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Abstract An adaptative phase-space discretization

strategy for the global analysis of stochastic nonlinear

dynamical systems with competing attractors consid-

ering parameter uncertainty and noise is proposed. The

strategy is based on the classical Ulam method. The

appropriate transfer operators for a given dynamical

system are derived and applied to obtain and refine the

basins of attraction boundaries and attractors distri-

butions. A review of the main concepts of parameter

uncertainty and stochasticity from a global dynamics

perspective is given, and the necessary modifications

to the Ulam method are addressed. The stochastic

basin of attraction definition here used replaces the

usual basin concept. It quantifies the probability of the

response associated with a given set of initial condi-

tions to converge to a particular attractor. The phase-

space dimension is augmented to include the extra

dimensions associated with the parameter space for

the case of parameter uncertainty, being a function of

the number of uncertain parameters. The expanded

space is discretized, resulting in a collection of transfer

operators that enable obtaining the required statistics.

A Monte Carlo procedure is conducted for the

stochastic case to construct the proper transfer oper-

ator. An archetypal nonlinear oscillator with noise and

uncertainty is investigated in-depth through the pro-

posed strategy, showing significative computational

cost reduction.

Keywords Global nonlinear dynamics � Ulam
method � Adaptative discretization � Parameter

uncertainty � Noise � Helmholtz oscillator �
Nondeterministic integrity

1 Introduction

The many sources of uncertainty in engineering are

generally classified as aleatory or epistemic. Design

under uncertainty needs to account for both the

former, such as variability in material properties, and

the latter, which include errors due to imperfect

analysis tools. In real-life applications, both uncer-

tainties are present simultaneously, and their added

effect should be considered for a safe design. In

mathematics, uncertainty is often characterized in

terms of probability distribution, with epistemic
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uncertainty meaning not being sure of the assumed

distribution, and aleatory uncertainty meaning not

being sure of a random sample drawn from it [1]. In

physical problems, uncertainties can be of parametric

type, where parameter values are unknown to some

degree; structural type, meaning a lack of knowledge

of the underlying mechanics; algorithmic type, com-

ing from numerical errors/approximations in the

computer model; experimental type, arising from

measurement variability and/or interpolation errors

due to lack of available data.

In the context of structural engineering, the need to

include parameter uncertainties and noise in dynamic

analyses has long been recognized [2, 3]. Here,

uncertainties come from material and geometric

parameters, boundary conditions, manufacturing tol-

erances, and external loads. In addition, deterioration

or evolution of the structure during its lifetime leads to

increasing uncertainties, which can affect vibration

behavior. Parameters such as natural frequencies or

damping are subject to uncertainty stemming from a

lack of knowledge of parameter values and a lack of

understanding of the system actual behavior. The

problem can be stated in a probabilistic framework to

account for the uncertainty in system parameters,

which leads to differential equations with coefficients

modeled as random variables.

Various techniques have been developed for the

analysis of uncertainties in structural problems. For an

overview of classical methodologies, such as Monte

Carlo sampling, perturbation analysis, moment equa-

tions, operator of the governing equations, General-

ized Polynomial Chaos (GPC), stochastic Galerkin,

and collocation, refer to Xiu [4]. More recent devel-

opments were devoted to mitigating the loss of

accuracy of long time integration when employing

usual expansions of the random space, and included

time-dependent GPC methodology [5], stochastic

time-warping polynomial chaos, as well as nonlinear

autoregressive polynomial chaos [6] and GPC with

flow map composition [7]. Time-dependent uncer-

tainty is also important in structural dynamics, for

representing noisy loads and parametric excitations.

Various sampling-based methods, where the govern-

ing systems are reformulated as stochastic differential

equations, have been developed. Arnold [8] presents

the mathematical foundation of the theory of random

dynamical systems, stochastic bifurcations, and their

multiplicative ergodic theory. Han and Kloeden [9]

discuss the numerical simulation and analysis of

random ordinary differential equations. These works

point out that noisy excitation represents a major

difficulty in uncertainty analysis, requiring the analyst

to ponder the meaning of the results, either numeric or

analytic.

When considering nondeterministic effects, a phys-

ical problem may present many possible outcomes

distributed in a probability space. Such distributions

may evolve in time for dynamical systems, a phe-

nomenon that is a dynamical system in itself, governed

by a linear, positive, and density conserving transfer

operator [10] of Markov type. Ulam [11] hypothesized

that such transfer operators could be discretized and

distributions approximated by histograms, formulat-

ing what is known as the Ulam method. Later, Hsu

[12, 13] adopted an algorithmic perspective, develop-

ing the generalized cell-mapping, then proven to be

equivalent to the Ulam method [14].

Several advances followed. Hsu and Chiu com-

bined generalized cell-mapping and the previously

developed simple cell-mapping into the so-called

hybrid cell-mapping [15, 16]. In these works, there is

already a separation between stochastic and paramet-

ric uncertainties, with specific methodologies to deal

with them focused on global dynamics. However, a

proper probabilistic framework is missing. Sun and

Hsu [17] developed a short-time Gaussian approxi-

mation for nonlinear random vibration analysis. Han

and coworkers explored this strategy extensively,

considering nonautonomous cases [18] under colored

noise [19], stochastic bifurcations in a turbulent

swirling flow [20], and a combination with digraph

algorithms [21]. Simple and generalized cell-map-

pings were recently reformulated by Yue et al. [22]

into the so-called compatible cell-mapping, which

employs adaptative refinement of the phase-space to

increase the resolution of global attractors of random

dynamical systems. In [23], this method was shown to

refine stable and unstable manifolds, similar to the

subdivision and selection method by Dellnitz and

coworkers [24–26] but with digraph algorithms

instead. Another cell-mapping method is designed

with two distinct scales of cell spaces [27–29].

Similarities between the transfer probability
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distributions by Yue et al. [29] and the generalized

committor functions by Lindner and Hellmann [30]

are evident. However, the latter is adequate for

transient analysis, describing how distributions evolve

with time. Finally, the phase-space dimension of

engineering problems demands High-Performance

Computing (HPC), as described in [31–33]. Parallel

computing strategies are fundamental, employing

even general-purpose graphic cards (GPU) to this

end [34].

The Ulam method was the focus of various works.

Klus et al. [35] compared different numerical approx-

imations of the Perron-Frobenius operator and its dual,

the Koopman operator. Dellnitz and coworkers

[24–26] developed a subdivision strategy with box-

covering to approximate complicated numerical

behavior, implemented in the software package GAIO

[36]. Further developments include the detection of

transport barriers [37], the analysis of dynamical

systems with parameter uncertainty [38], invariant sets

of infinite-dimensional dynamical systems [39, 40],

and a set-oriented path-following method for compu-

tation of parameter-dependent attractors [41]. Koltai

and coworkers developed methods for global analysis

without trajectory integration, focused on basins of

attraction [42–44] and nonautonomous systems [45].

A comparison of data-driven model reductions for

dynamical systems based on the approximation of the

transfer operators is given in [46]. Froyland et al. [47]

applied the Ulam method to the analysis of surface

ocean dynamics, obtaining attractors and basins from

real data. Ding and coworkers investigated the original

Ulam method and approximations of the Perron-

Frobenius operator by piecewise linear and quadratic

functions [48] and higher-order approximations [49].

Junge et al. [50] investigated the spectrum of transfer

operators of stochastically perturbed conservative

maps. Most recently, Jin and Ding [51] and Bangura

et al. [52] applied spline and least-squares approxi-

mation for random maps as well, specifically consid-

ering the Foias operator which governs the average

flow of random maps [53]. One crucial limitation of

phase-space discretization-based methods is the

resulting numerical diffusion of the flow [42, 44].

Indeed, depending on the dynamics, a high resolution

is necessary, increasing the computational cost

significantly.

In systems displaying coexisting solutions with

distinct basins of attractions, uncertainties and noise

may cause jumping between competing attractors, and

global bifurcations as basins’ merging and basin

instability. The interaction between previously sepa-

rated basins is the focus of stochastic resonance, in

global dynamic terms. Depending on basins’ topology,

predicting systems’ outcome can be difficult even in

the deterministic context, especially when highly

intertwining basins or fractal boundaries are present.

Uncertainties and noise are expected to induce further

global changes, with the emergence of new dynamic

phenomena, which may directly influence the concept

of dynamic integrity [54–56]. For a safe analysis, it

must be secured that initial conditions lie indeed in the

basins of attraction of the corresponding attractors,

even under the presence of uncertainties and noise.

This work aims at presenting an adaptative set-

oriented phase-space discretization method for the

global analysis of nonlinear dynamical systems with

competing attractors. Global phase-space operators

are presented by considering (i) deterministic, (ii)

stochastic, and (iii) parametric uncertainty dynamics,

extending the results in [57]. Their discretization is

conducted through the Ulam method [53], for deter-

ministic and stochastic cases. Mean results are

obtained for parametric uncertainty dynamics through

a discretization of their probability space. The adap-

tative discretization results in a sequence of operators

with increasing refinement of important regions, here

assumed as attractors’ distributions supports and

basins’ observables boundaries. This local discretiza-

tion reduces the computational cost, therefore being

advantageous in comparison to a full phase-space

discretization.

This paper is organized as follows. Section 2

summarizes basic concepts of stochastic global

dynamics with parameter uncertainty and noise, based

on the definitions of (random) dynamical systems

theory, presenting the general phase-space operators

and their discretization. Section 3 describes the

proposed boundary and attractor refinement strategies

for both deterministic and stochastic systems, and

outlines the procedure for obtaining mean results for

dynamical systems with parameter uncertainty. Sec-

tion 4 deals with the forced Helmholtz oscillator as

archetypal model for the analysis of escape from a
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potential well, with applications ranging from ship

capsize [58] to structures liable to asymmetric buck-

ling [59, 60]. Effects of noise and parametric uncer-

tainty are discussed, with evaluation of computational

advantages of adaptative discretizations, validation

through Monte Carlo experiments, and assessment of

global dynamics via a newly defined nondeterministic

integrity measure. The final section provides conclud-

ing remarks.

2 Stochastic global dynamics of systems

with parameter uncertainty and noise

In this section, some concepts of stochastic global

dynamics with parameter uncertainty or noise are

briefly summarized, based on the definitions of

dynamical systems theory. Specifically, definitions

of stochastic attractors and stochastic basins, operator

formulation, phase-space discretization and probabil-

ity space discretization for the parametric uncertainty

case are illustrated. Concepts and definitions already

present in the literature are generalized by introducing

the random dependence on the system parameters,

which are commonly considered to be fixed and with a

deterministic nature.

2.1 Dynamical systems: a few aspects

Following Mezić and Runolfsson [61], attention is

restricted to discrete time cases. This choice is

motivated by the fact that information on continuous

systems under periodic excitation can be obtained

through Poincaré maps for both deterministic and

noise-driven systems, see Lasota and Mackey [53],

Sect. 8.1. Stroboscopic maps can be used in the

analysis of parameter uncertainty dynamics, as well,

when there is a periodic excitation. Therefore, the

following discrete dynamical system is considered,

u : X� L�X ! X;

x; k; xð Þ7!u hx; kð Þx;
ð1Þ

where x 2 X is the system state, x 2 X is the noise,

and k 2 L is the uncertain parameter. The usual

depiction of this system is of an iterated map,

xtþ1 ¼ u htx; kð Þxt, with the state evolving from

instant t to instant t þ 1, and the stochastic parameter

x governed by a noise-model ht, while k is fixed in

time. It is useful to define the system state after t

iterations through the composition of maps. For initial

condition x and t iterations, the system state is given by

ut x; kð Þx ¼ u ht�1x; k
� �

� . . . � u x; kð Þx. The

sequence ut x; kð Þxjt ¼ 0; 1; 2; . . .f g defines an orbit

of the dynamical system (1) overX for each sample x
and k, and initial condition x.

Some formalism is necessary to understand each

particular case of dynamical system (1), i.e., deter-

ministic, stochastic, and parametric uncertainty. It is

assumed that all spaces are compact, metric, with

corresponding Borel r-algebras [30]. The phase-

space, stochastic space, and parameter uncertain space

are completely defined as X;B;Pxð Þ, X;F;Pxð Þ, and
L;S;Pkð Þ, respectively, with r-algebras B;F;S,

Lebesgue measure Px, and probability measures

Px andPk. For fixed x, a dynamical system u x; �ð Þ :
L�X ! X is defined, with product measure Px � Pk.

The parameter k is fixed, although randomly chosen

according to Pk, and the system evolution is deter-

ministic. In the case of fixed k (with a given value not

randomly chosen), the flow map u �; kð Þ : X�X ! X

is defined as a random dynamical system, forming a

cocycle over ht and product measure Px � Px. The

randomness evolves with the system, changing at each

time-step t. This last case is much more involved, and

the reader can find technical details in Arnold [8]. If

both x and k are fixed, the system becomes determin-

istic, with flow map u x; kð Þ : X ! X and Lebesgue

measure Px. Finally, the notion of phase-space volume

given by the measure Px is crucial for the definition of

Milnor attractors [62], minimal attractors [63], set

attractors [64], e-committor functions [30], or any set-

attractive phase-space region.

2.2 Random attractors and basins

In a global dynamic analysis, the coexisting attractors

and their basins are the main tools to understand the

system behavior and safety. Without going into

technical details, we can define attractors A as subsets

of that attract some or all initial conditions asymptot-

ically and are resilient to infinitesimal perturbations

(Lyapunov stable) [30]. Another important definition

is given by Milnor [62], where the stability criteria is

dropped in favor of measurability of the basin of

attraction. In this case, attractors are sets whose basins

are observable, with generalized volume greater than
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zero. Milnor attractors were extended to random

dynamical systems u �; kð Þ pointwise by Ashwin [63].

That is, attractors A �; kð Þ are functions of the noise

sample x, and therefore are random variables. Arnold

[8] and Ochs [64] expanded the classic definition by

imposing convergence in probability in the pullback

and pushforward sense, respectively, but still point-

wise with respect to the noise sample x. For the

parametric uncertainty case, no similar definitions are

found in the literature. This could be motivated by the

fact that an uncertain parameter system is a collection

of deterministic dynamics for each k 2 L, with attrac-

tors’ and basins’ statistics being obtained through

Monte-Carlo or other technique, see [65]. Still, it is

important to emphasize the distinction between these

two cases by explicitly writing attractors A x; �ð Þ as

functions of the random parameter k.
Lindner and Hellmann [30] also explored the

implications of stochasticity for the definition of a

basin of attraction. They noticed the relation between

basins of attraction and expected mean sojourn time

(expected time that a system spends in a certain state)

and focused on how to quantify the transient stability

of stochastic systems. The procedure starts from the

phase-space region of an attractor’s distribution

f A x; kð Þ, given by idA kð Þ ¼ supp f A x; kð Þf g, for a fixed
k. The probability that the (Hausdorff semi-) distance

between a trajectory ut x; kð Þx and idA kð Þ vanishes

after 1=e� 1 iterations is given by an e-committor

function,

Px d u1=e�1 x; kð ÞxjidA kð Þ

� �
¼ 0

h i
¼ gA e; x; kð Þ ð2Þ

In other words, this is a probability that x converges to

A kð Þ after 1=e� 1 iterations. It is a viable definition of

basin of attraction, differing from Eq. (30) of Lindner

and Hellmann [30] by the inclusion of the random

parameter k. Also, they defined the quantity 1=e as the
mean time-horizon, and transient states can be

checked by varying e. This is important because

attractors can become long transients under stochastic

excitation, that is, lim
e!0

gA e; x; kð Þ ¼ 0, see [30, 57, 66].

Furthermore, the asymptotic case gA 0; x; kð Þ ¼
gA x; kð Þ corresponds to the classical, deterministic

basin of attraction, with value 1 for x inside the basin

and 0 otherwise. Finally, functions gA e; x; kð Þ are

observables in the L1 Xð Þ space, a fact that is explored
in the transfer operator formulation later in the text.

Throughout this work, this is the adopted definition of

basin of attraction.

2.3 Generalized transfer operators: attractor

distribution and basin observable

As stated by Ashwin [63], attractors and basins can be

interpreted pointwise for systems with stochastic and

uncertainty parameters x; kð Þ. The definition (2) is a

statistic of the basins with respect to the noise, but the

dependency with the parameter k still exists. The

global view of such systems, computing mean results

in the product space X� L, is explained here.

The suitability of transfer operators to obtain

attractors and basins, and therefore a global view of

the dynamics of deterministic and stochastic systems,

has been highlighted in recent years

[30, 43, 57, 67–69] substituting usual algorithmic-

based descriptions, such as grid of starts, Monte Carlo,

simple and generalized cell-mappings, etc. Here, the

transfer and composition operators are generalized to

systems with both noise and parametric uncertainty by

assuming a one-to-one relation between dynamics

u x; kð Þ and elements of L;S;Pkð Þ. This assumption

allows the definition of one time-step transfer opera-

tors over the space of distributions L1ðXÞ. associated
with (1), given by

P kð Þ : L1 Xð Þ ! L1 Xð Þ;
Z

B

P kð Þ f xð Þ½ �dx ¼
Z

X

Z

Xx k;Bð Þ

dPx

8
><

>:

9
>=

>;
f xð Þdx;

Xx k;Bð Þ ¼ fx 2 X : uðx; kÞx 2 Bg;

ð3Þ

where Xx k;Bð Þ � X is the set of all x-values for

which the flow is in B 2 B, for any k 2 L, and

f : X ! R? is an absolute integrable function overX,

denominated distribution, that for our applications

will be a probability density function. For any k 2 L,

P kð Þ is a Markov operator, being signal-preserving,

linear, and norm-preserving, with spectral radius equal

to one [53]. For systems with only noise, there is only a

single k-value, and P kð Þ � F is a Foias operator

[53, 57]; for systems with only parametric uncertainty,

there is only a single x-value, and P kð Þ is a Perron-

Frobenius operator that is also a function of k; for
deterministic systems, only single values of k and x
are defined, and P kð Þ � P is a single Perron-
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Frobenius operator. Therefore, P kð Þ is a generaliza-

tion of the Foias operator [53, 57], covering deter-

ministic, stochastic, and parametric uncertainty

dynamics.

The dual operator of P kð Þ can also be obtained by

generalizing its usual definition for stochastic systems

to parametric uncertainty systems. Specifically, this

composition operator, which is referred also as a

Koopman operator, is defined over the space of

observables L1 Xð Þ and given by

K kð Þ : L1 Xð Þ ! L1 Xð Þ;

K kð Þ g xð Þ½ � ¼
Z

X

g � u x; kð ÞxdPx;
ð4Þ

for any k 2 L, and any g : X ! Rþ, which is an

absolute bounded function over X denominated

observable. The duality relation is defined pointwise,

given by

Z

X

g xð ÞP kð Þ f xð Þ½ �dx ¼
Z

X

K kð Þ g xð Þ½ �f xð Þdx;

8f 2 L1 Xð Þ; g 2 L1 Xð Þ;
ð5Þ

for any k 2 L. The operators P kð Þ and K kð Þ define

linear functional maps over L1 Xð Þ and L1 Xð Þ,
respectively, written as

f t þ 1; xð Þ ¼ P kð Þ f t; xð Þ½ �; ð6Þ

g t þ 1; xð Þ ¼ K kð Þ g t; xð Þ½ �; ð7Þ

for any k 2 L; t 2 N. Systems (6) and (7) offer a

global view of trajectories over X , governing mean

results with respect to the noise (space X;F;Pxð Þ), but
still distributed according to the uncertain parameter k.
Therefore, we could think of parametric dependent

trajectories of distributions f t; xð Þ and observables

g t; xð Þ. Finally, a connection of Eq. (7) with the e-
committor functions given in [30] and in Eq. (2) can be

obtained by defining an observable of an attractor

region at t ¼ 0 and iterating it. That is, by setting

g 0; xð Þ ¼ A kð Þ, we obtain the equality g 1=e� 1; xð Þ ¼
gA e; x; kð Þ.

The asymptotic behavior of systems (6) and (7) is of

particular importance. Invariant distributions describe

attractors [8, 30], whereas the invariant observables

characterize the basins’ structures [30, 68]. They are

given by

f x; kð Þ ¼ P kð Þ f x; kð Þ½ � ð8Þ

g x; kð Þ ¼ K kð Þ g x; kð Þ½ � ð9Þ

respectively. The noise is accounted for in both

structures thanks to the full formulation in Eq. (3),

resulting in attractors’ regular distributions and basin

boundary diffusion [30, 57]. Solutions f x; kð Þ and

g x; kð Þ of Eqs. (8) and (9) depend explicitly on the

operators P kð Þ and K kð Þ, and, therefore, also depend

on the parameter k. In the case of deterministic

systems, g x; kð Þ becomes an indicator function of the

basin, with value 1 over it and 0 otherwise. Finally,

mean invariant structures over L;S;Pkð Þ are obtained
by simple integration [65],

f xð Þ ¼
Z

L

f x; kð ÞdPk; ð10Þ

g xð Þ ¼
Z

L

g x; kð ÞdPk: ð11Þ

2.4 Generalized Ulam discretization

The discretization of transfer operators P kð Þ is given
by the Ulam method [30, 35, 69, 70], equivalent to the

generalized cell-mapping [14]. Following [57], the

discretization process starts adopting a disjoint parti-

tion of the phase-space X as B ¼ b1; . . .; bif g. Con-
sider also the subspace Dh 	 L1 Xð Þ spanned by the

normalized indicator functions of B, i.e., with basis

11; . . .; 1if g, where 1i ¼ idbi=Px bið Þ, Px bið Þ being the

Lebesgue measure (generalized volume) of bi and h

the characteristic size of the partition. A projection

operator Qh is defined such that a distribution f xð Þ 2
L1 Xð Þ is projected onto the subspace Dh, that is,

Qh : L
1 Xð Þ ! Dh;

Qhf xð Þ ¼
X

i

1i

Z

bi

f xð Þdx: ð12Þ

A projected distribution over Dh is generically

denominated Qhf xð Þ ¼ f h. Following [70], the pro-

jection of P kð Þ is defined from the composition of Qh

and P kð Þ. The resulting projected operator is

QhP kð Þ ¼ Ph kð Þ, that is,
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Ph kð Þ : Dh ! Dh;

fhPh kð Þ ¼
X

i;j¼1

fipij kð Þ1j
ð13Þ

for any k 2 L, where the row vector f i and matrix

pij kð Þ are

fi ¼
Z

bi

f xð Þdx;

pij kð Þ ¼ 1

Px bið Þ

Z

bi

Z

Xx k;bjð Þ
dPx

8
>><

>>:

9
>>=

>>;
dx;

Xx k; bj
� �

¼ x 2 X : u x; kð Þx 2 bj
� �

:

ð14Þ

P kð Þ has spectral radius equal to one [30], and pij kð Þ is
a row stochastic matrix. Row vectors f i kð Þ in the fixed
space of pij kð Þ, identified as fix pij kð Þ

� �
, are solutions

of

fi kð Þdij ¼ fi kð Þpij kð Þ; ð15Þ

where dij is the Kronecker delta. Equation (15) is the

discretized version of Eq. (8), and its solutions are

discretized vector representations f i kð Þ of invariant

distributions f x; kð Þ of the system (1), with values in

0; 1½ �. It represents an attractor, referred to as dis-

cretized attractor’s distribution. Finally, the stochastic

matrix pij kð Þ can be understood as the proportion of

states in bj after one iteration, starting in bi. This

resumes into a simplified representation, that is,

pij kð Þ 
 #states in bj due to u x; kð Þ andwith i.c. in bi
#i.c. in bi

:

ð16Þ

The general definitions in Eq. (14) reduce to the

deterministic, parameter uncertainty, or stochastic,

depending on the parameter space L;S;Pkð Þ and on

the probability space X;F;Pxð Þ. The matrix repre-

sentation of the projected Koopman operator Kh kð Þ is
given by the transpose of pij kð Þ, thanks to the dual

relation (5).

Observables of the basins are computed by solving

the ill-conditioned system [30]

dij � 1� eð Þpij kð Þ
� 	

gj e; kð Þ ¼ e idA kð Þ; ð17Þ

where dij is the Kronecker delta, idA kð Þ is the indicator
function of the region of attraction A kð Þ in the vector

representation, and e 2 0; 1ð � is a control variable. In

other words, it gives the probability that a state in bj
maps to A kð Þ after 1=e� 1 iterations. The vector

representation gj e; kð Þ corresponds to invariant time-

dependent observable given by Eq. (2), with compo-

nent values in 0; 1½ �. Finally, averages of both f i kð Þ and
gj e; kð Þ in L;S;Pkð Þ can be obtained as in Eqs. (10)

and (11), respectively. These integrals can be further

discretized through polynomial chaos [65] or by a

simply weighted sum [71].

3 Phase-space refinement and parameter space

discretization

3.1 The phase-space adaptative algorithm

The computation of matrices pij kð Þ, Eq. (14), involves
a considerable number of time integrations when a

Monte Carlo [30, 38] or quasi-Monte Carlo [70]

strategy is employed, resulting in a slow convergence

of Ph kð Þ to P kð Þ as h ? 0 [70]. Furthermore, the

discretization inserts a numerical diffusion in the

dynamical system [42, 44] and inevitably changes the

dynamics, a fact remediated by high resolution

partitions at the expensive of increasing the compu-

tational cost significantly.

A possible efficient strategy is to adopt an irregular

adaptative partition, with smaller cell-size h in regions

of interest, such as attractors supports and basins

boundaries. Such strategy is possible because the

operator Qh, Eq. (12), is not limited to cells of equal

size, but only to disjoint partitions. A sequence of n

phase-space partitions can be constructed,

B0 kð Þ;B1 kð Þ; . . .;Bn kð Þ, where i\j implies that

Bj kð Þ has a higher resolution than Bi kð Þ. The corre-

sponding matrix sequence,

p
0ð Þ
ij kð Þ; p 1ð Þ

ij kð Þ; . . .; p nð Þ
ij kð Þ, approximates the continu-

ous transfer operator P kð Þ as n increases, for all k.
Similar alternatives were proposed for the refinement

of basins’ boundaries [72, 73] and SBR measures

[74, 75], but restricted to deterministic dynamics.

Below is the proposed strategy and in Fig. 1 a

graphical illustrative depiction is provided.

Algorithm 1: Start from a partition Bn kð Þ covering
the phase-space regionX, and a flow map p

nð Þ
ij kð Þ. The
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next partition Bnþ1 kð Þ and flow map p
nþ1ð Þ
ij kð Þ are

constructed through the following procedure:

1. Identification of the

cells to be subdivided

From a given partition Bn kð Þ and a

flow map p
nð Þ
ij kð Þ, we identify the

cells for subdivision, satisfying the

following Eq. (18) (refinement of

the attractor) or Eq. (19)

(refinement of the boundary); no

need to distinguish between them,

since both have to be refined, even if

for different motivations. We

indicate them by Snþ1
2
; they are

reported in green in Fig. 1(a)

2. Refinement of the

cells

The cells Snþ1
2
previously identified

are subdivided into two, forming a

new set of cells named Snþ1. The

other cells Bn kð ÞnBnþ1
2
are

unchanged. This gives the updated

partition Bnþ1 kð Þ ¼ Snþ1 [

Bn kð ÞnSnþ1
2

� �
which of course is

the union of refined and unrefined

cells (Fig. 1(b))

3. Update of the flow

map p
nð Þ
ij kð Þ on

Bnþ1 kð Þ

Compute new entries of p
nþ1ð Þ
ij kð Þ.

The flow map must be recomputed

(updated) for all the subdivided

cells Snþ1
2
(cyan cells in Fig. 1(c.1))

and in their preimages, i.e., in all

cells u�1 x; kð Þnþ1
2
(exemplified by

the red cells in Fig. 1(c.1)) that, at

the previous subdivision n, have an
image under the flow in Snþ1

2
.

Indeed, their images have been

subdivided and thus the flow is no

longer defined over them. The flow

in the remaining cells

Bnþ1 kð Þn Snþ1 [ u�1 x; kð ÞSnþ1
2

� �

(magenta in Fig. 1(c.2)) is

unchanged

At the first iteration of the algorithm, n ¼ 0, the

flow map p
0ð Þ
ij kð Þ of the entire initial partition 0 is

computed. As the algorithm progresses, it is expected

that the ratio between the generalized volumes ofSnþ1
2

and Bnþ1ðkÞ diminishes, namely,

Px Bnþ1
2

� �
=Px Bnþ1 kð Þð Þ ! 0 as n ! 1. In cases

where this is true, the algorithm reduces the total

computational cost. The process stops after a prede-

fined number of iterations.

At a given partition n, the algorithm identifies

regions to be refined at step 1. Equation (15) is solved,

resulting in the left fixed space of p
nð Þ
ij kð Þ. This is a

computationally difficult problem since the transfer

matrix p
nð Þ
ij kð Þ is sparse, generally asymmetric, indef-

inite, and large, requiring specialized algorithms.

Additionally, Eq. (15) could have multiple solutions

for a multistable dynamical system. In other words, the

unitary eigenvalue has geometric multiplicity greater

than one, with corresponding eigenvectors spamming

fix p
nð Þ
ij kð Þ

� �
not uniquely defined. To circumvent this

problem, the methodology proposed in theorem 2.6

and lemma 5.2 of [26] is applied to transform a general

set of solutions of Eq. (15) into a meaningful set of

attractors’ distributions, with properties

0� f
nð Þ
i kð Þ� 1;

P
i f

nð Þ
i kð Þ ¼ 1, and independent of

each other. With the correct description of

fix p
nð Þ
ij kð Þ

� �
, corresponding regions of attraction

A kð Þ are defined and basins’ observables g
nð Þ
j e; kð Þ at

a predefined time horizon 1=e� 1 are computed by

solving Eq. (17).

Once f
nð Þ
i kð Þ and g nð Þ

j e; kð Þ are known, the region of
interestSnþ1

2
can be defined. Firstly, attractors’ regions

have a high-density value, and corresponding entries

of f
nð Þ
i kð Þ also have high values. Therefore, the

heuristic constraint

f
nð Þ

i kð Þ� cf ð18Þ

is adopted to identify such regions. This strategy is

straightforward since it only depends on the computed

distribution in the ith box, whereas strategies consid-

ering the local upper bound L1 error need information

about neighboring boxes [76]. For basins boundaries,

it can be shown that if a saddle’s stable manifold

passes through a box bi, then there will be values

between 0 and 1 in the ith element of observable

g
nð Þ
j e; kð Þ. That is, trajectories passing through boxes bi

can converge to distinct attractors. This effect is also

known as numeric diffusion [77] for deterministic

systems, caused by discretization. For nondeterminis-

tic systems, both numeric and real diffusion can
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happen, and such regions enlarge as the uncertainty

increases. Therefore, a second constraint is defined,

0\c 1ð Þ
g � g

nð Þ
j e; kð Þ� c 2ð Þ

g \1 ð19Þ

identifying boxes that can converge to more than one

attractor with significant probability. Again, this

strategy depends only on the computed observable in

the ith box. Other methodologies consider the neigh-

bor’s information [78], but are computationally more

involved. To the best of the authors’ knowledge, there

is no upper bound local error definition for basins’

observables analogous to the upper bound L1 error for

distributions, as presented in [76], justifying the

adoption of a stop criteria at a certain iteration.

The set Snþ1
2
is refined in step 2, forming Snþ1.

Each box b
nð Þ
i 2 Snþ1

2
is subdivided into two smaller

ones, such that b
nð Þ
i ¼ b

nþ1ð Þ
2i [ b

nþ1ð Þ
2iþ1 and

b
nþ1ð Þ
2i \ b

nþ1ð Þ
2iþ1 ¼ £. The new boxes form the set

Snþ1, marked in cyan in Fig. 1b. Unrefined boxes in

Bn kð ÞnBnþ1
2
, marked in white in Fig. 1b, are renamed,

such that b
nþ1ð Þ
2i ¼ b

nð Þ
i . The union of refined and

unrefined boxes forms the new partition

Snþ1 [ Bn kð ÞnSnþ1
2

� �
¼ Bnþ1 kð Þ. The adopted

refinement strategy not only guarantees that no two

cells will overlap each other by definition but also

allows optimal storage, subdivision, and search of

elements in a binary tree data structure, being previ-

ously used in the software GAIO [36].

The final step 3 constitutes the update of the transfer

matrix to the new phase-space partition. New entries

of p
nþ1ð Þ
ij kð Þ corresponding to cells b

nþ1ð Þ
i 2 Snþ1 are

computed. However, the flow map of the preimage

region u�1 x; kð ÞSnþ1
2
, marked in red in Fig. 1(c.1),

must also be recomputed. Since cells in Snþ1
2
do not

have a corresponding entry in p
nþ1ð Þ
ij kð Þ, their preim-

age lose meaning, and new entries must be calculated.

The flow map of the remaining cells, marked in

Fig. 1 Depiction of the three phases of the proposed algorithm. a Cells for subdivision at partition Bn are identified; b identified cells

are refined; c the flow map is updated over the new partition. (colors in the online version)
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magenta in Fig. 1(c.2), is unaltered, where

p
nþ1ð Þ
2i;2jð Þ kð Þ ¼ p

nð Þ
ij kð Þ. This ends the iteration n of the

adaptative discretization. The algorithm then proceeds

to the next iteration, whose starting partition is Bnþ1.

3.2 Mean structures for dynamical systems

with parametric uncertainty

The previous exposition outlined the main subdivision

algorithm of the phase-space. Still, mean distributions

and observables of parametric uncertainty cases, given

by integrals (10) and (11), must be addressed. Since

the aim is to deal with general nonlinear maps, Eq. (1),

sparse sampling strategies of the parameter space may

not be adequate, particularly when close to bifurcation

points, given that in such case, the dynamical system

may depend strongly on the parameter values, as

shown by Le Maı̂tre and Knio [65]. Therefore, general

discretization strategies must be considered.

Assuming the parameter space L to be bounded, we

can consider a discretization into a number of points

kk 2 K, spaced by Dk ¼ kk � kk�1, and obtain a

discretization of the probability Pk as

PK kkð Þ ¼ Pk kk �
Dk
2


 �
� k� kk þ

Dk
2


 �� 

: ð20Þ

Therefore, the bounded continuous probability space

L;S;Pkð Þ can be approximated by the bounded

discrete probability space K;SK;PKð Þ, where SK is

a r-algebra over K. The original dynamical system

u x; kð Þ becomes a collection of deterministic or

stochastic dynamical systems, weighted by the dis-

crete probability PK. Finally, Algorithm 1 is applied

for all K, and statistics are computed according to PK.

We restrict our focus to averages, calculated according

to the rectangle rule,

E f kð Þ½ � ¼
Z

f k; xð ÞdPk 

X

k

f kk; xð ÞPK kkð Þ; ð21Þ

where f k; xð Þ represents any dynamical structure

dependent on the parameter k, such as attractors’

distributions, basins of attraction, or manifolds. Equa-

tion (21) is an approximation of an integral by a

weighted sum, a strategy that has been used in

uncertainty quantification [65]. No continuation pro-

cedure is necessary if one chooses a window large

enough to contain all attractors (which is not always

the case, in particular when one wants to ‘‘zoom’’

around certain attractors/basins of interest). In this

case, the discretization methodology identifies all

existent attractors. Given a parameter kk, it is only

required to determine to which branch each identified

attractor belongs. Once this correspondence is estab-

lished, the mean distributions and basins are

computed.

The distance between the distributions of two

attractors is calculated through the Lukaszyk-Kar-

mowski metric [79] to identify the corresponding

attractor branch. Given a distribution f Am
kk; xð Þ in a

known attractor branch Am, the branch of a distribution

f A kkþ1; xð Þ for the next parameter value kkþ1 is

identified according to the expression

Dm Am kkð Þ;A kkþ1ð Þð Þ

¼
Z

X

Z

X

d x; yð ÞfAm
kk; xð ÞfA kkþ1; yð Þdxdy; ð22Þ

where d x; yð Þ is the metric of X. If, for a certain m,

Dm Am kkð Þ;A kkþ1ð Þð Þ is a minimum and is smaller than

a predefined threshold, then f A kkþ1; xð Þ belongs to the

m branch of existent solutions. If there is no small Dm

value, then the existence of possible new branches

must be investigated. After all attractors are identified,

mean distributions f A and observables gA eð Þ are

computed over each branch.

If a phase-space window is too small, attractors

outside it are flagged as escape solutions. Escape

solutions are identified previously and do not enter the

metric calculation, Eq. (22). Furthermore, there is no

distinction between escape solutions and attractors

outside the window, and basin structures that would

belong to those attractors are also flagged as escape

solutions. If an attractor branch would move outside

the phase-space window for a given parameter value k,
statistics such as mean distributions and observables,

Eqs. (10) and (11), would yield erroneous results. Care

must be taken in the evaluation of escaped solutions.

One point still must be addressed. The resulting

adaptative partition by Algorithm 1 is parameter

dependent, Bn kð Þ. Thus, not only the discretized

structures, such as attractors’ distributions, basins, and

manifolds, are parameter dependent, but the dis-

cretized space in which they are defined are distinct

from each other. To properly apply Eq. (21), we must

define a common partition, Bn, over which all

structures are discretized. We start from a partition
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Bn kð Þ ¼ b
nð Þ
0 ; b

nð Þ
1 ; . . .; b

nð Þ
i

n o
at a given iteration n.

Given that not all boxes are subdivided due to the

adaptative Algorithm 1, we have i� 2n � 1 and the

index list 0; . . .; if g possibly has holes (i.e., no

consecutive numbers). The common partition Bn will

be the set of boxes whose index list 0; . . .; i
� �

contains

the index lists of partitions Bn kð Þ, for all k-values.
Intuitively, it means that Bn is the selection of the

smaller boxes from the set of partitions Bn kkð Þ,
covering the phase-space X. An example of common

partition construction is given in Fig. 2, at iteration

n = 2. It is clear that the index list of B2 contains the

lists of the other two partitions, with its boxes being

the most refined ones.

With the common partition Bn defined, the next

step is to project the intermediate structures over the

new partition. For attractors’ distributions, this is

given by applying the operator of Eq. (12), corre-

sponding to the common partition Bn with basis

functions in D
h
0 , over an already discretized distribu-

tion over Bn kkð Þ with basis functions in Dh. Denom-

inating it as Q
h
0Qh � Qh

0

h kð Þ, we have

Qh0

h kð Þ : L
1ðXÞ ! Dh0 ;

Qh0

h kð Þf xð Þ ¼
X

i

1i
Px bi
� �

Px bið Þ

Z

bi

f xð Þdx; ð23Þ

acting on each entry f i ¼
R
bi
f xð Þdx of the discretized

distribution f h over partition : It is implicitly assumed

that cells in Bn are always contained in cells in some

Bn kkð Þ, that is, bi � bi. The fraction Px bi
� �

=Px bið Þ is
the proportional generalized volume (area in bidimen-

sional cases) between boxes bi and bi. Entries of the

vector representation f i kkð Þ in the common partition

are

fi kkð Þ ¼
Px bi
� �

Px bið Þ

Z

bi

f kk; xð Þdx; ð24Þ

from which the average in Eq. (21) is computed,

resulting in the mean discretized distribution

f i 

X

k

fi kkð ÞPK kkð Þ: ð25Þ

For the projection of the basins’ observables in the

vector representation gi e; kkð Þ, obtained from Eq. (17)

for kk, we start from the dual space D

h 	 L1 Lð Þ,

spanned by the indicator functions idb1 ; . . .; idbif g
[35, 80]. Given that the projection of a function

g e; kk; xð Þ over D

h is given by gi e; kkð Þidbi , the entries

of the vector representation gi e; kkð Þ are

gi e; kkð Þ ¼ gi e; kkð Þidb
i
; ð26Þ

given that bi � bi. The average in Eq. (21) is com-

puted, resulting in the mean discretized observable

gi eð Þ 

X

k

gi e; kkð ÞPK kkð Þ: ð27Þ

The procedure can be resumed into the following

algorithm:

Algorithm 2: Start from a refinement K;SK;PKð Þ
of the parameter space L containing k values of k. The
mean structures are computed through the following

steps:

1. Discrete

adaptative

analysis

Apply Algorithm 1 for each kk

2. Common

projection
Obtain the common discrete space Bn

and project onto it the attractors’

distributions and basins’ observables,

applying eqs. (24) and (26),

respectively

3. Compute

averages

Compute mean structures, given by

eqs. (25) and (27)

The parameter space subdivision procedure can be

further extended to multidimensional parameter

spaces, only requiring that the parameter set K is

disjoint and covers all L. Adaptative discretization of

the parameter space [65] can reduce the computational

cost of the discretization refinement.

4 Helmholtz oscillator with harmonic excitation

The standard dimensionless form of the damped

harmonically excited Helmholtz oscillator is

€xþ d _xþ aþ rkð Þxþ bx2 ¼ A sinXt þ s _W ; ð28Þ

where a is the mean linear vibration frequency, the

random variable k is a truncated standard normal with

distribution f k; 0; 1;�3; 3ð Þ, r is a scaling factor, _W is
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a standard white noise process, and s is the noise

standard deviation. The system becomes deterministic

for r = 0 and s = 0, stochastic for r = 0 and s = 0,

with parametric uncertainty for r = 0 and s = 0, and

general for r = 0 and s = 0.

For a normal distribution, the probability density

converges asymptotically to zero as the distance from

the mean increases, but is positive for every value in

the range (- ?, ? ?), although the actual probabil-

ity of an extreme event is very low. Since the range of

a given parameter is bounded, a truncated normal

distribution in which the range of definition is finite at

one or both ends of the interval is considered [81], thus

avoiding extreme values.

The Helmholtz oscillator has one potential well,

with two different classes of oscillations, bounded

periodic nonlinear oscillations within the well and

unbounded nonperiodic solutions [54]. This is a useful

archetypal model, presenting escape, basin erosion,

and integrity loss, and may describe the behavior of

various dynamical systems (see, e.g., [58–60, 82]).

The values of Table 1 are adopted, resulting in three

possible outcomes, a small amplitude (i.e., nonreso-

nant) oscillation, a large amplitude (i.e., resonant)

oscillation, and escape solutions.

The analyzed phase-space window is

X ¼ �0:7; 1:8f g � �1; 1f g. The initial box partition

is defined as a division of 25 in each dimension,

totaling 32 9 32 = 1024 boxes of size

{0.0781, 0.0625} at iteration 0, with one additional

sink box that attracts unbounded trajectories. Algo-

rithm 1 is conducted through ten subsequent iterations,

with a final box size of {0.0024, 0.0020} (only for the

cells that are refined at each iteration). Also, the

number of initial conditions per box (used to compute

pijðkÞ) depends on the box size, decreasing with

refinement. The number of collocation points for each

iteration is presented in Table 2. For the deterministic

and parametric uncertainty cases, the usual Perron-

Frobenius operator governs the phase-space distribu-

tion, where its matrix representation pij kð Þ in Eq. (14)
reduces to

pij kð Þ ¼
Px bi \ u�1 kð Þbj
� �

Px bið Þ ; ð29Þ

for all k 2 L. Of course, all pij kð Þ will be equal for

r = 0, the pure deterministic case.

The Helmholtz oscillator, Eq. (28), is a continuous

time problem. To construct the map u kð Þ and obtain a
discrete time evolution in the form of Eq. (1), we

considered stroboscopic Poincaré sections at the

period of excitation T = 2p/X, with X as the forcing

frequency. The flow u kð Þ maps the system state from

one section to the other, as usual [83]. The time

evolution of Eq. (28) for one period is obtained

through the fourth-order Runge–Kutta method, with

time-step T/200. This strategy is adopted in the

deterministic and the following parametric uncertainty

analyses.

Table 1 Helmholtz oscil-

lator parameters
Parameter Value

a - 1

k f(k;0,1,-3,3)

b 1

d 0.1

X 0.81

Fig. 2 Example of partition trees at iteration n = 2, for two k-values (a, b), and corresponding common partition (c). The lists of cell
numbers are also given, with the last containing the most refined boxes of all previous partitions
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4.1 Deterministic case

The evolution of basins of attraction of the small and

large amplitude solution of the deterministic Helm-

holtz oscillator is shown in Fig. 3 as a function of the

excitation magnitude A 2 0:05; 0:08½ �ð Þ. The attrac-

tors are marked in red. The color scale differentiates

regions converging to the depicted attractor from

probability zero to probability one. There is only one

attractor for A = 0.05, whose basin is surrounded by

the (black) escape region. As expected for the

deterministic case, the probability is either zero or

one, with the exception of the folded fractal regions

close to the boundaries, which have values between

zero and one, such as in Fig. 3(c, d). This results from

numerical diffusion, since initial conditions in the

same cell may converge to one of the two attractors or

escape in such regions. After the emergence of the

large amplitude attractor in the resonant region, the

evolution of the basins’ boundaries shows increasing

competition. The loss of integrity of the basins with

increasing load is witnessed by the decreasing area.

The algorithm has shown to be robust enough to

discretize the boundaries in highly fractal and inter-

twined basins. The set of initial conditions outside the

two coexisting basins corresponds to solutions diverg-

ing to infinity [54].

Figure 4 presents the final box partition, B10, for an

increasing excitation amplitude. It is evident that more

boxes are needed to discretize the boundaries as the

basin topology becomes more intricate. The partitions

B0;B2, and B4 are depicted in Fig. 5 for A = 0.06 to

demonstrate the refinement procedure. The green

boxes satisfy one of conditions (18) and (19), being

either attractor boxes or boundary boxes. Specifically,

the distribution threshold of Eq. (18) is adopted as

cf ¼ 10�10, while the boundary thresholds of Eq. (19)

are calculated as c 1ð Þ
g ¼ mingþ 0:03Dg and

c 2ð Þ
g ¼ maxg� 0:01Dg, where Dg ¼ maxg�ming.

This permits the boundary boxes to be subdivided,

allowing long transient solutions due to crude initial

discretization to be refined as well. For example, in

Fig. 5 the thresholds for the escape basin and the

nonresonant basin are (0.03; 0.99) for all iterations,

while the resonant basin has (0.0299; 0.9874) at

iteration 0 and only attains the limits (0.03; 0.99) for

higher iterations of discretization. Additionally, for

discretization iterations equal to or lower than 1, the

eigenvalues of pij show that the resonant solution

behaves like a long transient solution. This could lead

to the wrong assumption that there is no resonant

solution unless the analysis continues through addi-

tional iterations.

Red boxes are preimages of the green boxes,

recalculated in each subsequent iteration, as explained

in Sect. 3.1. The partition refinement is conducted by

subdividing green boxes, thus locally refining the

phase-space near attractors and boundaries. As the

algorithm progresses, the green boxes concentrate at

the basins’ boundary and the attractor, refining these

regions in the phase-space, as desired. Finally, the

total box count for each step and A = 0.06 is given in

Table 3. A comparison of the current box count with a

full discretization at a given iteration (maximum box

count, that corresponds to the hypothetical case in

which all cells would have been subdivided) is shown,

with the last column representing the decrease of

Table 2 Discretization

data for the Helmholtz

oscillator

Iteration Box-size Points per dimension Total collocation points

0 {0.0781, 0.0625} 12 144

1 {0.0391, 0.0625} 11 121

2 {0.0391, 0.0313} 10 100

3 {0.0195, 0.0313} 9 81

4 {0.0195, 0.0156} 8 64

5 {0.0098, 0.0156} 7 49

6 {0.0098, 0.0078} 6 36

7 {0.0049, 0.0078} 5 25

8 {0.0049, 0.0039} 4 16

9 {0.0024, 0.0039} 3 9

10 {0.0024, 0.0020} 2 4
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computational cost defined as the ratio between the

maximum-to-current box count difference and the

maximum box count. Lower values imply higher

computational costs. This efficiency increases with the

iterations, being over 90% from iteration 8 onwards.

4.2 Effects of parameter uncertainty

Before addressing the influence of parameter uncer-

tainty, it is advantageous to understand the implica-

tions of considering an uncertain parameter near a

bifurcation point. To this end, Fig. 6 presents both the

dependency of the stable responses on varying stiff-

ness parameter a for the excitation magnitude

A = 0.06 and the normalized probability distributions

of a ? r k. There is a clear interval of a where the

resonant and nonresonant responses coexist. Two

saddle-node bifurcations limit the interval, with two

possible jumps for a continuous change of a, forming a

hysteretic cycle. Only one of the responses exists

outside this region, the resonant for a\ -1.1 and the

nonresonant for a[ -0.92. Three cases are chosen to

investigate the parameter uncertainty, varying the

scaling factor r. For r\ 0.04, the probability of

a ? r k being outside of the hysteresis cycle is

negligible. However, for r C 0.04, the uncertainty’s

effect on the results cannot be neglected.

(a) A = 0.05 

(b.1) A = 0.06, nonresonant (c.1) A = 0.07, nonresonant (d.1) A = 0.08, nonresonant 

(b.2) A = 0.06, resonant (c.2) A = 0.07, resonant (d.2) A = 0.08, resonant 

Fig. 3 Evolution of the deterministic Helmholtz oscillator attractor’s basin (color bars) with the forcing magnitude. (colors in the

online version)
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The parametric analysis of the influence of parameter

uncertainty on the global dynamics is conducted

through iterations 0 to 8 (see Table 4), alleviating the

computational costwithout compromising the quality of

the result. To focus only on the uncertainty in the

parameter, the noise is set to zero and the time evolution

of the dynamical system is deterministic. The parameter

space is discretized into 30 values, and the mean basins

of attraction and mean attractors’ distributions are

calculated throughweighted sums, followingAlgorithm

2 in Sect. 3.2. Since the system is deterministic for a

fixed parameter, the same time integrator of the previous

analysis is considered, i.e., the fourth-order Runge–

Kutta method with time-step T/200.

Figure 7 presents the mean distributions (first color

bar) and basins (second color bar) for increasing levels

of the scaling factor r, demonstrating the effect of the

probability distribution. According to the adopted

color scheme, the response for a set of initial

conditions will converge to the expected attractor in

the mean sense. The first and second columns refer to

the small and large amplitude coexisting attractors,

respectively. The effect is small for r = 0.02, with

only a slight spreading of both the attractors’ distri-

butions and their basins’ boundaries. The latter

concentrates near the internal saddle on the basin

boundary. Furthermore, basins’ regions with a prob-

ability equal to one (yellow) almost coincide with the

deterministic result. As the scaling parameter

increases, the attractor distribution elongates (it is a

one-dimensional structure embedded in the phase-

space, an expected result according to the bifurcation

diagram, Fig. 6) and approaches the boundary. The

uncertain basin regions spread over the phase-space,

and for r C 0.06, there is no region certainly

converging to the resonant attractor in the mean sense

(i.e., with a probability equal to one). The probability

is lower than 0.8 for r = 0.06. Also, the nonresonant

basin with a probability equal to one decreases

steadily, indicating a decrease in its dynamic integrity.

The final box set for the three initial scaling

parameters is given in Fig. 8, corresponding to the last

Fig. 5 Interactive partition evolution of the Helmholtz oscillator for A = 0.06. Green cells for subdivision, Red cells for recalculation.

(colors in the online version)

Fig. 4 Dependence of the final partition B10 of the Helmholtz oscillator as a function of the excitation magnitude A
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iteration 10 and common partition B8 of all 30 k-
values, for each r-value. Table 4 presents a compar-

ison of the total box count for all r-values. As the

uncertainty parameter increases, the discretization

procedure results in an increasing number of boxes,

implying a higher computational cost, as confirmed by

the final box-counting. For r C 0.03, the final box

counting does not change too much, since almost all

potential well is discretized to the highest resolution in

the final iteration. The computational efficiency

decreases, as expected, as r increases, since higher

r-values result in larger basin areas with a probability

smaller than one, which requires a more refined

discretization. A significant economy would be

observed if further iterations were considered in such

cases. However, the probability space should also be

refined; otherwise, the results would not improve

quality.

Figure 9 shows the variation of the Helmholtz

oscillator normalized basins’ areas as a function of the

scaling parameter r for A = 0.06 and selected prob-

ability thresholds, quantifying the integrity of the

system with parameter uncertainty. The weighted

normalized basins’ areas are computed as
R

X

id p;1f g gð Þgdx
R

X

dx
; ð30Þ

where g is a stochastic basin of attraction, id p;1f g gð Þ is
an indicator function equal to 1 if g 2 p; 1f g and zero

otherwise, and p is the assumed probability threshold,

between 0 and 1. In the deterministic limit (no

uncertainty or noise, and infinite resolution), the basin

g is an indicator function of the basin, and Eq. (30)

reduces to the GIM definition in [84]. Furthermore,

this expression is a particular case of Eq. (44) of [30],

with qpertðxÞ as a uniform density over the phase-space

window X.

A probability threshold close to 1 is a conservative

selection in terms of evaluation of actual integrity,

while a threshold of 0 would provide the area of the

entire phase-space X. Of course, a probability thresh-

old close to 1 actually corresponds to the maximal

integrity only for vanishing parameter uncertainty

(r = 0), i.e., in the deterministic case. When the

parameter uncertainty increases, the probability 1

conservative threshold provides notably reduced val-

ues of integrity, with the correspondingly higher ones

Table 3 Box count for the

deterministic Helmholtz

oscillator for A = 0.06

Iteration Current box count Max box count Percentage Economy (%)

0 1024 1024 100.00 0

1 1906 2048 93.07 6.93

2 3596 4096 87.79 12.21

3 4756 8196 58.03 41.97

4 6426 16,384 39.22 60.78

5 8712 32,768 26.59 73.41

6 12,104 65,536 18.47 81.53

7 16,940 131,072 12.92 87.53

8 23,816 262,144 9.09 90.91

9 33,322 524,288 6.36 93.64

10 46,186 1,048,576 4.40 95.60

Fig. 6 Bifurcation diagram of the Helmholtz oscillator as a

function of the stiffness parameter a, for A = 0.06, and

normalized probability distributions of a ? r k for selected

values of the scaling factor r
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being attained only with meaningfully lower (and thus

not conservative) probability thresholds. This result

shows the importance of such analysis in real appli-

cations presenting an almost-sure parametric

variability.

Finally, Fig. 10 presents a validation of the results

obtained so far. Figure 10a shows the probability

density estimated from a Monte Carlo experiment

considering 100,000 initial conditions uniformly dis-

tributed over the phase-space window with r = 0.04.

Each response is integrated up to t = 1000 T, demon-

strating the influence of the parameter uncertainty on

the Poincaré sections of the two attractors. The results

agree with the attractors’ distribution, Fig. 10b, and

the bifurcation diagramwith respect to the support a of
the uncertainty parameter, Fig. 10c, in terms of the

attractor shape (plane curves), size, and probability

distribution, thus matching the operator results and

ratifying the present methodology.

Lastly, a remark on why a special care is needed for

systems with parametric uncertainty. We also consid-

ered a basic formulation where a mean transfer matrix

is computed, from which the candidate mean fixed

space is obtained. Such hypothetical mean transfer

matrix is given by

pij ¼
Z

L

Px bi \ u�1 kð Þbj
� �

Px bið Þ dk; ð31Þ

and Eqs. (15) and (17) become parameter independent.

The Algorithm 1 of Sect. 3.1 is applied for a case with

A = 0.06 and r = 0.04, giving the result in Fig. 11,

which is completely different from Fig. 7b.

A diffusion pattern, characteristic of stochastic

dynamics, is observed, and only one distribution is

obtained, instead of the two expected solutions

(nonresonant and resonant). Moreover, this result does

not match the Monte Carlo experiment given by

Fig. 10, showing that the formulation (31) does not

indeed represent the original problem with parametric

uncertainty. Instead, this noise-like behavior suggests

that formulation (31) considers the random parameter

at each iteration of the map, akin to a stochastic

process where a new value is randomly selected at

each period. This demonstrates why it is necessary to

address the parametric uncertainty distinctively, with

the methodology proposed in Sect. 3.2.

4.3 Effects of additive white noise

The noise-induced dynamics is considered next. The

same time-integration parameters are adopted, with

time-step T/200. However, the noise requires special-

ized integrators, so a stochastic version of the fourth-

order Runge–Kutta method is adopted for the con-

struction of the flow u xð Þ [66], with time-step T/200.

The metric dynamical system hi driving the stochastic
flow is given by the integral of the standard white noise
_W . For the discrete point of view, this integral results

in a normal random variable with variance T, sampled

and added to the system state at each section [53]. The

transfer matrix of the noise-driven system is the Foias

operator, where its matrix representation pij kð Þ in

Eq. (14) reduces to

pij ¼
1

Px bið Þ

Z

bi

Z

Xx bjð Þ
dPx

8
>><

>>:

9
>>=

>>;
dx;

Xx bj
� �

¼ x 2 X : u xð Þx 2 bj
� �

ð32Þ

where the dependency on k 2 L is suppressed since

r = 0. The probability integral in Eq. (2) is solved by

the Monte Carlo method. Ten noise samples for each

initial condition in each box are considered to compute

pij. Again, a sink box is defined to detect escaped

solutions. This is the procedure conducted in all

stochastic problems in this study.

Figure 12 shows the results for the standard devi-

ations s = 0.002 and s = 0.004. The influence of noise

Table 4 Box count for the

Helmholtz oscillator with

uncertainty at iteration 8 for

A = 0.06

r Current box count Max box count Percentage Economy (%)

0.01 43,666 262,144 16.66 83.34

0.02 74,299 262,144 28.34 71.66

0.03 91,422 262,144 34.87 65.13

0.04 95,003 262,144 36.24 63.76

0.05 97,649 262,144 37.25 62.75

0.06 105,205 262,144 40.13 59.87
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on the basin boundary is small. The basin structures

present a pattern similar to the mean parameter results,

with uncertainty associated with initial conditions

only close to the boundaries. The crucial difference is

the diffusion in the attractors’ distributions over the

phase space as the standard deviation increases.

Again, the resonant solution is more affected than

the nonresonant one, with the attractor spreading over

a larger area and approaching the basin boundary, thus

indicating a decrease in dynamic integrity and possible

disappearance under increasing noise. For s = 0.006,

the resonant solution is destroyed, see Fig. 13a, and

only the nonresonant solution and basin remain,

including all initial conditions occupied previously

by the two coexisting basins, with a sudden but

localized increase of dynamic integrity. Indeed, as the

Fig. 7 Helmholtz oscillator mean attractor distributions (first color bar) and mean basins of attraction (second color bar) for A = 0.06

and increasing values of the scaling parameter r. (colors in the online version)
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noise intensity increases even further, s = 0.010,

initial conditions initially in the resonant region start

to escape, as indicated by the gray area in Fig. 13(b.2),

which corresponds to the area with a probability lower

than one in Fig. 13(b.1). In Fig. 12 and Fig. 13, the

steady spreading of the nonresonant attractor with the

white noise standard deviation is observed, too.

The effect of noise on time responses and power

spectrums is now addressed. For comparison, Fig. 14

shows the deterministic case, with A = 0.06 and s = 0,

for both attractors. Both power spectrums present

peaks at the fundamental excitation frequency,

x = 0.81, and its superharmonics. The resonant solu-

tion, Fig. 14b, presents a richer spectrum with a higher

number of excited harmonics. Figure 15 displays, for

s = 0.002 and 0.004, the sample means, in black, and

ten sampled time responses in grey. The results show

that the white noise masks the higher harmonics with

smaller power output of individual samples, while

they are still present, although with reduced power, in

the sample means. The nonresonant results for

s = 0.006 and s = 0.010 are displayed in Fig. 16.

The effect of increasing noise is observed, masking

both the fundamental frequency and its harmonics.

The resonant attractor for these cases is destroyed, as

demonstrated by the basins of attraction in Fig. 13,

and, therefore, it does not have a stationary power

spectrum.

The loss of stability of the resonant solution is

identified by the eigenvalues of pij slightly less than

one. They correspond to long-transient solutions, that

is, solutions taking a long time to converge to a given

attractor. The influence of noise on the transient

responses can be observed in Fig. 17. For small noise

intensity, s = 0.006, the resonant solution takes a

rather long time to converge to the nonresonant

Fig. 8 Dependence of the final common partitionB8 of the Helmholtz oscillator for all k-values as a function of the scaling parameter r
for A = 0.06

Fig. 9 Variation of the Helmholtz oscillator basins area as a function of the scaling parameter r for A = 0.06, showing various

probability thresholds (color bar). (colors in the online version)
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solution, see Fig. 17a. This corresponds to an eigen-

value of pij with a value of almost one. The obtained

value for the corresponding case, Fig. 13a, is

0.999990835. For s = 0.010, the convergence time is

reduced. However, the resonant attractor can converge

to either the nonresonant solution, Fig. 17b, or escape,

Fig. 17c, with different probabilities. Again, this result

corresponds to the one observed in the basin analysis,

Fig. 13b. The eigenvalue is smaller, with a value of

0.993246847, corroborating the observed conver-

gence time reduction.

As shown by the previous results, the noise leads to

uncertainty along the basin boundary, where proba-

bility is less than one. As in the deterministic case, the

transient noisy response becomes longer as initial

conditions are further away from the attractor. The

time-dependency of the basins of attraction is demon-

strated in Fig. 18 for A = 0.06 and s = 0.010. Values

of e & 1 (respectively, e & 0) correspond to a small

(respectively, large) time-horizon, identifying regions

where the time response converges in the mean sense

to a given attractor after a small-time (respectively,

large-time) interval. The former corresponds to a small

region surrounding the attractor, see Fig. 18(a.1, b.1).

As e decreases, the time horizon increases, and the

obtained basin approaches its maximum size asymp-

totically. This is clear in Fig. 18(a.2, a.3) and

Fig. 18(c.2, c.3), where the basin stabilizes at its final

configuration. For this noise intensity, there is no

resonant attractor in the classical sense, with solutions

decaying to the nonresonant attractor or escaping.

Figure 18b demonstrates what happens with the

resonant region. Initially, solutions converge to the

region where the resonant attractor exists for lower

noise intensities, as demonstrated by the increase in

basin area from Fig. 18(b.1) to Fig. 18(b.2). However,

(b)(a)

(c) 

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

Fig. 10 a Probability

density estimated from a

Poincaré section at

t = 1000 T using 100,000

trajectories of the Helmholtz

oscillator initially uniformly

distributed over X,

b attractors’ mean

distributions, and

c bifurcation diagram, for

A = 0.06 and r = 0.04.

(colors in the online version)

Fig. 11 Helmholtz oscillator mean attractor distributions (first

color bar) and mean basins of attraction (second color bar) for

A = 0.06, r = 0.04. Obtained from mean transfer matrix

formulation. (colors in the online version)
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for large time-horizons, the supposed resonant basin

decays to zero, see Fig. 18(b.3). To obtain the

asymptotic basin of attraction for this noise level with

methods based on time integration, the number of

periods of integration would be prohibitively large.

Furthermore, if time-horizons smaller than 104

(e[ 10�4) were considered, the resonant region

would mistakenly be considered as a basin, being in

fact a set of initial conditions with a long transient.

Long transients lead to large computation time to

obtain the asymptotic response by usual time integra-

tion techniques. However, the proposed phase-space

subdivision procedure can identify and separate these

solutions from the true asymptotic behavior. Figure 19

contains the corresponding eigendistribution for the

resonant solution, which however is not strictly a

distribution but a long transient. This is shown in

Fig. 19b, where negative (blue) and positive (red)

regions, each with absolute value fj j ¼ 0:5, are

separated. The former represent regions where the

solutions stay for a long time before decaying to the

permanent (nonresonant attractor, in red, or escape)

solution, as already observed in basins of attraction,

Fig. 13b, and time responses, Fig. 17(b, c). Indeed,

according to Dellnitz and Junge [26], there are two

scenarios where almost invariant sets can be observed.

The first case occurs when cyclic components of a

periodic attractor collide. Specifically, the cyclic

components’ eigenvalues change from an absolute

value of one to less than one. Only one attractor is

involved in this process, changing its periodicity to an

almost periodicity. The second case refers to the

collision of two or more attractors, with at least one of

them changing its eigenvalue from an absolute value

of one to less than one. The attractor whose eigenvalue

changes loses stability, exhibiting a long transient

solution. In this example, the resonant attractor loses

stability by colliding with different probability (see

Fig. 18(a, c) for long time horizons) with both the

nonresonant attractor and the escape solution. A

Fig. 12 Influence of increasing white noise standard deviation s on the stochastic basins of attraction (second color bar) and attractors
distribution (first color bar) of the Helmholtz oscillator for A = 0.06. Nonresonant vs resonant. (colors in the online version)
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(a.1) s = 0.006, attractor (a.2) s = 0.006, escape 

(b.1) s = 0.010, attractor (b.2) s = 0.010, escape 

Fig. 13 Influence of increasing white noise standard deviation

s on the stochastic basins of attraction (second color bar),

attractors distribution (first color bar), and escape regions (third

color bar) of the Helmholtz oscillator for A = 0.06. Bounded

attractor vs escape. (colors in the online version)

(a) nonresonant (b) resonant 

0 1 2 3 4 5 6
-15

-10

-5

7.757 7.758 7.759 7.76 7.761 7.762 7.763 7.764 7.765
105

0.8

1

1.2

0 1 2 3 4 5 6
-15

-10

-5

7.757 7.758 7.759 7.76 7.761 7.762 7.763 7.764 7.765
105

0

0.5

1

1.5

Fig. 14 Time responses and power spectrum of the Helmholtz oscillator for A = 0.06 and s = 0. Nonresonant initial condition:

(1.0; 0.13), resonant initial condition: (0.3; - 0.13)
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possible triple collision between the three distinct

solutions, after which only two remain stable, may

also occur for a very specific (i.e. coincident) prob-

ability value.

The proposed measure to quantify the system’s

integrity under various noise intensities is presented in

Fig. 20, for e = 10-8. Again, for each attractor, the

integrity is computed according to Eq. (30). The

nonresonant attractor resilience against the noise and

the resonant attractor integrity loss for s C 0.006 are

clearly observed. Therefore, the proposed procedure

can be used to quantify the influence of noise on any

integrity measure.

A comparison with a Monte Carlo experiment is

presented in Fig. 21. The probability density esti-

mated through 10,000 initial conditions uniformly

distributed over the phase-space window with

s = 0.004, integrated up to t = 100000 T, is presented

in Fig. 21a. The black areas represent high-density

regions. They agree with the attractors’ distribution,

Fig. 21b, obtained from the proposed methodology,

validating the present strategy.

5 Conclusions

The presence of uncertainties in engineering systems

is unavoidable and can drastically change their

behavior. Furthermore, noise is inevitable in the

operational stages. Here, an adaptative phase-space

discretization strategy for the global analysis of

deterministic, parameter uncertainty, and stochastic

nonlinear dynamical systems with competing attrac-

tors was developed to quantify the uncertainty effects

in those systems.

Rudiments of global dynamics were presented.

The implications of nondeterminism over global

structures, namely attractors and basins, were

addressed. Then, generalized global operators were

presented. Their fixed space corresponds to attrac-

tors’ distributions and basins observables in the

mean sense over the phase-space only, integrating

over the nondeterministic spaces. The generalized

strategy of operator discretization was presented,

resulting in a row-stochastic matrix, with also vector

(a.1) s = 0.002, nonresonant (a.2) s = 0.002, resonant 

(b.1) s )2.b(tnanosernon,400.0= s = 0.004, resonant 

Fig. 15 Power spectrum of the Helmholtz oscillator for A = 0.06 and varying noise intensity. Light gray: 10 sample solutions; black:

sample mean solution. Nonresonant initial condition: (1.0; 0.13), resonant initial condition: (0.3; - 0.13)

(a) s = 0.006, nonresonant (b) s = 0.010, nonresonant 

0 1 2 3 4 5 6
-15

-10

-5

0 1 2 3 4 5 6
-15

-10

-5

Fig. 16 Power spectrum of the Helmholtz oscillator for A = 0.06 and increasing noise intensity. Light gray: 10 sample solutions; black:

sample mean solution. Nonresonant initial condition: (1.0; 0.13)
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representations of invariant distributions and basins,

that is, attractors’ distributions and basins observ-

ables, respectively.

The Ulam method is known for displaying a

numerical diffusion due to the phase-space discretiza-

tion. This can be remedied by refining the

Fig. 17 Helmholtz oscillator’s resonant attractor long-time transient response due to high noise intensity for A = 0.06. Resonant initial

condition: (0.3; - 0.13)

Fig. 18 Dependency of the stochastic basins of attraction (color bars) on the final time horizon 1/e for A = 0.06, s = 0.010. (colors in

the online version)
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discretization at the expense of the computational cost.

Here, an adaptative discretization scheme to refine

only the most impactful regions, namely basins

observables’ boundaries and attractors distributions’

supports, was proposed. The strategy was summarized

into three main steps: identification, refinement, and

update. Simple heuristics were adopted for the iden-

tification of basins observables’ boundaries and

attractors distributions’ supports, only requiring the

computed stochastic matrix and fixed space. The

refinement is the most complicated step, and a

technique based on a tree data structure to organize

the phase-space subdivision was adopted. Flow maps

of refined regions can be calculated, and the corre-

sponding dynamical system’s transfer operator can be

updated. The procedure is conducted through a

previously defined number of iterations, resulting in

a phase-space discretization with adaptative resolu-

tion. It is easily applied to stochastic dynamics through

Monte Carlo, whereas the mean structures for para-

metric uncertainty dynamics are only attained through

integration of the attractors and basins over the

parametric uncertainty space. In this last respect, a

simple numerical procedure, based on the rectangle

rule and branch identification through the Lukaszyk-

Karmowski metric, was adopted to solve the integral

over the parameter space and compute mean

structures.

Lastly, the Helmholtz oscillator under harmonic

excitation was investigated. The deterministic analysis

displayed three possible outcomes depending on the

excitation amplitude: a small amplitude (i.e.,

nonresonant) attractor, a large amplitude (i.e., reso-

nant) attractor and escape solutions. The adaptative

discretization procedure was able to obtain attractors

and basins’ boundaries with high fidelity, even when

the latter become fractal and intermingled. The

subdivision strategy has proven capable to mitigate

the numerical diffusion, a common hindrance inherent

to many phase-space discretization procedures. A

comparison with the initially refined discretization

showed that the economy achieved by the proposed

procedure can be as high as 90% for highly refined

phase-spaces. Next, the Helmholtz oscillator with a

random stiffness parameter was considered, with the

uncertainty parameter defined as a truncated normal

variable to prevent large spurious values. Mean basins

and distributions were obtained for varying uncer-

tainty intensity, being the attractors’ distributions

described by one-dimensional structures in the phase-

space. As the uncertainty increases, broader regions

along the basins’ boundaries need to be refined. Here,

the economy of the proposed methodology is verified

through a box count procedure. The results quantify

the decrease of the safe basin area of both attractors,

particularly the resonant one, with increasing uncer-

tainty. For high uncertainty values, no set of initial

conditions has a 100% probability of converging to the

resonant attractor. The results were validated by a

Monte Carlo analysis, demonstrating the efficiency of

the proposed methodology. In turn, increasing the

excitation noise entails a two-dimensional diffusion of

the attractors, affecting particularly the resonant one,

which approaches the basin boundary. This leads to a

Fig. 19 Helmholtz oscillator’s almost permanent eigendistribution for A = 0.06, s = 0.010. (colors in the online version)
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global bifurcation due to a connection between the

resonant attractor and the hilltop saddle. After this

bifurcation, the resonant basin vanishes and solutions

either converge to the nonresonant attractor or escape.

The detailed analysis of global bifurcation shows that

formerly resonant solutions become long transients

above a critical noise intensity. Long transient solu-

tions are detected by the almost invariant eigendistri-

butions identifying regions where solutions stay for a

long time, with basins of attraction varying with the

final time horizon. The variation of resonant basin area

with noise intensity displays a characteristic Dover

cliff profile, with a sudden drop to zero. Overall,

considering parametric uncertainty and noise mean-

ingfully affects the basin area and compactness,

directly influencing the system global stability, with

effects to be carefully evaluated in the design

perspective. The matter will be explored in future

investigations, along with the possible exploitation of

control strategies (see, e.g., [85]) to increase the

dynamic integrity of given attractors.

The investigated system shows that the adaptative

discretization procedure can address efficiently

dynamics with multiple attractors. Additionally, the

methodologies for parametric uncertainty and stochas-

ticity are essential to correctly analyze each case and

understand the observed phenomena. Finally, the

weighted basin area is able to quantify the integrity

of nondeterministic cases, being also the most natural

generalization of the global integrity concept. We

expect to apply these strategies to dynamical systems

representing real engineering problems, also

Fig. 20 Variation of the Helmholtz oscillator basins area as a function of the noise intensity s for A = 0.06, showing various probability

thresholds (color bar). Time-horizon 1/e = 108. (colors in the online version)

Fig. 21 a Probability density estimated from a Poincaré section at t = 100000 T of 10,000 trajectories of the Helmholtz oscillator

initially uniformly distributed over X, b attractors’ mean distributions, for A = 0.06 and s = 0.004. (colors in the online version)
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addressing convergence and limitations of the pro-

posed algorithms.
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