct any prior basis to match the characteristic

structure of the signal, nor does it need to impose any

constraints on the time domain, frequency domain, or

time–frequency domain, thus allowing it to realize the

adaptive decomposition of arbitrary signals. Any

multi-component signal could be adaptively decom-

posed by EMD into several sub-signals called intrinsic

mode functions (IMFs), which is also referred to as

‘‘mode.’’ After that, Wu and Huang [11] further

proposed the ensemble empirical mode decomposition

(EEMD) which uses the addition of white noise with a

certain amplitude to the signal. It takes the ensemble

mean of multiple decomposition results of the signal

assisted by noise as the final decomposition result,

further enhancing the stability of EMD to a certain

extent. In order to improve the accuracy of signal

decomposition and reconstruction, Yeh et al. [12]

proposed the complementary ensemble empirical

mode decomposition (CEEMD), which achieved the

purpose of reducing residual noise within the modes

by adding auxiliary noise to the original signal in the

form of complementary addition and subtraction.

Moreover, Torres et al. [13, 14] introduced two

improved CEEMD methods to further solve the mode

aliasing issue. Inspired by EMD, a great quantity of

adaptive decomposition algorithms has emerged, such

as local mean decomposition (LMD) [15], intrinsic

time-scale decomposition (ITD) [16], local character-

istic-scale decomposition (LCD) [17], and adaptive

local iterative filtering decomposition (ALIFD) [18].

These algorithms mainly decompose the signal

through iterative calculation in the time domain with

low operating efficiency. They are prone to accumu-

lation of errors, which significantly affects the final

mode decomposition accuracy.

Some frequency-band-based decomposition meth-

ods such as empirical wavelet transform (EWT) [19]

and variational mode decomposition (VMD) [20] were

also proposed. EWT aims to construct a group of

orthogonal filters based on the adaptive wavelet basis

to divide the frequency spectrum of the signal into

several frequency bands. However, EWT highly relies

on spectrum segmentation based on robust peak

detection preprocessing. For VMD, it transforms the

decomposition problem into a constrained optimiza-

tion problem. The ultimate goal of VMD is to

decompose the signal with multiple frequency com-

ponents into a series of discrete quasi-orthogonal

bandwidth limited modes and minimize the sum of

bandwidths of all modes. Benefiting from the solid

mathematical foundation, non-recursive characteris-

tic, and high computational efficiency, VMD has
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become a popular and effective tool. Nevertheless, the

proper selection of main parameters (mode number

and balancing parameter) of VMD is always the key to

its decomposition performance. More importantly,

although the above-mentioned algorithms have been

applied to fault diagnosis and have achieved good

results in some applications [21–23], it should be

noted that they are not designed for it. In other words,

these methods do not consider the inherent character-

istics of the faulty signal, i.e., impulsiveness and

periodicity.

Recently, the feature mode decomposition algo-

rithm (FMD) was proposed by Miao et al. [24], which

has been proven to outperform VMD on fault signal

decomposition. FMD is inspired by the blind decon-

volution theory and combines it into the signal

decomposition process. It is known that blind decon-

volution is an effective filtering tool that can enhance

the useful information with the noise and interferences

suppressed for the complicated signal with unknown

transfer function and unpredictable noise [25]. This is

exactly appropriate for processing mechanical fault

signals containing complex components [26]. The

core of blind deconvolution for fault diagnosis is to use

a fault-related indicator as the deconvolution objective

function to orient the deconvolution process and

design an inverse filter to convolute with the faulty

signal to be processed, thus achieving the filtering of

fault-related components. Motived by this, FMD

designs such a FIR filter bank to divide the signal

into several sub-signals and uses correlated kurtosis

(CK) considering both impulsiveness and periodicity

of the signal as the deconvolution objective function to

deconvolute each sub-signal. The FIR filter can

remove the limitations of filter shape and bandwidth

of some algorithms such as VMD and EWT, which

means more fault information can be extracted. The

correlation coefficient (CC) of every two sub-signals

serves as the mode selection criterion in which the one

with lower CK value from the two sub-signals with

maximum CC value is discarded, and the selection

process will end when the number of reserved sub-

signals equals the desired mode number. Therefore,

benefiting from the advancements of blind deconvo-

lution theory and the FIR filter bank without restric-

tions of filter shape and bandwidth, FMD has

capability of extracting impulsive fault features even

for the cases with multiple faults.

Nevertheless, the robustness and ability of multi-

fault identification of FMD still needs to be enhanced.

For instance, the filter length and the desired mode

number are two essential input parameters of FMD

which currently need to be pre-determined through

trial and error, which increases the uncertainty of

parameter selection. Furthermore, many redundant

iterations are generated by the current mode selection

principle of FMD, and more importantly, the useless

or redundant modes cannot be thoroughly removed

relying solely on temporal coefficient correlation.

These issues might further lead to misdiagnosis or

missed diagnosis especially for multiple faults under

strong interferences, which limit the effectiveness and

robustness of FMD in industrial applications.

To overcome these drawbacks, a new fault-oriented

adaptive feature mode decomposition method, abbre-

viated as AFMD, is explored in this study for multi-

fault identification in rotating machinery. Firstly, the

autoregressive (AR) model is implemented as a

preprocessing technique to reduce the periodic har-

monics, in which the model order is determined

according to an evaluation of the maximum kurtosis of

the AR residue. Then, the adaptive FIR filter bank

covering the whole frequency band of the faulty signal

through a 50%-overlapping frequency band division

method with initialization by Hanning window is

designed for providing a fuzzy decomposition direc-

tion. After that, filter coefficients of the adaptive FIR

filter bank are iteratively updated to make each filtered

sub-signal infinitely approach their deconvolution

objective functions on the basis of the CK. Finally,

the decomposition results can be automatically

achieved through a proposed mode selection strategy.

The main work of this study is as follows:

(1) A new indicator called weighted squared

envelope harmonic-to-noise ratio (weighted

SEHNR) is introduced to determine the filter

length of the adaptive FIR filter bank in an

automatic way instead of by manual experience.

It is more suitable for dealing with multi-fault

signals since it can take the fault information

within all the useful modes into account.

(2) A new mode selection strategy that considers

similarity of modes in the time domain, fre-

quency domain and envelope domain along with

the consistency of the estimated fault period of

modes through autocorrelation is proposed. It
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aids avoidance of mode redundancy and mode

mixing, and more importantly, solves the prob-

lem of manually pre-setting the desired mode

number.

(3) A new fault-oriented vibration signal decompo-

sition called AFMD method is developed for

adaptive identification of multiple localized

faults in rotating machinery.

The main advancements of the proposed AFMD

method can be briefly summarized below:

(1) The two key parameters of AFMD, i.e., the filter

length of the adaptive FIR filter bank and the

desired mode number, can be selected adap-

tively rather than preset by trial and error;

(2) AFMD has superior capability of concentrating

on the multi-fault impulses contaminated by

random shocks, background noise and strong

deterministic harmonics caused by gear mesh-

ing and shaft rotation.

The reminder of this study is organized as below.

Section 2 introduces the basic theory of FMD and its

limitations. Section 3 elaborates the proposed AFMD

method. Section 4 and Sect. 5 present the perfor-

mance validation of the proposed AFMD over FMD

and VMD through two simulated and two experimen-

tal scenarios. Discussion and conclusion are given in

Sect. 6.

2 Feature mode decomposition (FMD) and its

limitations

2.1 Basic theory of FMD

FMD is proposed to decompose a signal into several

sub-signals (i.e., modes) non-recursively by using a

FIR filter bank, which is inspired by the blind

deconvolution theory [24]. To be specific, the FIR

filter bank is designed by iteratively updating filter

coefficients to make each mode infinitely approach the

deconvolution objective function. Since CK takes

impulsiveness and periodicity of a signal into account

simultaneously, it is ideal for characterization of

mechanical fault signals. FMD uses it as the decon-

volution objective function to orientate the deconvo-

lution process of each mode and further achieves the

decomposition.

Supposing a mechanical vibration signal x(t) with

length N, FMD can be regarded as a constrained

problem expressed as below:

argmax
fkðlÞf g

CKM ukð Þ¼
XN

n¼1

YM

m¼0

uk n�mTsð Þ
 !2

=
XN

n¼1

uk nð Þ2
 !Mþ1

8
<

:

9
=

;

s.t:uk nð Þ¼
XL

l¼1

fk lð Þx n�lþ1ð Þ

ð1Þ

where uk(n) is the k-th mode, fk(l) is the k-th FIR filter

with length L, and M is the shift order of the CK. Ts is

the period presented by sampling number that is

denoted as:

Ts ¼ fs � T ð2Þ

where fs is the sampling frequency and T is the fault

period of interest. In the process of FMD, Ts is

estimated by iteratively finding the local maximum

value at the period position after the zero-crossing

point of the signal’s autocorrelation spectrum [24],

which will be further described in the following

section.

As to the FIR filter bank, it is achieved by uniformly

dividing the whole frequency band of the signal into K

segments with Hanning window initialization for

better filter performance [24]. Each mode’s lower

and upper cut-off frequencies, i.e., fl and fu, can be

illustrated as:

fl ¼ k � fs=2K
fu ¼ k þ 1ð Þ � fs=2K

(
k ¼ 0; 1; 2; :::;K � 1 ð3Þ

where K is the total number of filters in the FIR filter

bank.

The constrained problem of Eq. (1) can be solved

by the eigenvector algorithm [24, 27], and the mode

will be expressed in matrix form:

uk ¼ Xfk ð4Þ

where

uk¼

uk 1ð Þ
..
.

uk N�Lþ1ð Þ

2
664

3
775; X¼

x 1ð Þ ��� x Lð Þ
..
. . .

. ..
.

x N�Lþ1ð Þ ��� x Nð Þ

2
664

3
775; fk¼

fk 1ð Þ
..
.

fk Lð Þ

2
664

3
775

ð5Þ

And CK of the mode will be represented as:
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CKM ukð Þ ¼ uHk WMuk
uHk uk

ð6Þ

where [�]H represents the conjugate transpose opera-

tion, and WM is a weighted matrix as:

WM¼

QM

m¼0

uk 1�mTsð Þ
� �2

0 ��� 0

0
QM

m¼0

uk 2�mTsð Þ
� �2

0

..

. . .
. ..

.

0 0 ���
QM

m¼0

uk N�Lþ1�mTsð Þ
� �2

2
6666666666664

3
7777777777775

� 1

PN�Lþ1

n¼1

uk nð ÞM�1

ð7Þ

Therefore, the expression of Eq. (6) can be rewrit-

ten as:

CKM ukð Þ ¼ fHk X
HWMXfk

fHk X
HXfk

¼ fHk RXWXfk

fHk RXXfk
ð8Þ

where RXWX and RXX are the weighted correlation

matrix and correlation matrix, respectively. Then, it

can be seen that Eq. (8) is a generalized Rayleigh

quotient [24], which means its maximization problem

with respect to fk is equivalent to the eigenvector

associated with the maximum eigenvalue k of the

following generalized eigenvalue problem:

RXWXfk ¼ RXXfkk ð9Þ

where k corresponds to maximum CK. After solving

Eq. (9) by means of an iterative algorithm whose

process is similar to that illustrated in Ref. [28], the

filter coefficients fk will be continually updated to

approach the final solution with maximum CK.

It should be noticed that the FIR filter bank

initialized by Hanning window only provides a fuzzy

decomposition direction and the shape and frequency

bandwidth of filters are unlimited, which benefits from

the blind deconvolution theory along with the above

illustrated period estimation and filter iterative updat-

ing process [24]. However, in FMD, the total number

of filters K and the desired mode number Kd need to be

pre-defined according to the value relationship of

K C Kd, thus indicating there might be many mixing

or redundant modes containing the same or similar

information under the updating principle of filter

initialization when K is far greater than Kd. Hence, the

correlation coefficient (CC) is applied as a measure-

ment index for similarity comparison of all modes.

The two modes with maximum CC value are locked

firstly and the mode with higher CK is reserved while

the one with lower CK is abandoned until the number

of reserved modes equals to the desired mode number

Kd, which is regarded as the mode selection principle

of FMD.

The flowchart of FMD is shown in Fig. 1, and its

procedure can be concluded as below [24]:

(1) Input the raw vibration signal x and set initial

parameters, i.e., total number of filters K,

desired mode number Kd, filter length L, and

pre-iteration number;

(2) Initialize the FIR filter bank by Hanning win-

dow with K filters (K is set as 5–10) and start

iteration i = 1 (i goes up to the pre-iteration

number);

(3) Decompose the raw signal x into a series of

modes by uik ¼ x � f ik, where k = 1, 2,…,K, and

* denotes the convolution operation;

(4) Estimate fault period Ti
k by iteratively finding

the point with local maximum value after the

zero-crossing point of the autocorrelation spec-

trum of mode uik. Update filter coefficients using

x, uik, and T
i
k, and achieve one complete iteration

cycle. Set i = i ? 1;

(5) Determine whether i reaches the pre-iteration

number. If yes, continue to the next step,

otherwise return to Step 4;

(6) Calculate correlation coefficients of all modes

and form a K 9 K matrix CC(K9K). Calculate

and compare CK values of the two modes that

have the maximum CC value of CC(K9K), and

then abandon the one with lower CK. Set

K = K - 1;

(7) Determine whether K reaches the desired mode

numberKd. If yes, end the iteration and continue

to the next step, otherwise return to Step 3;

(8) Output the results and select all the reserved

modes as the final decomposition modes.

2.2 Limitations of FMD

By virtue of the FIR filter bank updating principle and

CK as the deconvolution objective function as well as

the period estimation without prior fault information,

FMD is capable of extracting machinery impulsive

fault features even for some cases with multiple faults.

It expands the application range of conventional
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deconvolution methods and is superior to the decom-

position methods based on frequency narrow-band

filtering such as VMD, which has been verified

through simulation and experiment scenarios by Miao

et al. [24]. Despite the advantages, FMD still has

limitations that need to be perfected for better

performance, especially for feature extraction of

multiple faults under periodic harmonic interference.

Taking an example for the further explanation, the

numerical vibration signal with two bearing localized

faults simulated in Ref. [24] is applied in this study for

a fair comparison. The basic information of the

simulation signal is introduced as below: The resonant

frequencies of the two faults, i.e., inner race fault and

outer race fault, are set as 3605 and 2000 Hz,

respectively. Their faulty feature frequencies are

28 Hz (termed as f2) and 22 Hz (termed as f1),

respectively. Besides, periodic harmonics, random

shock interference and background Gaussian noise are

also included in the synthetic signal. Detailed infor-

mation of the synthetic signal can be found in Ref.

[24]. One thing to point out is that the amplitudes of

the two periodic harmonics in the original signal used

in Ref. [24] are both set as 0.025 and are far less than

the amplitudes of the faulty impulses set as 1, which

might not be appropriate on the occasion that the

faulty bearing faces strong periodic harmonic inter-

ference such as in gearboxes. Therefore, the ampli-

tudes of the two periodic harmonics used in this study

are set as 0.5 instead of 0.025 to better investigate the

performance of FMD under harmonic interference.

The final simulated vibration signal containing two

localized faults along with its frequency spectrum is

displayed in Fig. 2, where fr (7 Hz) and 2fr (14 Hz)

denote feature frequencies of the above-mentioned

two periodic harmonics, respectively.

The initial input parameters are chosen by the

recommendation of Ref. [24]. The filter length L and

the number of filters K are set as 40 and 10,

respectively, and the desired mode number Kd is

suggested to be empirically selected from 3, 2, 1. The

pre-iteration value of the first iteration is set as

20 - 2 9 (K - Kd) with the values of all other

following iterations set as 2, according to the

Fig. 1 Flowchart of the original FMD method
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MATLAB code shared by the authors. All the

parameter settings remain the same unless otherwise

specified.

The mode number is firstly set as 3 in FMD. As

shown in Fig. 3, Mode #1 and Mode #3 are the

periodic harmonic component and the random shock

component, respectively, while only Mode #2 consists

of the inner race fault feature frequency f2 and its

harmonics (29, 39, etc.), without any information of

the outer race fault f1 throughout all these three

decomposed modes. This is different from the result

obtained in Ref. [24] where the three modes are

respectively dominated by outer race fault, inner race

fault and the random shock.

When the mode number is then set as 2, the multi-

fault features are extracted into two separated modes

as shown in Fig. 4, which is consistent with the result

obtained in Ref. [24]. Based on the comparison results,

one can find that the decomposition performance of

FMD is highly sensitive to the desired mode number

Kd. Using the current parameter settings might not be

competent for the fault feature extraction task under

strong periodic harmonic interference which is com-

mon in the field of mechanical fault diagnosis.

The filter length L is another important parameter to

be pre-determined. In the original FMD, a suit-

able range of [30, 100] is recommended for filter

length selection, which is verified based on a simula-

tion case containing a single impulsive fault in Ref.

[24]. L = 40 is then used in all simulation and

experiment scenarios. Nevertheless, when dealing

with more complex signals under different conditions,

the current empirical selection principle through trial

and error might fail to meet the command of accurate

feature extraction, especially always setting a fixed

value as the filter length. To illustrate this, the

decomposed results of FMD with Kd = 2 and L = 41

are displayed in Fig. 5, where Mode #1 and Mode #2

are dominated by periodic harmonics and inner race

fault impulses, with a misdiagnosis of the outer race

fault. Compared with Fig. 4, although the two filter

lengths differ by only 1, i.e., L = 40 and L = 41, the

diagnosis results are not the same.

Another finding to be mentioned is that the

amplitudes of modes decomposed by the original

FMD might be distorted due to the usage of filter

designing functions embedded in MATLAB. Figure 6

shows the magnitude response with respect to nor-

malized frequency of the fourth filter of the FIR filter

bank after the first complete iteration of FMD.

It can be seen that the maximum value of the

amplitude-frequency curve achieves 12.94 dB rather

than 0 dB, which means the amplitudes of the obtained

modes after the first complete iteration are all mag-

nified by 4.44 times (corresponds to the filter gain of

12.94 dB). Furthermore, when the mode number

Kd = 3 and the number of filters K = 10 are applied,

according to the mode selection principle of FMD

illustrated in Sect. 2.1, FMD involves 7 (calculated by

K - Kd) times of redundant iteration for mode

selection, leading to the amplitudes of final decom-

posed results magnified by 668.84 times. (Specific

magnifications of all iterations are not shown here.)

Fig. 2 a Multi-fault vibration signal simulated in Ref. [24] with adding amplitudes of periodic harmonics to 0.5 and b its frequency

spectrum
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This obviously limits the further development of FMD

in quantitative diagnosis.

To sum up, the limitations of FMD can be

concluded as follows:

(1) The filter length L and the desired mode number

Kd are the two most important input parameters

of FMD and need to be pre-determined by trial

and error, which increases the uncertainty of

parameter selection and further results in poten-

tial misdiagnosis or missed diagnosis particu-

larly for multiple faults.

(2) FMD still faces the challenge caused by har-

monic interference especially when choosing

inappropriate input parameters, although it uses

CK as the deconvolution objective function to

take both impulsiveness and periodicity of a

faulty vibration signal into consideration.

(3) The current mode selection principle of FMD

has a lot of redundant iterations, and more

importantly, the useless or redundant modes

cannot be thoroughly removed relying solely on

temporal coefficient correlation.

(4) The amplitudes of obtained results decomposed

by FMD are significantly distorted, which is not

conducive to further quantitative fault

diagnosis.

Fig. 3 Decomposed results of original FMD with Kd = 3 and L = 40: a, c, e time domain; b, d, f envelope spectra
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Fig. 4 Decomposed results of original FMD with Kd = 2 and L = 40: a, c time domain; b, d envelope spectra

Fig. 5 Decomposed results of original FMD with Kd = 2 and L = 41: a, c time domain; b, d envelope spectra
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3 The proposed method: adaptive feature mode

decomposition (AFMD)

To overcome shortcomings of the state-of-the-art FMD

method and further robustly broaden its application to

multi-fault diagnosis, the adaptive featuremode decom-

position (AFMD) method is developed in this study. A

new mode selection strategy is proposed to reduce

redundant and noisy modes, aiding to achieve the

decomposition task in an automatic way instead of by

manual experience. It considers the similarity of modes

in timedomain, frequency domainand envelopedomain

along with the consistency of estimated fault period of

modes through autocorrelation. Meanwhile, a new

adaptive way for filter length selection that is more

suitable for multi-fault feature detection is also intro-

duced based on a new evaluation indicator called

weighted squared envelope harmonic-to-noise ratio

(weighted SEHNR). Besides, to separate the fault-

induced signatures from the periodic harmonic interfer-

ence, the autoregressive (AR) model is used to pre-

whiten the raw signal and initially remove deterministic

(discrete frequency) components, i.e., periodic harmon-

ics. The proposed AFMD is elaborated as follows.

3.1 Autoregressive (AR) model as a preprocessing

technique

For bearings and gears, the two most common parts in

rotating machines, their collected faulty vibration

signals with localized defects mainly contain the

fault-induced impulses, periodic harmonics caused

by rotating shafts or gear meshing, random shocks and

background Gaussian white noise. The periodic har-

monics are generally deterministic and consist of a

series of discrete frequency components. On the

contrary, the faulty impulses can be regarded as the

random-like part because of their broadband charac-

teristics in frequency spectrum which is similar to

Gaussianwhite noise [29]. SinceARmodel is a popular

method to estimate the deterministic periodic compo-

nents, the residue after AR process will be the desired

signal for FMD to bring into better play the role of CK

on extraction of consecutive faulty impulses.

The AR model can be expressed by a linear

regression on itself plus an additive noise term e(n),

whose mathematical formula for a real discrete-time

vibration signal x(n) is given as below:

x nð Þ ¼ �
Xq

p¼1

a pð Þx n� pð Þ þ e nð Þ ð10Þ

where a(p) is pth coefficient in the AR model and q is

the model order.

The coefficient a(p) can be acquired by solving the

Yule–Walker equations through the Levinson–Durbin

recursion (LDR) algorithm [30]. The order q serves as the

key parameter and highly affects the final performance of

AR model, which can be determined by manual expe-

rience or using the Akaike information criterion (AIC)

that is themost commonly used approach.However,AIC

is more suitable for the condition that the noise term e(n),

i.e., the AR residue, strictly conforms to a Gaussian

distribution, which cannot directly reflect faulty infor-

mation of the AR residue with faulty impulses.

Since kurtosis has been widely applied for measur-

ing the impulsiveness of vibration signals without any

prior fault information, it helps with the issue of model

order selection in this study. In other words, the model

order q is decided by finding the one corresponding to

the maximum kurtosis of AR residue e(n), which can

be illustrated as follows:

argmax
fqg

kurtosis qð Þ ¼
1
N

PN

n¼1

eq nð Þ � eq
� �4

1
N

PN

n¼1

eq nð Þ � eq
� �2

� �2

8
>>><

>>>:

9
>>>=

>>>;

ð11Þ

where eq is the mean value of eq(n), and the range of

order q can vary with different conditions rather than

Fig. 6 Magnitude response with respect to normalized fre-

quency of the fourth filter of the FIR filter bank after the first

complete iteration of FMD

123

16246 X. He et al.



being a fixed value. However, to the best of authors’

knowledge, there has been no unified standard for

selecting the range of order q. In this study, it is

recommended from 20 to 200 according to experi-

ments, which is competent for processing the current

data length of all implemented scenarios in the

following sections.

3.2 Adaptive FIR filter bank and its updating

along with the period estimation

The so-called adaptive FIR filter bank proposed in Ref.

[24] can be divided into two main steps: at first, design

a FIR filter bank with several uniform segments

initialized by Hanning window, and then iteratively

update coefficients of the filter bank based on the blind

deconvolution theory, i.e., to make each filtered signal

closer to the deconvolution objective function with

CK as the core.

As for the FIR filter bank, the superiority ofHanning

window initialization over the ordinary simple initial-

ization for locking the fault period rapidly and robustly

has been clarified and verified in Ref. [24] and the

detailed information will not be repeated in this study

for the sake of brevity. But remarkably, as illustrated in

Fig. 7a, the FIR filter bank of the original FMD is

accomplished by dividing the whole frequency band of

the raw signal into K segments equally with consec-

utive lower and upper cut-off frequencies, which can

be expressed by Eq. (3) in Sect. 2.1.

In this study, another frequency band division

method is proposed, as shown in Fig. 7b, which is

more advantageous to make each segment contain

more fault information through covering the whole

frequency band with 50% overlapping between two

adjacent segments. The lower and upper cut-off

frequencies of the filter bank are then expressed as

below:

fl ¼ k � fs=2 K þ 1ð Þ
fu ¼ k þ 2ð Þ � fs=2 K þ 1ð Þ

(
k ¼ 0; 1; 2; . . .;K � 1

ð12Þ

where fl and fu are the lower and upper cut-off

frequencies of segments, respectively, and fs is the

sampling frequency. The segment number K is

selected as an odd number. By comparing these two

division methods with the same number of filters, the

proposed method shown in Fig. 7b could, to a large

extent, prevent an entire fault-induced frequency band

from being separated into two or more segments by the

ordinary one shown in Fig. 7a in which the filter banks

have consecutive lower and upper cut-off frequencies.

It should be noted that the FIR filter bank is used for

providing a fuzzy decomposition direction, and the

FIR filter bank with initialization only gives a much

coarser denoising process, which means the fault

features might still be corrupted by noise and other

non-faulty components. Therefore, although the pro-

posed 50%-overlapping frequency band division

method is better for each filter to contain more fault

information, it still needs the further signal processing

procedure to finish the fault diagnosis task.

To this end, the filter coefficient updating process

inspired by the blind deconvolution theory is imple-

mented subsequently to concentrate on the fault

signatures. In brief, a series of modes and filter

coefficients can be iteratively updated by filtering the

signal using the FIR filter bank, and the updating

iteration will be ended when the filtered signals within

each mode reach their ownmaximumCK values under

a given iteration cycle, whose procedure is elaborated

according to Eqs. (4)–(9) in Sect. 2.1.

It should be noted that CK requires input fault

period Ts as the prior knowledge which is a decisive

factor in the filter coefficient updating process. The

traditional way is to pre-define it in the light of the

fault feature frequency of the candidate machine part.

Nevertheless, it is impractical to acquire accurate Ts

Fig. 7 FIR filter bank initialized by Hanning window of a the

original FMD and b the proposed AFMD
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under unknown or fluctuating speed conditions in

engineering practice. More importantly, when dealing

with the signal within multiple faults, it is also

unrealistic to assign all potential fault period values

in the signal processing, since the specific fault

localization of the machine component is unknown

in advance. Hence, a practical and accurate approach

for fault period estimation is highly desirable. Miao

et al. [24] employed an autocorrelation-based solution

by means of finding the local maximum value at the

period position after the zero-crossing point of the

signal’s autocorrelation spectrum. Furthermore, the

autocorrelation spectrum of signal’s squared envel-

ope, instead of the raw signal or its ordinary envelope,

is applied in this study due to the fact that the squared

envelope is more beneficial to enhancing fault char-

acteristics [31].

The squared envelope of the vibration signal x(n),

written as xsenv(n), can be calculated by

xsenv nð Þ ¼ x nð Þ þ jH x nð Þf gj j2 ð13Þ

whereH� �f g denotes the Hilbert transformation and j

represents the imaginary unit. Then, the autocorrela-

tion of the squared envelope signal with respect to a

time lag s is defined as below:

Rsenv sð Þ ¼
XN

n¼1

xsenv nð Þxsenv nþ sð Þ ð14Þ

where s = 0, 1, 2,…,N - 1, with N the total sampling

number.

Figure 8 displays the autocorrelation spectrum of

the squared envelope of a single-fault vibration signal.

Rsenv(0) is the global maximum of the autocorrelation

spectrum, while Rsenv(smax) represents the local max-

imum where smax generally equals to the fault period

Ts. In order to extract the location information of

Rsenv(smax) easily in practice, the zero-crossing point is

then named as the point s0 when Rsenv(s0) = 0.

Consequently, the abscissa position of the point that

reaches maximum value after the zero-crossing point

is represented as the estimated fault period without any

prior fault feature information, i.e., smax = Ts, which is

applicable to the industrial scenarios.

3.3 Proposed mode selection strategy based

on signal similarity in multiple domains

According to Sect. 3.2, the vibration signal can be

divided into K segments that are regarded as the

candidate modes through the FIR filter bank, and it is

highly likely that many modes contain the same or

similar components due to the operation of the 50%-

overlapping division, filter updating, and automatic

period estimation. To eliminate the redundant modes,

a new mode selection strategy considering similarity

of modes in multiple domains, i.e., time domain,

frequency domain, and squared envelope domain,

along with the identity of estimated faulty period of

each mode, is proposed in this study.

Taking two modes up(n) and uq(n) as an example,

the similarity of these two modes in the time domain,

also called the temporal correlation coefficient CC

[24], is written by

CCpq ¼

PN

n¼1

up nð Þ � up
� �

uq nð Þ � uq
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1

up nð Þ � up
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1

uq nð Þ � uq
� �2

s ð15Þ

where up and uq denote the mean value of modes up(n)

and uq(n), respectively. Generally, larger CC values

(higher than 0.7) could indicate a higher similarity

between the two compared modes, and the same to the

similarity indicators of other domains. Then, the mode

similarity in the frequency domain can be evaluated by

the spectral orthogonality (SO) [7] expressed as

SOpq ¼

P
m
Sp mð ÞSq mð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
Sp mð Þ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
Sq mð Þ2

r ð16Þ

where Sp(m) and Sq(m) represent the spectral ampli-

tudes of modes up(n) and uq(n), respectively, which

can be acquired through discrete Fourier transform

(DFT):

Fig. 8 Schematic diagram of the autocorrelation spectrum of

the squared envelope of a faulty vibration signal
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S mð Þ ¼ 1

N

XN�1

n¼0

u nð Þe�j2pmn=N ð17Þ

The similarity of modes in the squared envelope

spectrum (SES) domain, termed as SESO (orthogo-

nality of squared envelope spectrum), is defined as:

SESOpq ¼

P
m
SESp mð ÞSESq mð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
SESp mð Þ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
SESq mð Þ2

r ð18Þ

where SES(m) is the squared envelope spectrum of

modes and can be calculated by substituting Eq. (13)

into Eq. (19):

SES mð Þ ¼ 1

N

XN�1

n¼0

xsenv nð Þe�j2pmn=N ð19Þ

Besides, the consistency of estimated period of the

two modes is presented by comparing their difference:

eT ¼ Tp
s � Tq

s

�� ��=Tp
s � 0:01 ð20Þ

where the less the value eT is, the better the consistency
of the two modes with respect to Ts is. Note that the

threshold of value eT is set as 0.01 which satisfies the

cases used in this study and could be further decreased

upon different working conditions.

Before further elaborating themode selection strategy,

the squared envelope harmonic-to-noise ratio (SEHNR)

should be illustrated first. Inspired by the harmonic-to-

noise ratio (HNR) presented in Refs. [32, 33] for

characterizing the periodicity of the faulty impulses, the

SEHNR benefiting the characteristic of enhancing the

fault features is proposed in this study as an enhanced

version over HNR, which is defined as below:

SEHNR ¼ Rsenv smaxð Þ=Rsenv 0ð Þ
1� Rsenv smaxð Þ=Rsenv 0ð Þ

¼ Rsenv smaxð Þ
Rsenv 0ð Þ � Rsenv smaxð Þ

ð21Þ

where Rsenv(0) and Rsenv(smax) can be computed by

Eq. (14) and respectively denote the total energy of the

squared envelope signal and the energy of the periodic

fault-induced impulses. In this study, SEHNR = 0.5 is

used as a reasonable threshold to evaluate the fault

component whether it could be presented effectively,

since the energy of noise component is two times of the

energy of the desired fault component under this

condition. In otherwords, themodewith SEHNRvalue

lower than 0.5 is considered as a noisy one containing

limited fault information.

Therefore, the proposedmode selection strategy can be

illustrated as follows: First, the CK and SEHNR values of

all modes along with their mean CK value are calculated;

then, abandon themodeswithCK lower than themeanCK

value and the modes with SEHNR lower than 0.5; after

that, calculate the multi-domain similarity of all reserved

modes in pairs based on Eqs. (15), (16) and (18), and

remove the modes with all similarity values in the time

domain, frequency domain and squared envelope spec-

trum domain higher than 0.7 along with the modes with

similar estimated period values based on Eq. (20); finally,

the retainedmodeswill be the desired decomposedmodes.

3.4 Adaptive determination of filter length

Filter length L is the crucial factor in the filtering

operation that is generally pre-defined by trial and error.

However, an inappropriate filter length might result in

misdiagnosis or missed diagnosis results even though a

small difference, for example, L = 40 and L = 41, as

shown in Figs. 4 and 5. Hence, an adaptive approach for

selecting filter length is highly desired in practice.

For this purpose, a new index called weighted

SEHNR is further established on the basis of the

definition of SEHNR illustrated in Sect. 3.3, and is

expressed as:

Weighted SEHNR ¼ SEHNRk

PKd

k¼1

SEHNRk

� SEHNRk ð22Þ

where SEHNRk denotes the SEHNR value of k-th

mode and the ratio of SEHNRk to the sum SEHNR

value of all the final desired Kd modes is taken as its

weight. This index could consider the fault information

within all the usefulmodes rather than only focusing on

themodewith maximumSEHNRvalue, which is more

suitable for multi-fault feature detection.

Then, the filter length could be adaptive determined

by searching the optimal one with maximum weighted

SEHNR in a specific range [Llower, Lupper] where Llower
and Lupper are denoted as the lower and upper filter

length, respectively, written as:

Lopt ¼ argmax
L2½Llower;Lupper�

Weighted SEHNRLf g ð23Þ
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3.5 Procedure of the proposed AFMD method

Based on the above investigation, the AFMDmethod for

multi-fault diagnosis is proposed in this paper. The

overall flowchart of this approach is shown in Fig. 9,

while its detailed implementation is illustrated as follows:

(1) Input the raw vibration signal x and set initial

parameters, i.e., total number of filters K and

pre-iteration number;

(2) Implement the ARmodel to preprocess the raw

signal and obtain the AR residual signal

e according to Sect. 3.1

(3) Initialize the FIR filter bank by Hanning

window with K filters (K is set as 11) based

on Eq. (12) and start iteration i = 1 (i goes up

to the pre-iteration number);

(4) Set the filter length search range from 1 to 200,

and start the first loop with l = 1

(5) Decompose the AR residual signal e into a

series of modes by uik ¼ e � f ik, where k = 1, 2,

…,K, and * denotes the convolution operation;

(6) Estimate fault period Ti
k by iteratively finding

the point with local maximum value after the

zero-crossing point of the autocorrelation

spectrum of mode uik. Update filter coefficients

using e, uik, and Ti
k, and achieve one complete

iteration cycle. Set i = i ? 1;

(7) Determine whether i reaches the pre-iteration

number. If yes, continue to the next step,

otherwise return to Step 5;

(8) Calculate CK and SEHNR values of all modes

along with their mean CK value and abandon

the modes with CK lower than the mean CK

value and the modes with SEHNR lower than

0.5. Then, calculate similarity values of tem-

poral correlation coefficient (CC), spectral

orthogonality (SO), and orthogonality of the

squared envelope spectrum (SESO) of all

reserved modes in pairs based on Eqs. (15),

(16) and (18), and remove the modes with all

similarity values in the time domain, fre-

quency domain, and squared envelope spec-

trum domain higher than 0.7 along with the

modes with similar estimated period values

based on Eq. (20);

(9) Obtain the retained modes and calculated the

weighted SEHNR value of these modes.

Determine whether l reaches the upper filter

length. If yes, continue to the next step,

otherwise return to Step 4;

(10) Obtain the optimal filter length with maximum

weighted SEHNR value and the filtering

results. Select all the reserved modes as the

final desired decomposition modes.

Note that when using the filter designing functions

embedded in MATLAB, the amplitudes of decom-

posed modes need to be corrected by evaluating the

maximum value (unit: dB) of the amplitude-frequency

curve of each corresponding filter and then reducing

their amplitudes by corresponding times, which

should be conducted in Step 6 of each iteration i.

4 Simulation analysis

In this section, a phenomenological vibration model

for multiple localized faults of a two-stage gearbox is

presented at first. Besides this vibration model, the

simulated multi-fault signal for verifying the original

FMD in Ref. [24] is also used here to validate the

performance of the proposed method in terms of

extracting multiple faults.

4.1 Vibration model for multiple localized faults

of a two-stage gearbox

Supposing a parallel two-stage gearbox that consists of

three shafts and two pairs of gears, where the driving

gear installed in the input shaft of the first stage and a

supporting rolling element bearing both contain a

localized fault, then the vibration signal x(t) could be

modeled as follows [34]:

x tð Þ ¼ xgmesh tð Þ þ xfault tð Þ þ xrandom tð Þ
þ xgrotation tð Þ þ n tð Þ

ð24Þ

The first part xgmesh(t) denotes the gear meshing

vibrations of two stages, given as:

xgmesh tð Þ ¼
XM

m¼1

Agmesh;1;m 1þ am tð Þ½ �

cos 2pmfgmesh;1t þ /gmesh;1;m þ bm tð Þ
� 	

þ
XM

m¼1

Agmesh;2;m cos 2pmfgmesh;2t þ /gmesh;2;m

� �

ð25Þ

where Agmesh,1,m, fgmesh,1 and /gmesh,1,m represent the

m-th order meshing amplitude of the first two mating
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gears, the meshing frequency and the m-th order

meshing phase, respectively, with the similar defini-

tions to Agmesh,2,m, fgmesh,2 and /gmesh,2,m of the second

pair of mating gears; am and bm are the m-th order

amplitude modulation and frequency modulation

functions of the first stage, respectively, which can

be expressed as follows:

am tð Þ ¼
XQ

q¼1

Am;q cos 2pqfdt þ am;q
� �

ð26Þ

bm tð Þ ¼
XQ

q¼1

Bm;q cos 2pqfdt þ bm;q
� �

ð27Þ

Fig. 9 Flowchart of the proposed AFMD method
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where fd denotes the rotating frequency of the driving

gear mounted on the input shaft; Am,q and Bm,q are the

q-th order amplitudes of the m-th meshing harmonics

of the two mating gears, respectively; am,q and bm,q are
the phases.

The second part xfault(t) represents the transient

impulses induced by localized defects

xfault tð Þ ¼
X2

gb¼1

XP

p¼1

Afault;gbe
�bn;gb t�pTfault;gbð Þ

� sin 2pfn;gb t � pTfault;gb
� �

þ /n;gb

� �

ð28Þ

where Afault,gb are the amplitudes of excited transient

impulses of the faulty driving gear (gb = 1) and

bearing (gb = 2) and p = 1, 2, 3, …, P is the total

number of these impulses; bn,gb and fn,gb denote the

damping coefficient and the resonance frequency of

transient impulses, respectively; Tfault,gb is the time

interval between two adjacent transient impulses with

defining /n,gb as the phase.

The third part xrandom(t) represents the random

shock interference whose definition expressed by

Eq. (29) is much similar to that of Eq. (28):

xrandom tð Þ ¼ Arandome
�brn t�trð Þ sin 2pfrn t � trð Þ þ /rnð Þ

ð29Þ

where tr andDtr are the trigger time and duration of the

random shock, respectively.

Besides the Gaussian white noise n(t), the remain-

ing part xgrotation(t) is modeled as the periodic

harmonics caused by shaft rotation, written as follows:

xgrotation tð Þ ¼
X3

d¼1

Agrotation;d cos 2pfdt þ /grotation;d

� �

ð30Þ

where Agrotation,d are the vibration amplitudes caused

by rotating shafts, and the fd and /grotation,d represent

the shaft rotating frequency and phase, respectively.

Note that in the xfault term shown in Eq. (28), subscript

d = 1 represents the driving gear, while in the xgrotation
term shown in Eq. (30), subscript d = 1, 2, 3 repre-

sents the ordinal number of the three shafts. Table 1

gives the detailed parameter values of the synthetic

signal modeled by Eq. (24).

4.2 Simulation case #1: two localized faults

in a bearing

In this subsection, a bearing compound fault signal is

used for testing the proposed AFMD method. As

mentioned in Sect. 2.2, this simulated signal is

modeled by Miao et al. [24] to verify the original

FMD algorithm, thus being applied in this study for a

fair performance comparison with the proposed

AFMD. Detailed information of the simulated fault

signal is given in Sect. 2.2 and in Ref. [24], which will

not be repeated here for the sake of brevity.

To better demonstrate performance of the proposed

method, the very popular decomposition method

VMD [20] is applied in this study. To make a fair

comparison, the desired mode number of VMD is set

as 2 and leave the default settings. Figure 10 shows the

decomposed two modes of VMD. In the first mode,

i.e., the first band-limited instinct mode function

(abbreviated as BLIMF), the periodic harmonic com-

ponents are dominated, as displayed in Fig. 10a, b,

while the random shock component predominates

BLIMF #2 in Fig. 10c, d. It can be concluded that

VMD fails to identify the multiple faults within the

signal in simulation case #1, thus leading to a missed

diagnosis.

According to the flowchart of the proposed AFMD

method presented in Fig. 9, the AR model prepro-

cessing technique is firstly implemented with the

optimal model order of 61, and the filtered residue

termed as the input signal is used for the following

decomposition procedures, as shown in Fig. 11. It can

be found that compared with Fig. 2, the periodic

harmonic interference components, i.e., fr and 2fr,

have been drastically reduced by about ten times.

The filter length of AFMD is then adaptively

selected as L = 181 that corresponds to the maximum

weighted SEHNR value of 3.023 as presented in

Fig. 12. For comparison, L = 40 with the weighted

SEHNRvalue of 1.984 is alsomarked in Fig. 12,which

indicates that the recommended final filter length of

original FMD is not the optimal one. This is one of the

main factors leading to its unsatisfactory decomposi-

tion results as illustrated from Figs. 3, 4 and 5.

Figure 13 presents the decomposed results of the

proposed AFMD. Two modes with different fault
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information are adaptively obtained, in which Mode

#1 andMode #2 are dominated by fault features f1 with

its harmonics (29, 39, etc.) and f2 with its harmonics,

respectively, without any redundant modes and mis-

diagnosis results. That means the proposed method

outperforms the original FMD under sever periodic

harmonic interference.

4.3 Simulation case #2: two localized faults

in a two-stage gearbox

In this subsection, a mixed signal including two

localized faults, periodic harmonics, random shock

and Gaussian background noise with SNR = - 8 dB

is simulated through the vibration model illustrated in

Table 1 Parameters of the

simulated multi-fault signal

For simplicity, all the phase

values included in Eq. (24)

are set as zero

Parameters Values Parameters Values

Gear mesh part xgmesh Localized fault part xfault

Agmesh,1,m (m = 1, 2, 3) 0.3, 0.6, 0.5 Afault,gb (gb = 1, 2) 5, 7

Am,q (q = 1, 2, 3) 0.3, 0.75, 0.6 bn,gb (gb = 1, 2) 900, 700

Bm,q (q = 1, 2, 3) 0.5, 1.5, 1 Tfault,gb (gb = 1, 2) 1/20 s, 1/33 s

Agmesh,2,m (m = 1, 2, 3) 0.25, 0.45, 0.5 fn,gb (gb = 1, 2) 4800 Hz, 2800 Hz

fgmesh,1 520 Hz

fgmesh,2 393.17 Hz

Random shock part xrandom Gear rotation part xgrotation

Arandom 20 Agrotation,d (d = 1, 2, 3) 0.2, 0.15, 0.1

brn 200 fd (d = 1, 2, 3) 20 Hz, 12.68 Hz, 8.02 Hz

tr; Dtr 0.6937 s; 0.05 s

frn 8000 Hz

Fig. 10 Decomposed results of the multi-fault signal in simulation case #1 by VMD: a, c time domain; b, d envelope spectra

123

Adaptive feature mode decomposition 16253



Sect. 4.1 to further validate performance of the

proposed AFMD method on multi-fault detection.

The sampling rate and time length of the signal are

20,000 Hz and 1 s, respectively. As shown in

Fig. 14b, the exciting frequency resonance bands of

the two faults are separately located around 4800 Hz

and 2800 Hz with their amplitudes much less than the

harmonics concentrated in the frequency range below

2000 Hz. It is more obvious in Fig. 14a that the fault-

induced impulses are buried in background noise and

affected by the harmonics along with the random

shock.

The original FMD with filter length L = 40 and

desired mode number Kd = 3 is firstly applied to

simulation case #2. As shown in Fig. 15, the fault

feature frequency f2 and its harmonics (29, 39, etc.)

are clearly observed in the envelope spectrum ofMode

#2. However, the random shock component (Mode #3)

and a redundant noisy mode (Mode #1) with useless

information are also extracted as two final decom-

posed modes, without any evidence of fault features

related to Fault #1.

When setting the desired mode number as Kd = 2,

similar results appear in the final decomposition

modes in Fig. 16, in which only Mode #2 is the

meaningful one dominated by Fault #2 and noisy

component is displayed in Mode #1 rather than the

fault information of Fault #1. To sum up, FMD fails to

detect the multiple localized faults of the complex

simulated signal of simulation case #2 corrupted by

random shock and periodic harmonics.

The VMDmethod is then applied to simulation case

#2. From Fig. 17, the fault feature frequency f2 and its

harmonics (29, 39, etc.) can also be detected in the

envelope spectrum of BLIMF #2, similar to that of

FMD in Figs. 15 and 16. As for BLIMF #1, it can be

seen that the meshing frequency (20 Hz 9 26 = 520

Hz) of the first pair of mating gears appears in

Fig. 17b, which means VMD is also affected by a

periodic component. Unfortunately, there is no evi-

dence of fault features related to Fault #1, thus proving

poor performance of VMD on multi-fault diagnosis on

such a complex signal.

By contrast, the proposed AFMD method is finally

used for simulation case #2. The filtered residual

signal after AR model process with the optimal model

order of 114 is shown in Fig. 18. Compared with

Fig. 14b, the amplitudes of harmonics caused by gear

meshing have been reduced by half or even more.

However, the fault-related impulses are still buried in

strong background noise in both the time domain and

its frequency spectrum.

Fig. 11 a Temporal waveform and b its frequency spectrum of the multi-fault signal in simulation case #1 after AR model

preprocessing

Fig. 12 Weighted SEHNR values of modes decomposed by the

proposed AFMD with the change of filter length in simulation

case #1
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The filter length of the proposed AFMD is adap-

tively chosen as L = 169which achieves themaximum

weighted SEHNR value of 1.425. According to

Fig. 19, one can find that a small filter length difference

might lead to a large decomposition result, which also

verifies the finding that filter length could highly affect

the final decomposition performance. Nevertheless,

the overall trend presented in Fig. 19 is consistent with

the diagram in Fig. 12, which might indicate that the

decomposition performance will not gradually

increase with a linear trend in a specific selection

range. Therefore, the proposed strategy for filter length

selection that balances computation burden and effec-

tiveness of decomposition can achieve a good result

demonstrated by the two simulation cases in Sect. 4

and will be further tested by two experimental scenar-

ios in the following section.

Figure 20 depicts the decomposed result of the

proposed AFMD with the selected filter length of 169.

Without pre-defining the desired mode number, the

Fig. 13 Decomposed results of the multi-fault signal in simulation case #1 by the proposed AFMD: a, c time domain; b, d SES

Fig. 14 a Temporal waveform and b its frequency spectrum of the multi-fault signal in simulation case #2
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two localized fault features, i.e., f1 with its multiples

(29, 39, etc.) and f2 with its multiples (29, 39, etc.),

are clearly extracted into the obtained two modes with

high SNR. Based on the two simulation cases, it can be

concluded that the proposed AFMD method has

remarkable capability of detecting and extracting

multiple localized faults of rotating machinery even

under strong periodic harmonic interference.

Table 2 presents the consumed time of the original

VMD, FMD, and the proposed AFMD methods. The

adopted platform is a desktop with a 2.10 GHz Intel I

Core I i7-12700 CPU and 32.0 GB RAM, and all

algorithms are coded and tested via MATLAB

software (R2022a). From the calculation results of

the two simulation cases, VMD with mode number of

2 achieves the best computational efficiency. The

calculation time of FMD with two modes (7.48 s for

simulation case #1 and 6.63 s for simulation case #2)

is comparable to that of FMDwith three modes (8.40 s

for simulation case #1 and 6.56 s for simulation case

#2), but higher than that of VMD. The proposed

AFMD respectively consumes 41.19 s and 20.11 s for

these two simulation cases, which is a higher compu-

tational load compared to FMD. This is because the

filter length is a key factor affecting the calculation

efficiency, and the filter length of the original FMD is

Fig. 15 Decomposed results of the multi-fault signal in simulation case #2 by original FMD with Kd = 3 and L = 40: a, c, e time

domain; b, d, f envelope spectra
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Fig. 16 Decomposed results of the multi-fault signal in simulation case #2 by original FMDwith Kd = 2 and L = 40: a, c time domain;

b, d envelope spectra

Fig. 17 Decomposed results of the multi-fault signal in simulation case #2 by VMD: a, c time domain; b, d envelope spectra
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set as 40, while AFMD requires a large number of

attempts (the maximum value in this study is 200) to

select the filter length. Nevertheless, since the mode

number of FMD is selected manually through trial and

error, the total time of FMD with more than one

attempt is comparable in the same magnitude with that

of the proposed AFMD, which could be acceptable for

off-line signal processing.

5 Experimental validation

In this section, two experimental vibration signals with

multiple localized faults are used for further validating

the effectiveness, generality, and superiority of the

proposed AFMD method. A multi-fault vibration

signal collected from a two-stage gearbox of our

own laboratory is firstly used for validation in

Sect. 5.1. Then, a run-to-failure bearing signal with

outer race and cage faults from XJTU-SY bearing

dataset [35] is applied in Sect. 5.2.

5.1 Experimental case #1: two localized gear

faults in a two-stage gearbox

To further validate the effectiveness of the proposed

method on weak fault extraction affected by strong

fault and periodic harmonics as well as background

noise, this subsection introduces a complex vibration

signal within two localized gear faults collected from a

two-stage gearbox in our own experimental setup. The

layout of the experimental apparatus and details of the

faulty gears are both shown in Fig. 21. The driving

gear mounted on the input shaft was seeded in a spall

defect (specific size: length 9 width 9 depth = 45

mm 9 1.8 mm 9 1.5 mm) around the pitch line area

of one tooth that is chosen as the severe fault, while a

crack with 1-mm depth across an entire tooth face of

the driven gear supported by the middle shaft was

artificially made by electric discharge machining as a

weak fault. An accelerometer is attached on the

housing of the support bearing on the input shaft near

the driving gear. According to design parameters of

the test rig and the rotating speed of the input shaft set

as 1200 rpm, the fault feature frequencies of both

driving gear and driven gear can be calculated as 20

and 12.68 Hz, respectively. The used faulty signal

plotted in Fig. 22 is acquired by sampling rate of

25.6 kHz with 64,000 samples (i.e., 2.5 s).

The original FMD method with filter length L = 40

and mode number Kd = 3 is first applied. From

Fig. 23, the fault features of the driving gear (f1, 29,

39, etc.) can be apparently observed in all three

modes. By contrast, the fault information of the driven

Fig. 18 a Temporal waveform and b its frequency spectrum of the multi-fault signal in simulation case #2 after AR model

preprocessing

Fig. 19 Weighted SEHNR values of modes decomposed by the

proposed AFMD with the change of filter length in simulation

case #2
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gear (f2, 29, 39, etc.) is relatively weak. In Mode #1,

the fault characteristic frequencies f2 and 4f2 are

obvious, which might be regarded as the fault

evidence. However, only the basic fault feature

frequency f2 is detected in the envelope spectrum of

Mode #2 without any consecutive harmonics, while a

similar result appears in Mode #3 with only 4f2
presented, thus being hard to be used as significant

fault symptoms. Besides, one of the last two modes is

redundant because of the high similarity of contents.

When setting mode number Kd = 2, the decom-

posed components shown in Fig. 24 are similar to

those of using Kd = 3, where the main difference is the

number of modes. It can be found that although the

FMD is capable of extracting the severe localized fault

features, the consecutive weak fault signature cannot

be detected in the decomposed modes. Moreover,

FMD still faces the challenge of eliminating redundant

modes effectively in practical applications.

VMD is then conducted on the same multi-fault

signal. A very similar result to that of FMD has been

acquired through VMD, as shown in Fig. 25b, in

which the fault characteristic frequencies f2 and 4f2 as

well as the first two fault feature harmonics of Fault #1

Fig. 20 Decomposed results of the multi-fault signal in simulation case #2 by the proposed AFMD: a, c time domain; b, d SES

Table 2 Consumed time of the simulation and experimental cases

Methods Consuming time (s)

Simulation case #1 Simulation case #2 Experimental case #1 Experimental case #2

VMD (2) 0.47 0.52 2.23 0.71

FMD (2) 7.48 6.63 37.75 18.31

FMD (3) 8.40 6.56 39.68 17.74

FMD (2) ? FMD (3) 15.88 13.18 77.43 36.05

AFMD 41.19 20.11 118.89 42.54

VMD (2) means that the corresponding mode number is set as 2, with similar definitions for FMD (2) and FMD (3)
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are obvious. Different from Figs. 23 and 24, the fault

features of Fault #1 (f1, 29, 39, 49) appear in BLIMF

#2 with strong background noise, as shown in

Fig. 25d.

Figure 26 presents the residual signal after reduc-

ing periodic harmonics by means of AR model with

model order of 170. By comparison with the raw

vibration signal shown in Fig. 22, the fault-induced

impulses are more obvious in the time domain and the

amplitudes of spectral lines centered around 2500 Hz

are significantly decreased from over 0.3 to around

0.04, which further proves the effectiveness of the AR

model process.

Similar to all the aforementioned cases, the filter

length of the proposed AFMD method is also deter-

mined adaptively as L = 199 that corresponds to the

Fig. 21 Entire

experimental apparatus and

layout of the two-stage

gearbox

Fig. 22 a Temporal waveform and b its frequency spectrum of the multi-fault signal in experimental case #1
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maximum weighted SEHNR of 1.177 of the decom-

posed modes, as shown in Fig. 27. Figure 28 shows

two modes decomposed via the proposed AFMD

method. The fault features of the driving gear f1 and its

multiples (29, 39, etc.) are clearly extracted in the

SES of Mode #2 and also obvious in the time domain,

as shown in Fig. 28c, d. InMode #1, from Fig. 28a, the

fault features in the time domain are not significant,

and seem to be affected by random impulses. In the

SES displayed in Fig. 28b, besides the fault symptoms

of the driving gear, the fault characteristic frequencies

of the driven gear f2 and 29, 39, etc., could be found.

Nevertheless, the unexpected interference lines also

appear in the SES diagram. This case could verify the

effectiveness of the proposed method on multi-fault

signature extraction and weak fault detection from

complicated vibration signals, but its ability on weak

fault feature extraction still needs to be further

enhanced, as well as the ability on multi-fault feature

separation.

5.2 Experimental case #2: two localized faults

in a run-to-failure bearing

In this subsection, a bearing vibration signal with two

localized faults from the publicly available XJTU-SY

Fig. 23 Decomposed results of the multi-fault signal in experimental case #1 by original FMD with Kd = 3 and L = 40: a, c, e time

domain; b, d, f envelope spectra
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Fig. 24 Decomposed results of the multi-fault signal in experimental case #1 by original FMD with Kd = 2 and L = 40: a, c time

domain; b, d envelope spectra

Fig. 25 Decomposed results of the multi-fault signal in experimental case #1 by VMD: a, c time domain; b, d envelope spectra
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dataset [35] is introduced for performance evaluation

of the proposed AFMD. The run-to-failure vibration

signals were collected from an accelerometer verti-

cally attached on the housing of the tested bearing,

with sampling frequency set as 25.6 kHz and sampling

time of 1.28 s for one record epoch. The rotating speed

of the tested bearing is 2250 rpm and the radial force

applied to the tested bearing housing is 11 kN. The

127th file of Bearing 2_3 dataset is selected as the

multi-fault signal. It should be noted that only cage

fault occurs in the Bearing 2_3 dataset which is

described from the dataset provider [35]; however,

López et al. [36] found evidence of the outer race fault

which appears from epoch 127 to the end. Therefore,

in this study, the vibration signal containing outer race

fault and cage fault of the file number 127 in Bearing

2_3 dataset is used for further analysis. Note that

according to designing parameters of the test bearing,

feature frequencies of the outer race fault and the cage

fault are computed as 116.41 and 14.84 Hz,

respectively.

Figure 29 depicts the temporal waveform and

frequency spectrum of the used multi-fault signal

with 1.28 s. It is difficult to remarkably observe

regular impulses with periodicity from Fig. 29a. In

Fig. 29b, the rotating frequency fr and its multiples are

clearly found and could be termed as the periodic

harmonic interference, which corresponds to the

simulation cases in Sect. 4.

The original FMD method is implemented to

decompose the multi-fault signal of experimental case

#1 at first, with filter length L = 40 and desired mode

number Kd = 3. As shown in Fig. 30, periodic har-

monics of shaft rotation, i.e., fr and its two harmonics

29 and 39, are predominant in Mode #1, while fault

characteristics of cage f2 along with its inconsecutive

multiples appear in the envelope spectra of both Mode

#2 and Mode #3.

When changing the mode number as Kd = 2, the

information contained in decomposed Mode #1 and

Mode #2 shown in Fig. 31 are close to Mode #1 and

Mode #3 of Fig. 30. However, the fault signatures of

outer race could not be extracted in the decomposition

modes bymeans of FMD. From this observation, it can

be seen that the original FMD is still sensitive to

periodic harmonics induced by shaft rotation and is

prone to missed diagnosis, consistent with the con-

clusion drawn through the simulation cases in Sect. 4.

VMD is also applied to the experimental case #2.

As shown in Fig. 32b, one cannot find any fault

evidence in the envelope spectrum of BLIMF #1.

Meanwhile, only fault feature frequency f1 clearly

Fig. 26 a Temporal waveform and b its frequency spectrum of the multi-fault signal in experimental case #1 after AR model

preprocessing

Fig. 27 Weighted SEHNR values of modes decomposed by the

proposed AFMDwith the change of filter length in experimental

case #1
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appears in Fig. 32d. However, the fault signatures of

cage (f2 and its harmonics) could not be extracted in

the decomposition modes by VMD. In other words,

VMD fails to compete the bearing multi-fault diag-

nosis task.

Figure 33 plots the temporal waveform and fre-

quency spectrum of the residue of the multi-fault

signal preprocessed by AR model with model order of

66. By comparison with Fig. 29b, amplitudes of the

periodic harmonics induced by the rotating shaft are

decreased by around ten times from near 0.3 to 0.03, as

presented in Fig. 33b. Besides, from the perspective of

frequency spectrum, the overall magnitudes of the raw

signal and the filtered residue before and after AR

pretreatment are also significantly different with

removal of the deterministic harmonics, thus aiding

to enhance the fault-related signatures.

The filter length of 156 that achieves the maximum

weighted SEHNR value of the decomposition results

is adaptively selected for the proposed AFMDmethod,

according to Fig. 34. As shown in Fig. 35, two modes

are adaptively given by AFMD. The fault

Fig. 28 Decomposed results of the multi-fault signal in experimental case #1 by the proposed AFMD: a, c time domain; b, d SES

Fig. 29 a Temporal waveform and b its frequency spectrum of the multi-fault signal in experimental case #2
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characteristic frequency f2 and its harmonics are

clearly decomposed into Mode #2. Different from

the results acquired by the original FMD shown in

Figs. 30 and 31, the outer race fault signatures (f1, 29,

39, etc.) are clearly extracted with high SNR. Besides

that, the cage fault frequency f2 and its multiples as

well as the side frequency f1 ? f2 are also obvious in

Mode #1, demonstrating the capability of the proposed

AFMD method on multi-fault feature extraction over

the original FMD and VMD.

Regarding the computational burden of all the

algorithms, from the results of two experimental cases

shown in Table 2, a similar conclusion to that based on

simulation cases could be drawn. VMD has significant

computational efficiency, while AFMD takes the most

time to complete the calculation but achieves a similar

(experimental case #1) or same (experimental case #2)

magnitude level with the total time of FMD that

requires more attempts for mode number selection.

Considering the fault diagnosis results of all the

methods, it could be found that the proposed AFMD

indeed needs more time but can ensure the accuracy of

final diagnosis results, especially for multiple faults.

At the same time, when using the original FMD by

manually attempting more times to select the mode

number, the time advantage of FMD to AFMD would

Fig. 30 Decomposed results of the multi-fault signal in experimental case #2 by original FMD with Kd = 3 and L = 40: a, c, e time

domain; b, d, f envelope spectra
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Fig. 31 Decomposed results of the multi-fault signal in experimental case #2 by original FMD with Kd = 2 and L = 40: a, c time

domain; b, d envelope spectra

Fig. 32 Decomposed results of the multi-fault signal in experimental case #2 by VMD: a, c time domain; b, d envelope spectra
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easily disappear. Besides, although VMD is faster, it is

not initially designed for extracting the impulsiveness

and periodicity of the faulty signal, and the fault

diagnosis performance also relies on the proper

parameter selection.

6 Discussion and conclusion

As a latest decomposition method, FMD has been

already tested by Miao et al. [24] through simulation

and experimental datasets and achieved better results

over the popular VMD method. However, FMD still

faces the challenging task of multi-fault diagnosis

under interferences of deterministic harmonics

induced by gear meshing and shaft rotation that are

rather common components in the vibration signals

collected from rotating machinery. Misdiagnosis and

missed diagnosis might appear when conducting FMD

to such noisy signals with multiple localized faults on

gears or bearings through the simulation case #1 and

case #2 as well as experimental case #2. Besides, the

main input parameters (i.e., filter length and desired

mode number) that unfortunately need to be pre-

defined by means of trial and error affect the final

decomposition performance of FMD, even with small

difference of selection value, which is verified by

simulation case #1. At the same time, the current

principle for mode selection still cannot thoroughly

eliminate the redundant or useless modes, which has

been found by simulation case #2, experimental case

#1 and case #2. The limitations of FMD are summa-

rized in Sect. 2.2 in detail.

The proposed AFMD is therefore introduced to

diagnosis multiple localized faults of gears and

bearings robustly. Benefiting from the AR model

preprocessing procedure, AFMD initially removes the

periodic harmonics and exploits the merit of CK

focusing on fault-related impulses. The core of AFMD

is the ‘‘adaptive’’ merit, which is embodied in the

aspect of focusing on multi-fault feature extraction

adaptively, not being trapped in the dilemma of

misdiagnosis or missed diagnosis caused by manual

parameter selection. The adaptive FIR filter bank and

the newly proposed mode selection strategy, along

with the adaptive determination of the filter length and

the desired mode number, all aid to effectively

accomplish the adaptive extraction of multiple faults

with only useful modes reserved in the final decom-

position results. The proposed new mode selection

strategy has been proven to be more beneficial to

thoroughly removing redundant and useless modes,

Fig. 33 a Temporal waveform and b its frequency spectrum of the multi-fault signal in experimental case #2 after AR model

preprocessing

Fig. 34 Weighted SEHNR values of modes decomposed by the

proposed AFMDwith the change of filter length in experimental

case #2
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since it considers the signal similarity across multiple

domains (i.e., time domain, frequency domain and

envelope spectrum domain) as well as the consistency

of estimated faulty periods rather than single temporal

correlation coefficient. The effectiveness of the pro-

posed AFMD has been validated through two simu-

lated and two experimental scenarios involving gear

and bearing multiple localized faults.

Some thoughts on selection of the filter length need

to be further clarified. As discussed in Sect. 2.2,

different filter length values may significantly affect

the final decomposition results, even with a very small

difference such as L = 40 and L = 41 depicted in

Figs. 4 and 5. This phenomenon occurs not only in

FMD, but also in the proposed AFMD, owing to the

intrinsic property of blind deconvolution theory. One

can find that the obtained results of the weighted

SEHNR values with the change of filter length in the

four used validation scenarios exist the similar overall

trend. The weighted SEHNR value has a rapid increase

as the filter length increases from zero to a relatively

small value. While it then gradually climbs to a

relatively high level, but may fluctuate to a certain

extent, as shown in Figs. 12, 19, 27 and 34. However,

the specific weighted SEHNR values and their

fluctuation amplitudes in different simulation and

experiment cases are not the same, since the processed

signals have different components and complexities.

The plots of the weighted SEHNR value with chang-

ing filter length are mainly utilized to present that the

filter length has a significant impact on the decompo-

sition results. In this study, for simplicity, the maxi-

mum values of the filter lengths are all set as 200 in the

four validation cases, which can well illustrate the

effects of the filter length. One can choose a greater

maximum filter length value for further observing its

effects on decomposition results. However, it should

be noted that the greater the filter length is, the greater

the computational burden and distortion probability

[24]. This study only provides a practical solution for

selection of the filter length, whose effectiveness has

been demonstrated, but might not be the best one.

Based on the proposed indicator weighted SEHNR,

the intelligent optimization algorithms such as particle

swarm optimization (PSO) and genetic algorithm

(GA) could also be applied to choose the proper filter

length value, while how to select the hyper-parameters

of these algorithms may become another difficult

problem to be solved.

Fig. 35 Decomposed results of the multi-fault signal in experimental case #2 by the proposed AFMD: a, c time domain; b, d SES
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The contributions of this study can be concluded as

follows:

(1) A newly proposed AFMD fusing the merits of

blind deconvolution theory into the decomposi-

tion process is presented as an efficient vibration

signal decomposition method for adaptive mul-

ti-fault feature extraction of rotating machinery

under complex interferences including strong

periodic harmonics and random shocks.

(2) A new indicator called weighted SEHNR that is

capable of evaluating the multi-fault informa-

tion of decomposed modes is proposed to guide

the selection of filter length in an automatic way,

thus guaranteeing the decomposition perfor-

mance of the proposed AFMD method.

(3) A new mode selection strategy that can evaluate

the signal similarity across multiple domains

and the consistency of estimated faulty periods

is proposed.

Benefiting from the proposal of the mode selection

strategy and the adaptive determination of filter length

and mode number, the proposed AFMD method

avoids the redundant iterations in the mode selection

process of the state-of-the-art FMD and the inappro-

priate tunable parameter selection issue of VMD. The

superiority of AFMD on multi-fault feature extraction

by using appropriate key parameters was well-demon-

strated in this study.

It is also noticed that the two main parameters, filter

length and mode number, are automatically selected in

this study, while some initial parameters such as the

threshold of value eT shown in Eq. (20), and the

searching range of filter length still need to be preset in

advance by users according to various working

conditions. The applied values corresponding to the

initial parameters in this study could be taken as

default values for practical cases with similar opera-

tion conditions as this study.

In the future, the adaption of the proposed method

will concentrate on the multi-fault quantitative diag-

nosis under variable working conditions from indus-

trial applications, which will have wide application

prospects in practice and needs further investigations.

In addition, the ability of the proposed AFMD method

on extraction of weak fault features and separation of

multi-fault features without mixtures should also be

further enhanced in the following work.
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