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Abstract Reinforcement learning (RL) provides a
way to approximately solve optimal control problems.
Furthermore, online solutions to such problems require
a method that guarantees convergence to the optimal
policy while also ensuring stability during the learn-
ing process. In this study, we develop an online RL-
based optimal control framework for input-constrained
nonlinear systems. Its design includes two new model
identifiers that learn a system’s drift dynamics: a slow
identifier used to simulate experience that supports the
convergence of optimal problem solutions and a fast
identifier that keeps the system stable during the learn-
ing phase. This approach is a critic-only design, in
which a new fast estimation law is developed for a critic
network. A Lyapunov-based analysis shows that the
estimated control policy converges to the optimal one.
Moreover, simulation studies demonstrate the effec-
tiveness of our developed control scheme.
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1 Introduction

Optimal control is a demanding design objective of
control systems, in which a cost function quantifies the
system’s desired behavior with the goal of developing
a control policy that minimizes the cost function under
the constraints of the system dynamics. Solutions to the
optimal control problem of dynamic systems generally
aim to solve the underlying Hamilton-Jacobi-Bellman
(HJB) equation. For nonlinear systems, an HJB equa-
tion is a nonlinear partial differential equation whose
analytical solution is very difficult or even impossible
to derive. Dynamic programming is the classic method
used to solve HJB equations; however, since this is a
backward approach, only offline solutions are possible,
and it is also computationally expensive for complex
systems.

Owing to the similarity of reinforcement learning
(RL) and optimal control, RL has been widely imple-
mented to solve optimal control problems. In fact,
in RL, an agent interacts with its environment and
improves its behavior based on the observed reward,
where a complete exploration of the environment leads
to the agent’s optimal behavior. Such performance
resembles solutions to optimal control problems in the
sense that solving HJB equations gives an evaluation
of the control policy, and then the controller is updated
based on this evaluation to achieve optimal perfor-
mance. RL-based approaches that solve optimal con-
trol problems are also called adaptive or approximate
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dynamic programming (ADP), in which mainly neu-
ral networks (NNs) are used to approximately solve
dynamic programming in a forward-in-time manner,
thus reducing the computational complexity.

RL-based adaptive optimal controllers were first
developed for discrete-time systems due to the iter-
ative nature of the ADP approach [1,2]. Extensions
of RL-based controllers to continuous-time systems
were investigated by several researchers [3–5]. For
continuous-time systems, the problem involves sev-
eral challenges, including guaranteeing convergence
to optimal control policies as well as stability during
the training process, dealing with the system’s model
uncertainties, and ensuring that the algorithm is online.
For online solutions, Vamvoudakis and Lewis [5]
developed an RL-based policy iteration (PI) approach
adopting the actor-critic structure, where actor and
critic neural networks are simultaneously tuned. Such
a method requires a model of the system. One online
actor-critic approach developed for linear systems [6],
called integral RL, does not require a system’s inter-
nal dynamics but rather sequentially updates the critic
and actor neural networks. A previously proposed PI
algorithm [7] deals with unknown system models by
incorporating a model identifier in the design.

Although themain goal of RL-based controllers is to
approximately solve the optimal control problem, pre-
viousworks [5,7] achieved this goal bymaking the sys-
tem states satisfy a persistence of excitation (PE) con-
dition, which is analogous to the exploration concept in
RL. Generally, it is difficult to satisfy the PE condition
in practice and impossible to guarantee it in advance.
A common practice in designing RL-based controllers
that satisfy the PE condition is to add a probing sig-
nal to the controller [3,5,7,8]. However, this solution
is problematic because the proper design of probing
noise requires much trial-and-error development: The
probing signal can affect the system’s stability, and
when to remove the signal from the controller remains
unclear. Although one approach [9] utilized the sys-
tem’s recorded values to solve the online optimal con-
trol problemwithout a PE, other results [10,11] showed
that simulated experience using the system model can
be more effective than recorded experience. Another
approach [11] utilized a model identifier that estimates
the system dynamics over the entire operating domain
to simulate experience. However, the model identifiers
that learn the system model over the whole task space
are usually slow, especially for complex systems, and

thus the system’s stability during the learning phase
cannot be ensured.

A further issue, which is critical from a practical
point of view, is the amplitude limitation on control
inputs. Previous designs [5,7,11,12] failed to guarantee
that the control commands remainwithin an admissible
range, which may degrade the system performance or
even result in instability. Some bounded-input PI algo-
rithms [13–16] require a dynamic model of the system.
Other approaches [17,18] guarantee convergence to the
optimal problem solution by adding a probing signal,
whose effect was not clarified in the stability analysis.
The bounded controllers in other works [9,19] used
recorded data to deal with satisfying the PE condition;
however, this approach still needs to add a finite amount
of probing noise as input to the system.

In this study, we designed an RL-based approach
for optimal control of input-constrained uncertain non-
linear systems. Our main motivation was to apply the
simulated experience concept [11] in developing an RL
controller for bounded-input systems. To achieve this
goal, twonovelmodel identifiers are incorporated in the
design: a slow identifier that learns the system model
over the entire operating domain of the system, which
is used for experience simulation, and a fast and precise
identifier that learns the model along the system trajec-
tory, which keeps the system stable until the slow iden-
tifier provides sufficient information to solve the opti-
mal control problem. Unlike most RL approaches that
use separate networks for critics and actors as a way to
maintain stability, our design is a critic-only approach,
which is facilitated by exploiting a bounded feature in
the components of the cost function. The update law
of the critic network includes a new bounded control
term that increases the learning rate. We conducted
a Lyapunov-based analysis to show that the closed-
loop system is uniformly ultimately bounded (UUB)
and that the UUB convergence of the control policy
to the optimal policy is guaranteed. Simulation studies
demonstrate the effectiveness of our developed control
scheme.

The main contributions of this study are as follows.

1. A new online RLmethod is developed for nonlinear
systems that takes into account input constraints.
Existingworks addressing the sameproblem require
an exploration signal [9,13,15,18],which is difficult
to design for unknown systems while ensuring that
it does not threaten stability.
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2. New model identifiers are developed that guarantee
fast convergence and high precision. The identifiers
are used to apply the concept of experience simula-
tion in the solution of the RL problem for bounded-
input systems.

3. Unlikemany onlineRL approaches [5,7,11,15], our
design is a critic-only approach. In addition, a non-
-standard bounded adaptation term is designed for
the critic network, which is shown to significantly
increase the rate of convergence.

2 Optimal control problem and system definition

We studied a continuous-time nonlinear system defined
as

ẋ(t) = f(x) + g(x)u(t), (1)

where x ∈ R
n is the system state vector, f(x) ∈ R

n

is the unknown drift dynamics of the system, g(x) ∈
R
n×m is the input dynamics, which is assumed to be

known in this paper, and u = [u1, · · · , um]� ∈ R
m is

the control input, which is saturated such that |ui | ≤ λ

for i = 1, · · · ,m, where λ is a known upper con-
straint of the inputs. Throughout this paper, any vari-
able denoted with a time-dependent argument, such as
x(t), is used interchangeably with the corresponding
variable without the argument, such as x.

Assumption 1 The functions f(x) andg(x) are second-
-order differentiable. In addition, g(x) fulfills the fol-
lowing condition:

‖g(x)‖ ≤ bg

for some bg ∈ R
+ [7,10].

Remark 1 The boundedness of the input dynamics
g(x) that is noted in Assumption 1 is satisfied in many
practical systems, including robotic systems [20] and
aircraft systems [21].

For u ∈ �a , where �a is the set of admissible poli-
cies [5], the following performance/value function is
introduced [18]:

V (x(t)) �
∫ ∞

t
[Q(x(τ )) +U (u(τ ))]dτ, (2)

where Q(x) ∈ R is a general continuous positive-
definite function that penalizes states, and the positive-
definite integrand function is defined as

U (u) � 2
∫ u

0
(λ tanh−1(v/λ))�Rdv, (3)

where v ∈ R
m is an auxiliary variable and R =

diag(r̄1, · · · , r̄m) ∈ R
m×m is a positive-definite diag-

onal matrix. This nonquadratic function, which penal-
izes inputs, is widely adopted in the literature and prac-
tical systems to deal with input constraints [4,13,18].

The objective of the optimal controller is to mini-
mize the performance function defined in Eq. (2). To
develop this controller, we first differentiated V along
the system trajectories (Eq.1) using Leibniz’s rule to
achieve the following Bellman equation:

V̇ (x) = −Q(x) −U (u).

Therefore, we can define the following Hamiltonian
function:

H(x,u,∇V ) � Q(x) +U (u)

+ ∇V (x) (f(x) + g(x)u(x)) , (4)

where ∇V (x) � ∂V (x)/∂x ∈ R
1×n is the gradient of

V (x).
Assume V ∗(x) is the optimal cost (value) function

and that H(x,u,∇V ∗) is the corresponding Hamil-
tonian. Consequently, the optimal controller can be
obtained by employing the stationary condition on the
Hamiltonian; in other words, by taking the derivative
of the Hamiltonian with respect to u and setting the
obtained equation to zero. Then the optimal controller
can be written as [13]

u∗(x) = arg min
u∈�a

[H(x,u,∇V ∗)]
= −λ tanh(D∗), (5)

where D∗ � 1
2λR

−1g(x)�∇V ∗(x)� ∈ R
n . Substitut-

ing Eq. (5) into Eq. (3) and solving it gives [13]

U (u∗) � λ2R̄ ln(1−tanh2(D∗))+λ∇V ∗g tanh(D∗),
(6)

where R̄ = [r̄1, · · · r̄m] ∈ R
1×n and 1 ∈ R

n is a vector
whose elements all equal 1. The optimal performance
function and the associated optimal controller satisfy
the following Hamilton-Jacobi-Bellman (HJB) equa-
tion:

H(x,u∗,∇V ∗) = Q(x) +U (u∗) + ∇V ∗(f + gu∗) = 0.
(7)

The optimal controller in Eq. (5) can be obtained by
solving the HJB equation (Eq.7) for the optimal value
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V ∗ and using it in Eq. (5). However, it is generally
very difficult, if not impossible, to solve this equation
for nonlinear systems. The uncertainty in the dynamic
model also increases the technical difficulties.

Itwas previously shown [13] that the above-mentioned
optimal problem can be solved through offline policy
iteration in a reinforcement learning-based method by
estimating the value function V (x) for a given control
policy u(x) from the Hamiltonian function (or Bell-
man equation) (Eq.4) and updating the policy with the
estimated value function and the structured form of the
controller in Eq. (5). Thus, the algorithm converges
to the solution of the HJB equation. An online policy
iteration solution was proposed [5] that directly esti-
mated the optimal value function V ∗(x) to solve the
HJB equation expressed in Eq. (7).

This paper considers an online policy iteration-
based method to solve the optimal regulation problem,
and the function approximation property of neural net-
works (NN) estimates both optimal value function V ∗
and unknown dynamic model f , where the estimations
are denoted by V̂ and f̂ , respectively. Using the esti-
mated values, the approximate HJB equation can be
written as

H(x, x̂, û,∇ V̂ ) = Q(x) +U (û) + ∇ V̂ (f̂ + gû), (8)

where x̂ is the estimate of x, and

U (û) � λ2R̄ ln(1 − tanh2(D̂)) + λ∇ V̂ g tanh(D̂), (9)

in which D̂ ∈ R
n is the estimate of D∗, and û �

−λ tanh(D̂).
Bellman residual error δB , defined as the error

between the actual and approximate HJB equations,
is given by

δB � H(x, x̂, û,∇ V̂ ) − H(x,u∗,∇V ∗)
= H(x, x̂, û,∇ V̂ ). (10)

The Bellman error is measurable and mainly used to
design the tuning rule of the neural network of the
value function estimator (critic network). Such a tun-
ing approach requires the system states to satisfy the PE
condition in order to guarantee convergence. However,
it is difficult in practice to guarantee PE in online esti-
mation because the system needs to visit many points
in the state space. Adding probing noise is one possi-
ble solution to this problem [5,7,18]. The selection of
probingnoise requires careful attention because no ana-
lytical approach is able to compute probing noise that

provides PE to nonlinear systems and, moreover, such
added noise may result in instability. Although previ-
ous works [9,22] have used the recorded past visited
values of the Bellman error to solve the online optimal
control problem without PE, the results of other work
[11] show that the simulated experience of the Bellman
error based on a system model can be more effective
than using experienced data.

According to Eqs. (10) and (4), in applying a simu-
lated experience, a uniform estimation of function f
is required over the entire operating domain, which
allows us to estimate the value of the Bellman error
in unexplored points. Online techniques for estimat-
ing f over the whole task space are generally slow
because they need to visit and collect sufficiently rich
data. Therefore, using only this type of model identi-
fier in the Bellman error might deteriorate the system
performance and cause instability. Therefore, we use
both a fast identifier that rapidly estimates the value of
f along the system trajectory and a slow identifier that
estimates f over a large space to simulate experience at
the unvisited points. These estimates are denoted as f̂
and f̂s , and they are used to predict the Bellman error
along the trajectory and at unexplored points, respec-
tively. These Bellman errors are used together to esti-
mate the optimal value function. A certain amount of
time is required before f̂s can become accurate enough
to simulate experience, so during this period, the esti-
mated Bellman error using f̂ provides information for
stabilizing the system.

In some existing works [18,23], a model identifier is
designed to estimate the input dynamics g(x) and drift
dynamics f(x). However, estimating them separately
requires rich information, which is difficult to collect
in optimal regulation problems where state and control
trajectories quickly converge to zero. Therefore, similar
to previous works [7,10], in this study, we assume that
the function g(x) is known and thus only estimate the
drift dynamics.

In the following sections, we first present the iden-
tifiers that estimate unknown drift dynamics f(x), and
then we present an approach to estimate the optimal
value function. The critic-only optimal policy can then
be extracted from the estimated value function. A block
diagram of the proposed control system is shown in
Fig. 1.
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Fig. 1 Block diagram of proposed RL-based optimal controller

3 Identifier design

3.1 Fast model identifier along system trajectories

Our objective here is to design a fast and precise esti-
mator for the drift dynamics f(x) of the system (Eq.1).
To achieve this, the function approximation property of
NNs is used in conjunction with a robust integral of the
sign of error (RISE) term to gain continuous estimation
with zero error. The prescribed performance feature is
also added to satisfy the desired convergence rate.

The function f(x) can be represented by a neural
network over compact set �N :

f(x) = W�
f σ f (z) + ε f , (11)

where W f ∈ R
L f ×n is a bounded constant ideal

weight matrix, L f denotes the number of neurons,
σ f (·) ∈ R

L f is the activation matrix with vector
z as its input, and ε f ∈ R

n denotes the functional
reconstruction error. Activation function σ f , error ε f ,
and their time derivatives are assumed to be bounded
[18]. Substituting Eq. (11) into Eq. (1), we obtain
ẋ = W�

f σ f + ε f + g(x)u.
The identifier state is denoted by x̂ ∈ R

n , and iden-
tification error x̃ ∈ R

n is defined as x̃ � x − x̂. The
objective is to design an identifier such that error x̃
and its time derivative converge to zero. Accordingly,
the identifier can be used as an estimator of the sys-
tem model. To gain a high-performance identifier, we
constrain error signal x̃ = [x̃1, · · · , x̃n]� to converge

with some desired performance conditions. According
to Assumption 1, imposing a convergence rate on x̃
also imposes a convergence rate on the estimation of
unknown function f(x).

To constrain x̃, a smoothly decreasing performance
function μ(t) ∈ R

+ is first introduced as [24]

μ(t) � (μ0 − μ∞) e−κμt + μ∞, (12)

where κμ > 0 and μ0 > μ∞ > 0 are design parame-
ters. Then, provided the error signal satisfies the con-
dition

− δ̄iμ(t) < x̃i (t) < δ̄iμ(t), (13)

where δ̄i ∈ R
+ are positive prescribed constants for i =

1, · · · , n, the convergence rate of x̃i (t) is guaranteed to
be faster than that of function μ(t). It can be seen from
Eqs. (12) and (13) that −δ̄iμ0 and δ̄iμ0 respectively
signify the lower bound of the undershoot and the upper
bound of the overshoot of x̃i (t). In addition, the lower
bound of the convergence rate of error is given by κμ.

The following transformation is assumed to trans-
form the constrained error x̃ into an unconstrained one:

x̃i (t) = μ(t)Ti (ςi ), (14)

where ςi ∈ R denotes the transformed unconstrained
error, and Ti (ςi ) ∈ R is a strictly increasing function
satisfying the following criteria:

− δ̄i < Ti (ςi ) < δ̄i , lim
ςi→−∞ Ti (ςi ) = −δ̄i , (15)

lim
ςi→+∞ Ti (ςi ) = δ̄i , (16)

which is defined as [24]

Ti (ςi ) � δ̄ieςi − δ̄ie−ςi

eςi + e−ςi
. (17)

Considering the properties of Ti (ςi ) and the fact that
μ(t) > 0, we conclude that inverse transformation
ςi (t) = T−1

i [x̃i (t)/μ(t)] is properly defined provided
that ςi is bounded. Consequently, to achieve the pre-
scribed performance condition (Eq.13), we only need
to guarantee the boundedness of ςi .

Using Eq. (17), ςi can be written as

ςi (t) = 1

2
ln

δ̄i + x̃i (t)/μ(t)

δ̄i − x̃i (t)/μ(t)
. (18)

Then the time derivative of ςi can be obtained as ς̇i =
ri ( ˙̃xi− μ̇

μ
x̃i ), where ri � φi/μwithφi ∈ R is defined as

φi � 1
2 (

1
δ̄i+x̃i /μ

+ 1
δ̄i−x̃i /μ

). Considering the properties
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of the transformation, it can be concluded that ri > 0
provided that Eq. (13) is satisfied. For an n-dimensional
system, the transformed error vector can be defined as
ς � [ς1 · · · ςn]� ∈ R

n , whose time derivative can be
written as follows:

ς̇ = ϒ
( ˙̃x − 
x̃

)
, (19)

where 
 � μ̇/μ ∈ R, and diagonal matrix ϒ ∈ R
n×n

can be defined as ϒ � diag{r1, · · · , rn}.
The following identifier is proposed to approximate

the system given by Eq. (1):

˙̂x � Ŵ�
f σ̂ f + g(x)u − 
x̃ + ϒ−1ν, (20)

where Ŵ f ∈ R
L f ×n is the estimated weight matrix,

σ̂ f � σ f (x̂), and ν ∈ R
n is the RISE term defined as

[25]

ν � k f ς − k f ς(0) +
∫ t

0
[αk f ς(t̄) + β1sgn(ς(t̄))]dt,

in which k f , α, β1 ∈ R
+ are constant design param-

eters. Having ˙̂x through Eq. (20), the estimate of drift
dynamics f in Eq. (1) can be given as

f̂ � ˙̂x − g(x)u. (21)

The first term in the right-hand side of Eq. (20) is a
neural network-based estimate of function f(x). The
second component is a feedforward term that utilizes
known information in the systemdynamics (Eq.1). The
term−
x̃ is included in Eq. (20) to cancel out the effect
of its counterpart in Eq. (19), and the last component
in Eq. (20) includes the RISE term featured by the pre-
scribed performance property. This term applies feed-
back information and compensates all residual estima-
tion errors such that the prescribed performance con-
dition (Eq.13) is fulfilled and the estimation error con-
verges to zero.

Now, utilizing Eqs. (1) and (20), the identification
error dynamics can be developed as

˙̃x = W�
f σ f − Ŵ�

f σ̂ f + ε f + 
x̃ − ϒ−1ν. (22)

Owing to the definition of ϒ and the induced norm
for matrices, when the condition set in Eq. (13) is sat-
isfied, we can consider a lower bound for the norm of
ϒ as ‖ϒ‖ ≥ φm/μ, where φm denotes the minimum
value of φi for i = 1, · · · , n. Considering this and sub-
stituting Eq. (22) into Eq. (19), ς̇ can be obtained as

ς̇ = − k f ς −
∫ t

0
[αk f ς(t̄) + β1sgn(ς(t̄))]dt + ϒW̃�

f σ f

+ S + ε0, (23)

where ε0 � ϒ0ε f , S � ϒŴ�
f σ̃ f + ϒ1ε f , σ̃ f �

σ f − σ̂ f , ϒ0 � φm/μIn ∈ R
n×n , In denotes the iden-

tity matrix of dimension n, and ϒ1 � ϒ − ϒ0. Now
auxiliary variable eς ∈ R

n is defined as

eς � ς̇ + ας . (24)

Taking the time derivative of (23), ėς can be obtained
as

ėς = −k f eς − β1sgn(ς(t)) − ς + Ñ + NB + ε̇0,

(25)

where Ñ,NB ∈ R
n are defined as

Ñ � ϒ̇W̃�
f σ f − ϒ

˙̂W�
f σ f + ϒ1W̃

�
f σ̇ f + ς + Ṡ + ας̇,

and NB � ϒ0W̃�
f σ̇ f . Considering Assumption 1, the

results from Appendix A in a previous work [26] can
be invoked to obtain the following upper bound for Ñ:

‖Ñ‖ ≤ ρ(‖ω‖)‖ω‖, (26)

where ω ∈ R
2n is defined as ω � [ς� e�

ς ]� and
ρ(‖ω‖) ∈ R

+ is a positive globally invertible non-
decreasing function. Considering the definitions of ε0
andNB and the properties of their components, the fol-
lowing bounds can also be stated:

‖ε̇0‖ ≤ ζ1, ‖ε̈0‖ ≤ ζ2, (27)

‖NB‖ ≤ ζ3, ‖ṄB‖ ≤ ζ4 + ζ5‖ς‖, (28)

where ζ1, ζ2, ζ3, ζ4, ζ5 ∈ R
+ are positive constants.

Theorem 1 For the system defined by Eq. (1) and the
adaptation rule for the NN weights given by

˙̂W f � Proj(γ σ̇ f ς
�ϒ0), (29)

in which γ ∈ R
+ is a positive adaptation gain

and Proj(·) denotes the projection operator, provided
Assumption 1 holds, the initial conditions satisfy Eq.
(13), gain k f is selected as sufficiently large based on
the initial conditions, and the following conditions are
satisfied:

β1 > max(ζ1 + ζ3, ζ1 + ζ3 + ζ4

α
), (30)

β2 > ζ5, and β2 < α (31)
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in which β2 is defined in Eq. (49), the identifier given in
Eq. (20) guarantees the asymptotic identification of the
state and its derivative, in the sense that ‖x̃‖, ‖˙̃x‖ → 0
as t → ∞.

Proof See the proof in Appendix A. ��

Remark 2 The neural network used for estimating drift
dynamics f employs the error between x and x̂ and
thus is decoupled from the value function estimator
introduced in Sect. 4.

3.2 Model identifier satisfying convergence

The identifier developed in the previous section assures
the fast convergence of f̂ to the true values along the
system trajectories. However, the convergence of NN
weights to true values is not guaranteed. This means
that we cannot use f̂ to estimate drift dynamics f at
the unvisited points. It is known from the literature that
the convergence of these weights requires a PE con-
dition, which is often difficult to achieve in practice
and nearly impossible to verify online. To relax the
PE condition while estimating the drift dynamics over
the entire operating domain, we follow the experience
replay approach [27] that uses recorded input-output
data to improve the efficiency of information utiliza-
tion. Although this method does not require a restric-
tive PE condition, the recorded data must still be rich
enough to estimate the true weights; consequently, the
estimation of function f by this method is much slower
than using the method in the previous section, despite
providing an opportunity to explore the Bellman error
at the unvisited points and relaxing the PE condition
required for convergence of the critic weights.

Similar to the previous section, it is assumed that
function f(x) can be represented by an NN as f =
W�

s σ s +εs , whereWs ∈ R
Ls×n is an unknownweight

matrix, σ s ∈ R
Ls is the activation function vector, εs ∈

R
n is the estimation error,Ls is the number of neurons,

and the following bounds are satisfied:

‖εs‖ ≤ bεs, ‖σ s‖ ≤ bσ s, ‖∇σ s‖ ≤ bσ sx ,

where bεs, bσ s, bσ sx ∈ R
+ are positive constants.

Hence, an estimate of f can be represented as f̂s �
Ŵ�

s σ s , where Ŵs ∈ R
Ls×n is an estimate ofWs . Hav-

ing an exact estimate of function f along the system tra-
jectory, obtained through the RISE-based approach in

the previous section, function estimation error es ∈ R
n

is considered to be1

es � f − f̂s

= W̃�
s σ s + εs, (32)

where W̃s � Ws − Ŵs ∈ R
Ls×n . Now assume that a

history stack containsM recorded pairs of (fs j , σ s j ) for
j = 1 · · · M , where subscript j denotes the j th sample
in all variables. The function estimation error for each
pair of recorded data based on the current estimated
weight can be written as

es j = fs j − Ŵ�
s σ s j

= W̃�
s σ s j + εs j .

Assumption 2 The recorded data in the history stack
contain sufficient linearly independent elementsσ s j for
j = 1 · · · M such that

0 < cσ1 � λmin(

M∑
j=1

σ s jσ
�
s j ), (33)

whereλmin denotes theminimumeigenvalue. This con-
dition is satisfied when rank(

∑M
j=1 σ s jσ

�
s j ) = Ls ,

which can be easily verified online [10].

Assumption 2 requires the system states to be
excited over a finite time interval. This is a less restric-
tive condition than the PE condition in traditional esti-
mation methods. The PE condition needs the excited
states to be present throughout an infinite time period,
and it is very difficult or even impossible to verify
online. It has been shown that condition (33) can be
fulfilled in the RL control of nonlinear systems [11].
It has also been shown [10,28] that one can use an a
priori available history stack to satisfy Eq. (33).

The objective is to design an estimation law for Ŵs

that guarantees that the estimated weight matrix con-
verges as closely as possible to the true weight matrix
Ws . According to the subsequent convergence analy-
sis, the following estimation law is designed:

˙̂Ws � �sσ se�
s + γs1�s	 + γs2�s

	

‖	‖ + εs
, (34)

1 The accuracy of f̂(x) can be monitored through the error signal
x̃, and its output can be used in Eq. (32) instead of f when the
error becomes negligible.
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where γs1, γs2 ∈ R
+ are positive constants, εs is a

small positive value, 	 ∈ R
Ls×n is defined as 	 �∑M

j=1 σ s je�
s j , and variable least-squares gain matrix

�s ∈ R
Ls×Ls is defined as

�̇s �
{

ρs�s − �s(σ sσ
�
s )�s, if ‖�s‖ ≤ �̄s

0, otherwise
,

where �̄s ∈ R
+ is a saturation constant, ρs ∈ R

+ is
a forgetting factor, and �s(0) is a symmetric positive-
-definite matrix satisfying ‖�s(0)‖ ≤ �̄s . Using (32),
(34) and the definition of W̃s , the dynamics of W̃s can
be written as

˙̃Ws � − �sσ s(σ
�
s W̃s + ε�

s )

− γs1�s

M∑
j=1

(σ s jσ
�
s jW̃s + σ s jε

�
s j )

− γs2�s

∑M
j=1(σ s jσ

�
s jW̃s + σ s jε

�
s j )

‖	‖ + εs
. (35)

Remark 3 The last term in Eq. (34) was inspired by
previous work [29], where a non-smooth form of it,
i.e., 	/‖	‖, is used in the estimation law; moreover,
this work showed that, in the absence of function recon-
struction error εs , a finite-time convergence could be
achieved. The use of this type of bounded control term
(and its variations, e.g., [30]) is a common practice in
the control of uncertain systems and improves stability
and performance without employing a high-gain con-
trol term that may degrade system performance in the
presence of noise [30]. Although the last term in Eq.
(34) does not guarantee finite-time convergence due to
the embedded smoothening term εs and the existence of
the function estimation error, simulation studies show
that this bounded term significantly improves the con-
vergence rate.

The convergence of Ŵs to the true value can be ana-
lyzed by considering the following Lyapunov function:

LWs � 1

2
tr(W̃�

s �−1
s W̃s), (36)

whose time derivative using (35) can be obtained as

L̇Ws = −tr(W̃�
s σ sσ

�
s W̃s) − tr(W̃�

s σ sε
�
s )

− tr(γs1

M∑
j=1

W̃�
s σ s jσ

�
s jW̃s)

− tr(γs1

M∑
j=1

W̃�
s σ s jε

�
s j )

− tr(
γs2

∑M
j=1 W̃

�
s σ s jσ

�
s jW̃s

‖	‖ + εs
)

− tr(
γs2

∑M
j=1 W̃

�
s σ s jε

�
s j

‖	‖ + εs
)

− 1

2
tr

(
W̃�

s �−1
s (ρs�s − �sσ sσ

�
s �s)�

−1
s W̃s

)
.

By defining cσ2 � λmax(
∑M

j=1 σ s jσ
�
s j ), where λmax

denotes the maximum eigenvalue, we have

−tr(
γs2

∑M
j=1 W̃

�
s σ s jσ

�
s jW̃s

‖	‖ + εs
) ≤ −γs2ϑs‖W̃s‖F ,

where ϑs > 0 is defined as

ϑs � 1 − (cσ2 − cσ1)‖W̃s‖F + Mbεsbσ s + εs

cσ2‖W̃s‖F + Mbεsbσ s + εs
.

Furthermore, assuming that εs is selected such that it
satisfies (‖	‖ + εs) >

∑M
j=1 sup

j=1···M
(‖σ s jε

�
s j‖F ), we

have

−tr(
γs2

∑M
j=1 W̃

�
s σ s jε

�
s j

‖	‖ + εs
) ≤ γs2�s‖W̃s‖F

for some �s < 1 (note that ‖	‖ < ‖∑M
j=1 σ s jε

�
s j‖

happensonly if‖∑M
j=1 σ s jσ

�
s jW̃s‖<2‖∑M

j=1 σ s jε
�
s j‖,

which means for small values of W̃s). Therefore, con-
sidering Eq. (33), an upper bound of L̇Ws can bewritten
as

L̇Ws ≤ −γs1cσ1‖W̃s‖2F + εw‖W̃s‖F , (37)

where εw � (1+γs1M)bεsbσ s−γs2(ϑs−�s), and‖·‖F
is the Frobenius norm. Then, from Eqs. (36) and (37),
we can conclude that W̃s converges to a neighborhood
of zero.

Remark 4 For large values of ‖	‖, since εs is bounded,
the term (ϑs−�s)will be a positive value that results in
a smaller εw, and thus, according to (37), a faster con-
vergence. In addition, one can consider γs2 a strictly
increasing saturated function of ‖	‖ to reduce the
effect of the last term in (34) for the small values of
‖	‖ (indicating the estimation error).

Remark 5 In contrast to the PE condition, the rank con-
dition in Eq. (33) can be easily verified online. An algo-
rithm for the selection of data points based on maxi-
mizing singular value was given previously [27]. The
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history stack can be updated to improve the estimation
performance by replacing old datawith new data if they
result in larger cσ1 .

4 Optimal value function approximation

The solution of the optimal control problem, according
to the closed-form equation of the optimal controller
(Eq. 5), requires the optimal value functionV ∗(x). Con-
sequently, in this section, we present an approach to
estimate this function, which can then be used to derive
the estimated optimal controller. Following the stan-
dard RL techniques [4,13], the Bellman error δB can
be employed as an indirect performance metric of the
quality of the estimate of the value function. Accord-
ing to Eqs. (8) and (10), the Bellman error depends on
the dynamics of the system. Therefore, using the esti-
mate of the drift dynamics through themodel identifiers
proposed in the previous section, this section presents
an online method to estimate the optimal value func-
tion using the Bellman error. Considering the function
approximation property ofNNs, optimal value function
V ∗ can be represented as

V ∗(x) = W�
c σ c(x) + εc(x), (38)

where Wc ∈ R
Lc is the constant ideal weight vec-

tor, σ c ∈ R
Lc is the basis function or activation

function vector satisfying σ c(0) = 0 and ∇σ (0) �
∂σ c(0)/∂x = 0, εc is the functional reconstruction
error, and Lc is the number of neurons. Error εc and
its gradient ∇εc are bounded over the compact set �N

as [31]

|εc| ≤ bεc, ‖∇εc‖ ≤ bεcx

for some positive bεc, bεcx ∈ R
+, and the following

bounds are considered for the activation function [5,8]:

‖σ c‖ ≤ bσc, ‖∇σ c‖ ≤ bσcx ,

where bσc, bσcx ∈ R
+ are positive constants.

Using (38), the gradient of V ∗ can be written as

∇V ∗(x) = W�
c ∇σ c(x) + ∇εc(x). (39)

Substituting Eq. (39) into Eq. (7), the HJB equation can
be written as

Q(x) +U (u∗) + W�
c ∇σ c

(
f + gu∗) = εh jb, (40)

where εh jb � −∇εc(f+gu∗), which is a bounded term
[7,18].

Since ideal weight vector Wc is not available, the
optimal value function is estimated through the fol-
lowing critic neural network:

V̂ (x) = Ŵ�
c σ c(x), (41)

where Ŵc ∈ R
Lc is the estimation of Wc. Using Eq.

(41), we obtain ∇ V̂ = Ŵ�
c ∇σ c. Therefore, consider-

ing Eq. (5), the optimal controller (actor) can be esti-
mated as

û = −λ tanh(D̂), (42)

where D̂ � 1
2λR

−1g�∇σ�
c Ŵc. Accordingly, the solu-

tion to the optimal control problem is converted to find-
ing an adaptation rule for Ŵc such that a proper esti-
mation is guaranteed for the optimal value function.

In reinforcement learning, the online update law for
Ŵc is developed using the Bellman error. To guarantee
that Ŵc converges to a true value, sufficient exploration
of the state space is required. In this paper, we follow a
previous approach [11] that utilizes a system’s model
to simulate the Bellman error at any desired unexplored
point. Since the estimate of drift dynamics f is available
at any desired point x j through f̂s , the Bellman error
can be evaluated at such points as follows:

δBj � Q(x j ) +U (û(x j , Ŵc))

+ ∇ V̂ (x j )(f̂s(x j ) + gû(x j , Ŵc)).

Based on the above definition, the online update law
for the critic weight vector is given as

˙̂Wc � − αcβ

(1 + β�β)2
δB − αcγc1�

−αcγc2
�

‖�‖ + εc
, (43)

where αc, γc1, γc2, εc ∈ R
+ are positive design gains,

� ∈ R
Lc is defined as

� �
N∑
j=1

β j

N (1 + β�
j β j )

2
δBj ,

and vector variables β,β j ∈ R
Lc are defined as

β � ∇σ c(f̂ − λg tanh(κD̂)),

β j � ∇σ c(x j )(f̂s(x j ) − λg(x j ) tanh(κD̂(x j ))),

(44)

where κ ∈ R
+ is a positive constant. The last term

in Eq. (43) resembles the last component in Eq. (34),
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which is a bounded control term that increases the con-
vergence rate without employing a high-gain estima-
tion law (see Remark 3 and Remark 4). Vector β j is
obtained from the simulated experience at points x j for
j = 1, · · · , N , satisfying the following condition.

Assumption 3 There exists a finite set of points x j for
j = 1, · · · , N , such that

0 < cβ1 � 1

N

⎛
⎝ inf

t∈R≥t0

⎛
⎝λmin(

N∑
j=1

β jβ
�
j

(1 + β�
j β j )

2
)

⎞
⎠

⎞
⎠ .

(45)

Assumption 3 can be satisfiedwhen rank(
∑N

j=1 β jβ
�
j )

= Lc, and it can be easily verified online. Since the vec-
tors β j are obtained from unvisited points, a sufficient
number of points can be selected to fulfill the condition
(45) [10].

Now, in the following theorem, we present the sta-
bility and convergence results of the given online policy
iteration algorithm.

Theorem 2 For the systemof Eq. (1), consider the con-
troller in Eq. (42), the critic weight update law in Eq.
(43), and the model identifier f̂s with its weight update
law given in Eq. (34). Provided Assumptions (1)-(3),
and the following sufficient gain conditions are satis-
fied:

γs1cσ1 >
η21�1

4
+ η23

4
, γc1cβ1 >

�1

η21
+ η23

4
, (46)

where bβ , �1, η1, η2, and η3 are positive constants
defined subsequently in the proof, then system state x
and weight estimation errors W̃c and W̃s are UUB,
which means UUB convergence of û to u∗.

Proof See the proof in Appendix C. ��
Remark 6 Due to the existence of the fast model
identifier, a similar stability analysis as presented in
Appendix C can be made to show that the closed-loop
system remains stable before the condition of Eq. (45)
is satisfied; however, the convergence of Ŵc to the opti-
mal weight cannot be guaranteed.

Remark 7 Although we addressed the effect of the
estimation error of the slow model identifier as an
unbounded term in the stability analysis, it can be
assumed to be a priori bounded provided we use only
the identifier’s outputs when the estimation error is
smaller than a certain predefined value.

5 Simulation results

In this section, we present the results of simulation
studies that evaluated the performance of our proposed
control scheme. Since there are no known solutions
to optimal control problems for bounded-input nonlin-
ear systems, in the first two studies, to show that our
proposed method converges to optimal solutions, we
selected an actuator bound that is large enough to verify
that the commands do not violate the bound. Input con-
straints were considered in the second study, where we
evaluated the effectiveness of the proposed algorithm
and compared the results with those of two available
solutions in the literature for a bounded-input system.

5.1 Systems without actuator saturation

In this simulation study, the model of the nonlinear
system of Eq. (1) was considered to be [7]

f(x) =
[ −x1 + x2
−0.5x1 − 0.5x2

(
1 − (cos(2x1) + 2)2

)
]

,

g(x) =
[

0
cos(2x1) + 2

]
,

which satisfies Assumption 1. The state vector x =
[x1, x2]� was initialized at x(0) = [−1, −1]�. The
design parameters of the fast model identifier (21) were
selected as k f = 8, α = 1, β1 = 0.2, κμ = 2, μ0 = 4,
μ∞ = 0.3, and δ̄i = 1, and sigmoid functions were
considered for the basis of the NN with L f = 6. For
the slow model identifier, the design parameters were
selected as γs1 = γs2 = 3, εs = 0.001, �s(0) = 3ILs ,
and ρs = 0.1, and the basis was considered to be

σ s = [x1, x2, sin(x1), cos(x1), sin(x2), cos(x2),

sin(x1)
2, cos(x1)

2, sin(x2)
2, cos(x2)

2, x1 cos(x2),

x1 cos(x2)
2, x2 cos(x1), x2 cos(x

2
1 )]�.

Here, all of the initial weights were set to 0.5. We
used an algorithm from a previous study [27] to record
the data in the history stack for this identifier, and
Assumption 2 was satisfied around t = 1.2 s. The
optimal control problem was defined by considering
Q(x) = x�x and R = 1. The design parameters were
selected as αc = 200, γc1 = γc2 = 1.5, εc = 0.0005,
λ = 3, and κ = 3. The basis was selected as σ c =
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Fig. 2 Estimated value function weights

Fig. 3 Norm of unknown function f estimated by fast identifier

[x21 , x1x2, x22 ]�, the initial weights were set to 1, and
the data for the simulation of the Bellman error were
selected from a 5 × 5 grid around the trajectory such
that Assumption 3 was satisfied.

Based on an analytical solution, the idealweights are
Wc = [0.5, 0, 1]� [7]. The estimated values in this
simulation converged to Ŵc = [0.499, 0.00, 1.00]�
after 10 s, which shows the effectiveness of the pro-
posed algorithm. The trajectories of the estimated
weights are shown in Fig. 2. The trajectories of the
norm of f̂ estimated by the fast model identifier and its
true value are shown in Fig. 3. The trajectories of the
system’s states are depicted in Fig. 4. In comparison to
results reported in the literature for the same nonlinear
system, e.g., [7], our results show faster convergence of
the estimated value function and smoother trajectories
of the states. This is because these approaches require
the application of an exploration input signal and forc-
ing the system to visit many points in the state space
to satisfy the PE condition; however, our approach,
similar to an earlier study [11], simulates those points
and gains smoother real trajectories. Also note that the
design of that study [11] required an additional estima-
tion network for the actor.

To demonstrate the effectiveness of the last term of
the update law (Eq.43) in increasing the convergence
rate, the above simulation was repeated by removing

Fig. 4 State trajectory during online learning

Fig. 5 Time evolution of estimated value function weights with-
out using last term in Eq. (43)

this term from the update law. The estimated weight
vector after 10 s was Ŵc = [0.526, −0.011, 0.782]�,
and it took about 100 s until the weights nearly con-
verged to the optimal values. The time evolution of the
estimated weights in this condition is shown in Fig. 5.
We observed a similar level of effectiveness for the last
term of the adaptation law (Eq.34) used for the model
identification.

In another study, we considered a four-order linear
dynamic system ẋ = Ax+Bu that describes amechan-
ical system consisting of amass attached to a spring and
a damper [32]. Spring constants, damping coefficients,
and the mass of the system are selected to obtain the
following results in the state and input matrices:

A =

⎡
⎢⎢⎣
0 1 0 0
0 −6 −1.7 0
0 0 0 1
0 0 −3 −0.2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ . (47)

The state vectorwas initialized atx(0) = [−1, −1, −1,
−1]�. The design parameters for the fast model identi-
fierwere selected to be the sameas those used in the pre-
vious simulation. The state vector was considered to be
the basis for the slow model identifier. The parameters
of this identifierwere selected as γs1 = γs2 = 1, and all
other parameters and initial values of the weights were
the same as those in the previous simulation. The design
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Fig. 6 Time evolution of estimated value function weights for
the linear system described by Eq. (47)

parameters for the estimation of the value functionwere
selected as αc = 2, γc1 = 3, γc2 = 1, εc = 0.001,
λ = 10, and κ = 3. The basis vector was σ c =
[x21 , 2x1x2, 2x1x3, 2x1x4, 2x22 , 2x2x3, 2x2x4,
2x23 , 2x3x4, 2x24 ]�. The initial weights were set to
1, and the data for the simulation of the Bellman error
were selected from a 5 × 5 × 5 × 5 grid around the
trajectory.

For the cost function defined by Q(x) = x�x and
U (u) = u2, by solving the algebraic Riccati equa-
tion, the ideal weight vector was obtained as Wc =
[6.245, 1.000, −0.203, −0.548, 0.245, −0.054,
−0.093, 10.274, 0.196, 3.462]�, and the estimated
one after 30 s was Ŵc = [6.245, 0.999, −0.194,
−0.548, 0.246, −0.051, −0.101, 10.274, 0.197,
3.461]�. These results confirm the convergence of the
proposed method to the optimal control solution. The
time evolution of the weights is shown in Fig. 6.

5.2 Nonlinear system with actuator saturation

The nonlinear system considered in this study was
defined by the following terms [13,18]:

f(x) =
[
x1 + x2 − x1(x21 + x22 )

−x1 + x2 − x2(x21 + x22 )

]
, g(x) =

[
0
1

]
,

where the state vector was initialized at x(0) =
[1, −1]�. The control input was assumed to be lim-
ited to |u| ≤ 1, and the nonquadratic cost function
(Eq.2) was defined by considering Q(x) = x�x and
R = 1. The design parameters of the fast model iden-
tifier were identical to those of the previous simula-
tion example. For the slow model identifier, the design
parameters were selected as γs1 = γs2 = 1, εs = 0.1,
�s(0) = 8ILs , and ρs = 0.5, and the basis was consid-
ered to be σ s = [x1, x2, x1x21 , x1x22 , x2x21 , x2x22 ]�.
Again, all of the initial weights were set to 0.5. Here,

αc = 35, γc1 = γc2 = 4.5, εc = 0.001, and λ = 1
were selected as design parameters for the value func-
tion estimation. The data for the simulation of the Bell-
man error were selected from a 5 × 5 grid around the
trajectory, and the basis was selected as [18]

σ c =[x21 , x22 , x1x2, x41 , x42 , x31 x2, x21 x
2
2 , x1x

3
2 , x61 ,

x62 , x51 x2, x41 x
2
2 , x31 x

3
2 , x21 x

4
2 , x1x

5
2 , x81 , x82 ,

x71 x2, x61 x
2
2 , x51 x

3
2 , x41 x

4
2 , x31 x

5
2 , x21 x

6
2 , x1x

7
2 ]�,

as were the initial critic weights [18]

Ŵc(0) =[2.92, 1.84, 0.96, 1.96, 1.39, −1.07, −1.42,

− 1.00, −1.57, −0.88, 1.14, 0.76, 3.69, 3.02,

2.66, −0.35, 1.22, −1.30, −3.35, 0.12, 2.12,

− 0.01, 2.49, 2.13]�.

The time evolution of the estimation of weights is
shown in Fig. 7. According to the estimated values and
(42), the estimated controller after 50 s is given by

û = − tanh(4.5x1 + 3.95x2 + 12.5x32 − 2.15x31

+ 9.7x21 x2 + 17.11x1x
2
2 + 0.69x52 + 0.31x15 + 1.1x41 x2

+ 6.69x31 x
2
2 + 7.86x21 x

3
2 + 9.07x1x

4
2 + 6.25x72 − 0.67x71

− 3.35x61 x2 + 0.24x51 x
2
2 + 4.3x41 x

3
2 + 0.02x31 x

4
2

+ 7.92x21 x
5
2 + 1.06x1x

6
2 ).

The trajectories of the states obtained by this estimated
controller are shown in Fig. 8. The figure also shows the
trajectories of the states obtained by the estimated con-
trollers given in previous works [18] (obtained after
250 s) and [13] (obtained offline). The evolution of
the control efforts obtained by the three methods is
shown in Fig. 9. The cost values measured within 20 s
were 2.77 for our method, while those for the previous
methods were 2.84 [18] and 5.46 [13]. These results
demonstrate that the proposed approach yields a supe-
rior performance for an estimated optimal controller.
Notably, our method achieves this result without using
an exploratory signal in contrast to the earlier works
[18], [13].

6 Conclusion

This study addressed online RL-based solutions to the
optimal regulation problem of unknown continuous-
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Fig. 7 Evolution of a small number of estimated value function
weights

Fig. 8 State trajectories obtained by estimated optimal con-
trollers

Fig. 9 Evolution of control efforts obtained by three methods

time nonlinear systems. The designed method uses the
simulated experience concept and incorporates actua-
tor bounds in its control design. Two model identifiers
were developed whose outputs were used to guaran-
tee the convergence of the estimated controller to the
optimal one and to keep the system stable while learn-
ing the optimal solution. The proposed estimation law
for the critic network satisfies fast convergence without
employing a large estimation gain. A stability analysis
shows the controller’s UUB convergence to the optimal

one, and the simulation results demonstrate the effec-
tiveness of the developed technique.
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Appendices

A Proof of Theorem 1

Consider D ⊆ R
2n+2 a domain containing y = 0,

where y ∈ R
2n+2 is defined as y � [ω� √

P
√
Q f ]�,

in which Q f (t) ∈ R
+ is defined as Q f (t) �

α
2γ tr(W̃

�
f W̃ f ) with tr(·) denoting the trace of a matrix.

Here, function P(t) ∈ R is given by

P(t) � β1

n∑
i=1

|ςi (0)| − ς(0)�(ε̇ f (0) + NB(0))

−
∫ t

0
K(t̄)dt̄, (48)
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where function K(t) ∈ R is defined as

K(t) � e�
ς (ε̇0−β1sgn(ς))+ς̇�NB−β2‖ς‖2, (49)

in which β2 ∈ R
+ is a positive constant. Provided the

conditions of Eqs. (30) and (31) are satisfied, it can be
shown that P(t) ≥ 0; see the proof in Appendix B.
Now consider the continuously differentiable positive-
definite function as follows:

V = 1

2
ς�ς + 1

2
e�
ς eς + P + Q f . (50)

It can be concluded that

ψ1(y) ≤ V(y) ≤ ψ2(y), (51)

where positive-definite strictly increasing functions
ψ1, ψ2 ∈ R

+ are defined as ψ1 � 0.5‖y‖2 and
ψ2 � ‖y‖2. Using Eqs. (24), (25), and the time deriva-
tive of Eq. (48), the time derivative of V can be devel-
oped as

V̇ = − (α − β2)ς
�ς − k f e�

ς eς + e�
ς Ñ + e�

ς NB

− ς̇�NB − α

γ
tr(W̃�

f
˙̂W f ).

Therefore, using Eq. (24) and the definition ofNB , and
knowing that a�b = tr(ba�),∀a,b ∈ R

n , we canwrite

V̇ = − (α − β2)ς
�ς − k f e�

ς eς + e�
ς Ñ

− α

γ
tr(W̃�

f
˙̂W f − γ W̃�

f σ̇ f ς
�ϒ0).

Considering the adaptation law (Eq.29) and using the
properties of the projection operator, we have

− α

γ
tr(W̃�

f
˙̂W f − γ W̃�

f σ̇ f ς
�ϒ0) ≤ 0. (52)

Therefore, using Eqs. (26) and (52), an upper bound
for V̇ can be written as

V̇ ≤ −(α − β2)‖ς‖2 − k f ‖eς‖2 + ρ(‖ω‖)‖ω‖‖eς‖.
Bysplitting k f into adjustable positive gains k f 1, k f 2 ∈
R

+ as k f = k f 1 + k f 2, we can further bound V̇ as
follows if the condition in Eq. (31) is satisfied:

V̇ ≤ −β3‖ω‖2 − k f 2‖eς‖2 + ρ(‖ω‖)‖ω‖‖eς‖, (53)

where β3 is defined as β3 � min{(α −β2), k f 1}. Com-
pleting the squares for the last two terms of Eq. (53),
we obtain V̇ ≤ −(β3 − ρ2(‖ω‖)/4k f 2)‖ω‖2. There-
fore, we have V̇ ≤ c‖ω‖2 for some positive constant
c ∈ R

+ in the following domain:

D �
{
y ∈ R

2n+2 | ‖y‖ ≤ ρ−1(2
√

β3k f 2)
}

,

which, considering Eq. (51), indicates that V ∈ L∞ in
D. Therefore, from Eq. (50), we have ς , eς , P , Q f ,
and hence W̃ f ∈ L∞ inD. Since ς is bounded, we can
conclude that the prescribed performance condition is
satisfied and x̃ ∈ L∞ inD. To analyze the convergence
of the signals, we need to show that ω is uniformly
bounded. From Eq. (24), we can see that ς̇ ∈ L∞ in
D. Therefore, since ϒ is bounded, from Eq. (19) we
have ˙̃x ∈ L∞ in D. Consequently, from Eq. (22), we
conclude that ν ∈ L∞ in D. Since ˙̃x is bounded, from
the definition of ϒ, we also see that ϒ̇ ∈ L∞ in D.

From Eq. (29), ˙̂W f ∈ L∞ in D, and we also have
˙̃σ f ∈ L∞. From these results and Eq. (25), we can
see that ėς ∈ L∞ in D. Then, since ς̇ , ėς ∈ L∞, we
conclude that ω̇ ∈ L∞ in D, which indicates that ω is
uniformly continuous in D.

Now consider region S ⊂ D as S � {y ⊂
D | ψ2(y) < 1

2 (ρ
−1(2

√
β3k f 2))

2}. Based on the above
results, Theorem 8.4 of an earlier work [33] can be used
to conclude that ‖ω‖ → 0 as time goes to infinity for
all y(0) ∈ S. According to Eq. (17), Ti → 0 as ςi → 0,
and from Eq. (14), ‖x̃‖ → 0. Therefore, from Eqs. (19)
and (24), we conclude that ‖˙̃x‖ → 0 as t → 0. The
convergence of ˙̃x to zero indicates that f̂ , given by Eq.
(21), converges to f .

B Proof of P(t) ≥ 0

Here we show that P(t) ≥ 0. The proof follows the
same steps as in a prior study [34]. Integrating both
sides of Eq. (49), we have

∫ t

0
K(t̄)dt̄ =

∫ t

0
e�ς (ε̇0 − β1sgn(ς)) dt̄ +

∫ t

0
ς̇�NBdt̄

−
∫ t

0
β2‖ς‖2dt̄ .

Using Eq. (24), we have

∫ t

0
K(t̄)dt̄ =

∫ t

0

dς�

dt̄
(ε̇0 + NB)dt̄ −

∫ t

0

dς�

dt̄
β1sgn(ς)dt̄

+
∫ t

0
ας� (ε̇0 − β1sgn(ς)) dt̄ −

∫ t

0
β2‖ς‖2dt̄ .

(54)

Integrating the first integral in Eq. (54) by parts yields

∫ t

0
K(t̄)dt̄ = ς�(ε̇0 + NB)

∣∣∣∣
t

0
−

∫ t

0
ς� d(ε̇0 + NB)

dt̄
dt̄
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−
∫ t

0

dς�
dt̄

β1sgn(ς)dt̄ −
∫ t

0
β2‖ς‖2dt̄

+
∫ t

0
ας� (ε̇0 − β1sgn(ς)) dt̄

= ς�(ε̇0 + NB) − ς(0)�(ε̇0(0) + NB(0))

+
∫ t

0
ας�

(
ε̇0 − 1

α

d(ε̇0 + NB)

dt̄
− β1sgn(ς)

)
dt̄

− β1

n∑
i=1

|ςi | + β1

n∑
i=1

|ςi (0)| −
∫ t

0
β2‖ς‖2dt̄ .

Knowing that
∑n

i=1 |ςi | ≥ ‖ς‖, and using Eqs. (27)
and (28), we can write the following inequality:

∫ t

0
K(t̄)dt̄ ≤ (ζ1 + ζ3 − β1)‖ς‖ + β1

n∑
i=1

|ςi (0)|

+
∫ t

0
α(ζ1 + ζ2 + ζ4

α
− β1)‖ς‖dt̄

+
∫ t

0
(ζ5 − β2)‖ς‖2dt̄ − ς(0)�(ε̇0(0) + NB(0)).

Therefore, if the conditions in Eqs. (30) and (31) are
satisfied, we have
∫ t

0
K(t̄)dt̄ ≤ β1

n∑
i=1

|ςi (0)| − ς(0)�(ε̇0(0) + NB(0)),

which indicates that P(t) ≥ 0.

C Proof of Theorem 2

Consider the following Lyapunov function:

L � V ∗(x) + LWc + LWs , (55)

where LWs is defined in Eq. (36), and LWc �
1

2αc
W̃�

c W̃c, in which W̃c � Wc − Ŵc. Using Eqs.
(1), (5), and (42), we have

V̇ ∗ = ∂V ∗

∂x
ẋ = ∇V ∗(f + gû)

= ∇V ∗(f + gu∗) + λ∇V ∗g(tanh(D∗) − tanh(D̂)).

Therefore, using Eqs. (7) and (38), V̇ ∗ can be written
as

V̇ ∗ = − Q(x) −U (u∗)
+ λ(W�

c ∇σ c + ∇ε�
c )g(tanh(D∗) − tanh(D̂)).

(56)

Defining ũ � tanh(D∗) − tanh(D̂), and knowing that

U (u∗) > 0,

λ∇ε�
c gũ ≤ λ‖∇εc‖‖g‖‖ũ‖ ≤ 2λbεcxbg,

λW�
c ∇σ cgũ ≤ λ‖Wc‖‖∇σ c‖‖g‖‖ũ‖

≤ 2λ‖Wc‖bσcxbg,

and Q(x) > qminx�x for some qmin ∈ R
+, an upper

bound can be written for V̇ ∗ as

V̇ ∗ ≤ −qmin‖x‖2 + κ1, (57)

where κ1 � 2λ‖Wc‖bσcxbg + 2λbεcxbg .
To develop the time derivative of the second term

of the right-hand side of Eq. (55), we first write the
Bellman error (Eq. 10) as follows by substituting the
gradient of Eq. (41) into Eq. (8):

δB = Q(x) +U (û) + Ŵ�
c ∇σ c

(
f̂ + gû

)
. (58)

From Eq. (40), we have

Q(x) = −U (u∗) − W�
c ∇σ c

(
f + gu∗) + εh jb.

Therefore, substituting this expression into Eq. (58),
we obtain

δB = U (û) −U (u∗) − W�
c ∇σ c(f + gu∗)

+ Ŵ�
c ∇σ c

(
f̂ + gû

)
+ εh jb. (59)

Considering the definition of U (u∗) and U (û), given
respectively in Eqs. (6) and (9), and knowing that
ln(1 − tanh2(D∗)) = ln(4) − 2D∗sgn(D∗) + εD∗ and
ln(1− tanh2(D̂)) = ln(4) − 2D̂sgn(D̂) + εD for some
bounded εD∗ and εD [18], where sgn(·) denotes the
signum function, we develop the following expression:

U (û) −U (u∗) = 2λ2R̄
(
D∗sgn(D∗) − D̂sgn(D̂)

)

− Ŵ�
c ∇σ cgû + W�

c ∇σ cgu∗

+ ∇εcgu∗ + λ2R̄(εD − εD∗). (60)

The signum function can be approximated by a tanh
function with the following relation quantifying the
approximation error [35]:

0 ≤ xsgn(x) − x tanh(κx) ≤ 1

0.2785κ
.

Therefore, the expression in Eq. (60) can be written as

U (û) −U (u∗) = 2λ2R̄
(
D∗ tanh(κD∗) − D̂ tanh(κD̂)

)
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+ 2λ2R̄(κD∗ − κD) − Ŵ�
c ∇σ cgû + W�

c ∇σ cgu∗

+ ∇εcgu∗ + λ2R̄(εD − εD∗), (61)

where κD∗ and κD denote the approximation errors.
Then, considering the definitions of D∗ and D̂, and
adding and subtracting λW�

c ∇σ cg tanh(κD̂) to the
right-hand side of Eq. (61), we have

U (û) −U (u∗) = λW̃�
c ∇σ cg tanh(κD̂)

+ 2λ2R̄(κD∗ − κD) − Ŵ�
c ∇σ cgû + W�

c ∇σ cgu∗

+ ∇εcgu∗ + λ2R̄(εD − εD∗)

+ λW�
c ∇σ cg

(
tanh(κD∗) − tanh(κD̂)

)
. (62)

Substituting Eq. (62) into Eq. (59) and doing certain
manipulations, we obtain

δB = −β�W̃c + εδ, (63)

where β ∈ R
Lc is defined in Eq. (44) and εδ ∈ R is

given by

εδ � 2λ2R̄(κD∗ − κD) + λ2R̄(εD − εD∗) + ∇εcgu∗

+ εh jb + λW�
c ∇σ cg

(
tanh(κD∗) − tanh(κD̂)

)

− W�
c ∇σ c f̃,

where all of its elements are bounded terms, and thus
an upper bound can be considered for it as |εδ| ≤ ε̄δ .
Also note that approximation errors εD∗ , εD , κD∗ , and
κD converge to zero as x goes to zero. Following the
same steps, the unmeasurable form of simulated Bell-
man error δBj can be obtained as

δBj = −β�
j W̃c − W�

c ∇σ cj f̃s j + εδ j , (64)

where f̃s j � f j − f̂s j = es j , subscript j indicates the
j th sample of the variables, and εδ j � 2λ2R̄(κD∗ −
κDj ) + λ2R̄(εDj − εD∗) + λW�

c ∇σ cg(tanh(κD∗) −
tanh(κD̂(x j ))) − ∇εcf j , for which an upper constant
bound can be considered.

Then, using Eqs. (63) and (64) and the adaptation
rule (Eq.43), the time derivative of LWc can be written
as

L̇Wc = −W̃�
c β̄β̄

�
W̃c + W̃�

c
β̄

ms
εδ

− γc1

N

N∑
j=1

W̃�
c β̄ j β̄

�
j W̃c

− γc1

N

N∑
j=1

W̃�
c

β̄ j

ms j
W�

c ∇σ cj f̃s j + γc1

N

N∑
j=1

W̃�
c

β̄ j

ms j
εδ j

− γc2
∑N

j=1 W̃
�
c β̄ j β̄

�
j W̃c

N (‖�‖ + εc)
+ γc2

∑N
j=1 W̃

�
c β̄ jεδ j/msj

N (‖�‖ + εc)

− γc2
∑N

j=1 W̃
�
c β̄ jW

�
c ∇σ cj f̃s j/msj

N (‖�‖ + εc)
,

where β̄ � β/(1 + β�β) and ms � 1 + β�β that
satisfy the following inequality:

‖ β̄

ms
‖ ≤ bβ < 1,

in which bβ is a positive constant. We have

−γc2
∑N

j=1 W̃
�
c β̄ j β̄

�
j W̃c

N (‖�‖ + εc)
≤ −γc2ϑc‖W̃c‖,

where ϑc > 0 is defined as

ϑc � 1 − (cβ2 − cβ1)‖W̃c‖ + h̄1 + h̄2 + εc

cβ2‖W̃c‖ + h̄1 + h̄2 + εc
,

in which cβ2 � 1
N ( sup

t∈R≥t0

(λmax(
∑N

j=1
β jβ

�
j

(1+β�
j β j )

2 ))),

and h̄1 � b̄βbσcxbσ sx‖W c‖‖W̃s‖F ,
h̄2 � b̄βbσcx ε̄s j‖W c‖ + b̄β ε̄δ j , in which b̄β �
sup

j=1···N
(‖β̄ j/msj‖), ε̄s j � sup

j=1···N
(‖εs j‖) and ε̄δ j �

sup
j=1···N

(|εδ j |).Also, assuming that εc > sup
j=1···N

(‖f̃s j‖)+
ε̄δ , the following inequality can be developed:

− γc2
∑N

j=1 W̃
�
c β̄ jW

�
c ∇σ cj f̃s j/msj

N (‖�‖ + εc)

+ γc2
∑N

j=1 W̃
�
c β̄ jεδ j/msj

N (‖�‖ + εc)
≤

γc2b̄βbσcx�c1‖Wc‖‖W̃c‖ + γc2b̄β�c2‖W̃c‖

for some �c1,�c2 < 1. Then, defining the following
positive constants:

�1 � γc1b̄βbσcxbσ sx‖W c‖,
�2 � γc1b̄βbσcx ε̄s j‖W c‖ + γc2b̄βbσcx�c1‖W c‖

+ γc1b̄β ε̄δ j + γc2b̄β�c2 + bβ ε̄δ,

and considering Eq. (45), the following upper bound
can be written for L̇Wc :

L̇Wc ≤ − γc1cβ1‖W̃c‖2 + �1‖W̃c‖‖W̃s‖F
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+ (�2 − γc2ϑc)‖W̃c‖. (65)

Therefore, using Eqs. (37), (57), and (65) and
Young’s inequality, an upper bound for L̇ can bewritten
as

L̇ ≤ − qmin‖x‖2 − (γc1cβ1 − �1

η21
− η22

4
)‖W̃c‖2

− (γs1cσ1 − η21�1

4
− η23

4
)‖W̃s‖2F

+ κ1 + (�2 − γc2ϑc)
2

η22
+ ε2w

η23
, (66)

where η1, η2, η3 ∈ R
+ are adjustable constants. There-

fore, considering Eq. (66), whenever the gain condi-
tions in Eq. (46) are satisfied, we conclude that x, W̃c,
and W̃s are uniformly ultimately bounded.
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