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Abstract The (3+1)-dimensional generalized shal-
low water wave equation is systematically investigated
in this paper based on the Hirota bilinear method. The
N -soliton solution and the higher-order kink-shaped
breather solutions of the (3+1)-dimensional general-
ized shallow water wave equation are first proposed.
Then, the line rogue wave solution and various hybrid
solutions consisting of the breather, the kink-shaped
soliton and the periodic solutions are discussed. Fur-
thermore, the lump solutions of it are derived by using
the long wave limit of the N -soliton solution. In addi-
tion, the diverse semi-rational solutions composed of
lumps, kink solitons, line rogue wave and breathers
enrich the research contents of the (3+1)-dimensional
generalized shallowwaterwave equation. The dynamic
behaviors of these exact solutions are vividly presented
by their respective three-dimensional diagrams and
density plots with contours.
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1 Introduction

As significantmathematicalmodels capable of describ-
ing some nonlinear phenomena, nonlinear evolution
equations (NLEEs) have always been highly valued by
scholars in mathematics, physics and even engineer-
ing due to their important statuses in such scientific
fields as plasma physics, optical fiber communication,
nonlinear atmospheric dynamics, quantum mechanics,
etc. Meanwhile, the solutions to the emerging nonlin-
ear evolution equations with nonlinear dispersion and
dissipation effects are the subjects that the majority of
nonlinear scientific researchers have to consider. Soli-
ton refers to the solution with particle structural state
of a class of nonlinear dispersion equations [1]. Soli-
ton, chaos and fractal constitute the three major the-
ories of nonlinear science, which respectively repre-
sent the three universal classes of nonlinear phenom-
ena. The kinematic mechanism of solitons and waves
has become an important research field that is active
internationally since the numerical research results of
the famous nonlinear shallow water wave Korteweg-de
Vries (KdV) equation were published by Zabusky and
Kruskal [2]. A series of methods for solving nonlin-
ear evolution equations emerged as the times require
in the theory of soliton and integrable system, such
as the inverse scattering transformation (IST) [3–5],
the homogeneous balance method [6,7], the function
expansion method [8,9], the Bäcklund transformation
(BT) [10–12], the Darboux transformation (DT) [13–
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15] and the Hirota bilinear method [16–19]. Among
them, the Hirota bilinear method is highlighted as a
powerful weapon that was first proposed by Ryogo
Hirota [16], to find the exact solutions of various non-
linear evolution equations. Some popular integrable
equations such as the Kadomtsev-Petviashvili (KP)
equation [20–22] and theDavey-Stewartson (DS) equa-
tion [23,24] have been studied in detail based on these
methods.

The types of exact solutions are also rich and var-
ied, including the bright solitons, the dark solitons, the
kink solitons, the breathers, the rogue waves, and the
lumps [25–35]. Due to the combined effect of nonlin-
earity and dispersion, the soliton solution keeps its orig-
inal stable wave packet characteristics during nonlinear
wave propagation and after collision, which undoubt-
edly shows the amazing orderliness caused by nonlin-
ear effects [1,2,25–27]. The breathers oscillate peri-
odically in a certain region of the finite background
during transmission [29–31]. In particular, the rogue
waves and the lump solutions, as rational function solu-
tions of nonlinear wave equations, have increasingly
become the focus of attention due to their special struc-
tures and potential destructiveness [31–35]. The rogue
waves were first proposed when Peregrine studied the
general nonlinear Schrödinger (NLS) equation [36] and
often “come without shadow and go without trace”
[37], which are interpreted as the phenomena of energy
concentration in the nonlinear theory.Their peak ampli-
tudes are usually about three times of the background
waves, and they will eventually attenuate to a constant
background wave. The rogue wave phenomena also
exist in such fields as oceanography, optics, Bose Ein-
stein condensate, plasma physics, atmospheric science,
etc [38–43].

However, since most of the rogue wave phenom-
ena in the ocean are described by (2+1)- or (3+1)-
dimensional models, and the research on low-dimen
sional nonlinear models has been relatively mature
[30–34,38], the research on (3+1)- and even higher-
dimensional nonlinear models has become necessary.
For example, the algebraic-geometrical solutions, N -
soliton solution and its Wronskian form of a (3+1)-
dimensional nonlinear evolution equation are solved
in detail [44,45]. The solitary wave solutions, lump-
type solutions, and rogue wave solutions of the (3+1)-
dimensional Jimbo-Miwa equation have been stud-
ied [46–48]. And the multiple-soliton solutions, multi-
ple singular soliton solutions, Wronskian and Gram-

mian solutions of a (3+1)-dimensional generalized
Kadomtsev-Petviashvili (KP) equation are constructed
[49–51].

This paper focuses on a (3+1)-dimensional nonlin-
ear model, namely the (3+1)-dimensional generalized
shallow water wave (gSWW) equation as

(ut + uxxx )y − 3(uxuy)x + uxz = 0, (1.1)

where u = u(x, y, z, t), which can be equivalent to the
general expression of the (3+1)-dimensional general-
ized shallow water wave (gSWW) equation [52–56]

uyt + uxxxy − 3uxxuy − 3uxuxy − uxz = 0, (1.2)

under a scale transformation z → −z. Tian et al.
have obtained the soliton-typed solutions of the (3+1)-
dimensional gSWW equation by using the tanh func-
tion method with symbolic computation [54]. Three
functional representations of the traveling wave solu-
tions of the equation have been derived by Zayed
through the (G

′
G )-expansion method [55]. Based on the

Hirota bilinear method, Tang and Ma et al. calculated
the solutions of the equation in Grammian and Pfaffian
forms [56]. Some singular soliton solutions, hyperbolic
function solutions and trigonometric function solutions
of the equation are proposed by Zeng and Liu et al.
through the Painlevé Bäcklund transformation and the
Hirota bilinear method [57]. Liu et al. used the auto-
Bäcklund transformation and a direct test function to
obtain some periodic solitary wave solutions for the
equation [58]. And Eq. (1.1) describes the propagation
of shallow water waves in oceans, estuaries and reser-
voirs, and can be applied to weather simulation, tidal
waves, rivers and irrigation flows, tsunami forecasts,
etc. As we know, the higher-order kink-shaped soliton
and breather solutions, the rogue wave (RW) solutions,
the RW-soliton and lump-breather semi-rational solu-
tions, and the hybrid solutions composed of different
solutions of Eq. (1.1) are still to be explored. As a con-
sequence, this paper focuses on the dynamic behaviors
of new exact solutions of Eq. (1.1) heartened by the
above open problems, and hopes to learn more about
the new characteristics of Eq. (1.1) during the research.

The main structure of this paper is as follows. In
Sect. 2, based on the Hirota bilinear method combined
with a logarithmic transformation and the perturba-
tion method, the explicit expression of the N -soliton
solution and the kink-shaped multi-soliton solutions
of Eq. (1.1) are derived. In Sect. 3, the higher-order
breather solutions and the hybrid solutions of Eq. (1.1)
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are constructed under special constraints of parame-
ters. In Sect. 4, the lump solutions and the line rogue
wave solution of Eq. (1.1) are generated by taking the
long wave limit [59–63]. In Sect. 5, various types of
semi-rational solutions of Eq. (1.1) are explored. The
conclusion of this paper is given in Sect. 6.

2 The bilinear form and the soliton solutions of the
(3+1)-dimensional gsww equation

In order to obtain the Hirota bilinear form of Eq. (1.1),
a binary differential D-operator (i.e. the Hirota deriva-
tive) [18] is introduced as

Dn
x a(x) · b(x) ≡ (

∂

∂x
− ∂

∂y
)na(x)b(y)|y=x

= ∂n

∂yn
a(x + y)b(x − y)|y=0,

(2.1)

Dm
t Dn

x a(t, x) · b(t, x) ≡ ∂m

∂sm
∂n

∂yn
a(t + s, x + y)

b(t − s, x − y)|s=0,y=0,

(2.2)

where m and n are arbitrary non-negative integers. By
performing a corresponding logarithmic transforma-
tion on u

u = −2(ln f )x , (2.3)

Eq. (1.1) can be transformed into a bilinear derivative
equation

(Dt Dy + D3
x Dy + Dx Dz) f · f = 0. (2.4)

This is equivalent to the bilinear expansion of Eq. (1.1),
written as follows

f fty − ft fy + f fxxxy − fxxx fy − 3 fxxy fx

+3 fxx fxy + f fxz − fx fz = 0, (2.5)

where f = f (x, y, z, t).
By using the standard perturbation method to solve

Eq. (2.4), f (x, y, z, t) is expanded into a power series
according to the small parameter ε

f (x, y, z, t) = 1 + ε f1 + ε2 f2 + · · · + ε j f j + · · · .

(2.6)

After substituting it into Eq. (2.4), it can be rearranged
by comparing the coefficients of the same power of ε,
then

ε : f1,t y + f1,xxxy + f1,xz = 0, (2.7a)

ε2 : 2( f2,t y + f2,xxxy + f2,xz)

= −(Dt Dy + D3
x Dy + Dx Dz) f1 · f1, (2.7b)

ε3 : f3,t y + f3,xxxy + f3,xz

= −(Dt Dy + D3
x Dy + Dx Dz) f1 · f2, (2.7c)

ε4 : 2( f4,t y + f4,xxxy + f4,xz)

= −(Dt Dy + D3
x Dy + Dx Dz)(2 f1 · f3 + f2 · f2),

· · · . (2.7d)

The power series (2.6) can be truncated at the sum
of finite terms while properly selecting the solution f1
in the form of a linear exponential function under the
conditions of the above equations, hence,

f (x, y, z, t) = 1 + ε f1 = 1 + εeη1 , (2.8)

where

η1 = p1x + q1y + k1z + ω1t + η01,

ω1 = − p1(p21q1 + k1)

q1
. (2.9)

Since the perturbation parameter ε can be absorbed by
the phase constant η01 of the exponent η1, the exact
solution of Eq. (2.4) is given as follows

f (x, y, z, t) = 1 + eη1 . (2.10)

Further, combining the transformation (2.3), the single
solitary wave solution u1s of Eq. (1.1) is obtained as

u1s = − 2p1

1 + e−(p1x+q1y+k1z+ω1t+η01)
. (2.11)

Note that the arbitrary parameter η01 in this expression
represents the position of the soliton, which is typically
taken as 0. In addition, the 1-soliton solution u1s has no
extreme point, showing the following characteristics:{
u1s → −2p1 for η1 → +∞
u1s → 0 for η1 → −∞ . (2.12)

In the asymptotic dynamic behavior of the 1-soliton
solution u1s , u1s will degenerate into a plane wave
when p1 = 0, otherwise u1s will degenerate into a kink
wave. When all the parameters in (2.11) are assigned
specific values, the 1-kink soliton solution of Eq. (1.1)
is shown in Fig. 1.

Since Eq. (2.7a) is a linear differential equation, a
superposition solution of it can be given by applying
the linear superposition principle

f1 = eη1 + eη2 , ηi = pi x + qi y + ki z + ωi t + η0i ,

ωi = − pi (p2i qi + ki )

qi
(i = 1, 2). (2.13)
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Fig. 1 The 1-kink soliton
solution of Eq. (1.1) in the
(x, y)-plane at t = 0 with
parameters: N = 1,
p1 = q1 = k1 = −1,
η01 = 0. a The 3D plot. b
The density plot. (Color
online)

After substituting (2.13) into Eq. (2.7b), the following
will be obtained

f2 = eη1+η2+A12 , (2.14)

where

eA12 = p2q21 (3p1q2(p1 − p2) − k2) − q1q2(3p1 p2q2(p1 − p2) − p1k2 − p2k1) − p1q22k1
p2q21 (3p1q2(p1 + p2) − k2) + q1q2(3p1 p2q2(p1 + p2) + p1k2 + p2k1) − p1q22k1

. (2.15)

Then, by continuing to apply the perturbation
method, the truncated solution ofEq. (2.4)will be trans-
formed into

f (x, y, z, t) = 1 + eη1 + eη2 + eη1+η2+A12 . (2.16)

Thus, combining the transformation (2.3), the 2-soliton
solution of Eq. (1.1) is solved as

u2s = −2[ln(1 + eη1 + eη2 + eη1+η2+A12)]x , (2.17)

where ηi (i = 1, 2) and eA12 are given in (2.13),
(2.15). Under the condition that the phase constants η0i
(i = 1, 2) are assigned as 0, the interactions between
two kink-shaped solitons in two different cases are
described (see Fig. 2a, b, e and f).

The method similar to the previous one is adopted
to explain that Eq. (1.1) has the 3-soliton solution as
follows

u3s = −2[ln(1 + eη1 + eη2 + eη3 + eη1+η2+A12

+ eη1+η3+A13 + eη2+η3+A23

+ eη1+η2+η3+A12+A13+A23)]x ,
(2.18)

where

ηi = pi x + qi y + ki z + ωi t + η0i ,

ωi = − pi (p2i qi + ki )

qi
(i = 1, 2, 3) (2.19)

eAi j =

p jq
2
i (3piq j (pi−p j )−k j )−qiq j (3pi p jq j (pi

−p j )−pi k j−p j ki )−piq
2
j ki

p jq
2
i (3piq j (pi+p j )−k j )+qiq j (3pi p jq j (pi

+p j )+pi k j+p j ki )−piq
2
j ki

(i < j, i, j = 1, 2, 3). (2.20)

After regulating specific parameters, the 3-kink soliton
solution of Eq. (1.1) is shown in Fig. 2c and g. Further-
more, the dynamic behavior of four solitons colliding
with each other is also depicted (see Fig. 2d and h).

There is no doubt that the above method for con-
structing and analyzing the interactions of multi-
solitary waves can be completely extended to the case
of N -solitarywaves. Then the N -soliton solution of Eq.
(1.1) can be expressed as follows

u = −2(ln f )x

= −2

⎡
⎢⎣ln

⎛
⎜⎝ ∑

μ=0,1

e

N∑
i=1

μiηi+
N∑

1≤i< j
μiμ j Ai j

⎞
⎟⎠

⎤
⎥⎦
x

, (2.21)
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Fig. 2 The 2-, 3-, 4-kink soliton solutions of Eq. (1.1) in the
(x, y)-plane at t = 0 with parameters: a, (e)N = 2, p1 = −2,
p2 = −3, q1 = 1

4 , q2 = 3
2 , k1 = k2 = 1, η01 = η02 = 0;

b, (f)N = 2, p1 = p2 = q1 = −q2 = −3, k1 = k2 = 1,
η01 = η02 = 0; c, (g)N = 3, p1 = p2 = p3 = −1, q1 = − 1

2 ,

q2 = 1, q3 = − 1
9 , k1 = k2 = k3 = 2, η01 = η02 = η03 = 0;

d, (h)N = 4, p1 = p2 = p3 = p4 = −1, q1 = − 1
2 ,

q2 = 1, q3 = − 1
9 , q4 = −2, k1 = k2 = k3 = k4 = 2,

η01 = η02 = η03 = η04 = 0. (Color online)

where
ηi = pi x + qi y + ki z + ωi t + η0i ,

ωi = − pi (p
2
i qi + ki )

qi
,

eAi j =

p j q
2
i (3pi q j (pi−p j )−k j )−qi q j (3pi p j q j (pi

−p j )−pi k j−p j ki )−pi q
2
j ki

p j q
2
i (3pi q j (pi+p j )−k j )+qi q j (3pi p j q j (pi

+p j )+pi k j+p j ki )−pi q
2
j ki

.

(2.22)

Here, pi , qi , ki and η0i are all arbitrary real or com-
plex parameters, and subscripts i and j denote positive
integers. The first summation symbol

∑
μ=0,1

behind the

logarithmic sign shall take all possible combinations
of μi = 0, 1 (i = 1, 2, · · · , N ), which represents the

addition of 2N items. The symbol
N∑

1≤i< j
indicates the

summation over all possible combinations of the N ele-
ments with the specific condition 1 ≤ i < j ≤ N . In

addition, the formula ωi + pi (p2i qi+ki )
qi

= 0 describes
the nonlinear dispersion relation of Eq. (1.1). This is
the critical factor that affects the periodicity and local-
ity of the energy distribution in other rich solutions of
Eq. (1.1).

On the basis of assigning appropriate specific values
to the parameters in (2.11), (2.17), (2.18), (2.21), the
diagrams of the single soliton and multi-soliton solu-
tions are demonstrated, which show the shape charac-
teristics of kinks. Actually, pi �= 0 (i = 1, 2, 3, 4) in
formula (2.22) are the essence that causes these multi-
soliton solutions to exhibit kink characteristics, and
whether pi (i = 1, 2, 3, 4) are assigned the same value
also implies the diversity of the multi-soliton solutions
of Eq. (1.1). The propagations of solitary waves with
particle structural state can be observed intuitively from
these graphics. Collisions between solitary waves are
elastic because of the interaction of dispersion and non-
linear effects, that is, changes in phases are permit-
ted, but the shapes, sizes (velocities) and directions do
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Fig. 3 Sectional drawings of the 2-, 3-, 4-kink soliton solutions
of Eq. (1.1) along the x-axis at different times with parameters:
a N = 2, p1 = −2, p2 = −3, q1 = 1

4 , q2 = 3
2 , k1 = k2 = 1,

η01 = η02 = 0;b N = 3, p1 = p2 = p3 = −1, q1 = − 1
2 , q2 = 1,

q3 = − 1
9 , k1 = k2 = k3 = 2, η01 = η02 = η03 = 0; c N = 4,

p1 = p2 = p3 = p4 = −1, q1 = − 1
2 , q2 = 1, q3 = − 1

9 ,
q4 = −2, k1 = k2 = k3 = k4 = 2, η01 = η02 = η03 = η04 = 0.
(Color online)

not change. And the interactions between these kink-
shaped solitons make the amplitudes at their intersec-
tions appear a transient anomaly (see Figs. 1, 2 and 3).

3 The breather solutions and the hybrid solutions
of the (3+1)-dimensional gsww equation

The shapes of the breather solutions undergo peri-
odic oscillations during the propagation of the (3+1)-
dimensional generalized shallow water wave. Their
essence is in intimate relationship with multi-soliton
solutions, which are generated based on the exponen-
tial function. Therefore, the hybrid solutions composed
of multi-soliton solutions and breather solutions can
also be discussed intensively in this section. Following
the previous research [60–63], the N -soliton solution
can be derived into the mth-order breather solution by
first restricting the parameters in formula (2.21), (2.22)
with the complex conjugate constraint

N = 2m, p2i = p∗
2i−1,

q2i = q∗
2i−1, k2i = k∗

2i−1, (3.1)

where m ∈ N+, i = 1, 2, · · · ,m, and then continuing
to select specific values for assignment. For instance,
by setting the parameters N = 2, p2 = p∗

1 = 2i , q2 =
q∗
1 = 1 + 2i , k2 = k∗

1 = −3i , η01 = η02 = 0, the first-
order breather solution of Eq. (1.1) can be constructed

as

u1b = 8eζ1 sin(ξ1)

1 + eξ2 + eξ∗
2 + 41eζ2

, (3.2)

where

ζ1 = −6

5
t + y,

ζ2 = −12

5
t + 2y,

ξ1 = 52

5
t + 2x + 2y − 3z,

ξ2 =
(

−6

5
+ 52

5
i

)
t + 2i x + (1 + 2i)y − 3i z.

(3.3)

Thus it can be seen, the travel trajectory of the first-
order breather solution u1b along the x-axis is periodic,
and the cycle period is π (see Fig. 4a, b and c). u1b
exhibits localization simultaneously in the y-direction
on the (x, y)-plane. Besides that, while taking N = 2,
p2 = p∗

1 = q1 = q∗
2 = k2 = k∗

1 = 1 − i , η01 = η02 =
0, the first-order kink-shaped breather solution of Eq.
(1.1) is also shown in Fig. 4d, e and f. This breather
solution not only exhibits kink feature in shape, but
also exhibits oblique breathing behavior in the (x, y)-
plane, with periodicity in both x and y directions.

When higher order cases are considered, by setting
the parameters N = 4, p2 = p∗

1 = k2 = k∗
1 = −i ,

q2 = q∗
1 = 1 + i , η01 = η02 = 2π , p4 = p∗

3 = k4 =
k∗
3 = 2i ,q4 = q∗

3 = 2−2i ,η03 = η04 = −2π in formula
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Fig. 4 The first-order breather solution and the first-order kink-shaped breather solution of Eq. (1.1) in the (x, y)-plane at t = 0. a, d
The 3D plot. b, e The density plot with contours. c, f The sectional drawing(y = 0, z = 0). (Color online)

(2.21), (2.22), the second-order breather solution of Eq.
(1.1) can be pushed out. The diagram shows that two
rowsof breatherwaves are spread in parallel (seeFig. 5a
and b). Similar to the first-order breather solution at
N = 2, the periodicity of the second-order breather
solution is manifested in the x-direction on the (x, y)-
plane, and the locality is manifested in the y-direction.

And the second-order kink-shaped breather solution
of Eq. (1.1) can also be sought in like wise by taking
N = 4, p2 = p∗

1 = q1 = q∗
2 = k2 = k∗

1 = 1 − i ,
η01 = η02 = 2π , p4 = p∗

3 = q3 = q∗
4 = 2 + 2i ,

k4 = k∗
3 = −2 + 2i , η03 = η04 = −2π in for-

mula (2.21), (2.22) (see Fig. 5c and d). The second-
order kink-shaped breather solution exhibits periodic-

ity in both x and y directions, and its two kink-shaped
breather waves propagate diagonally parallel to each
other in the (x, y)-plane.

For N > 3, the two groups of parameters are
restricted to be conjugate, and the remaining param-
eters are all real numbers in formula (2.21), (2.22),
then the hybrid solutions consisting of the soliton solu-
tions and the breather solutions of Eq. (1.1) can be
derived. While taking N = 3, p1 = −q1 = k1 = 1,
p3 = p∗

2 = k3 = k∗
2 = i , q3 = q∗

2 = −1 − i ,
η01 = η02 = η03 = 0, the hybrid solution of the first-
order breather solution and the 1-kink soliton solution
is given as follows
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Fig. 5 The second-order
breather solution and the
second-order kink-shaped
breather solution of Eq.
(1.1) in the (x, y)-plane at
t = 0. a, c The 3D plot. b, d
The density plot with
contours. (Color online)

u1b−1s = −(238 + 70i)eδ1 + (−238 + 70i)eδ∗
1 + 314i(eδ2 − eδ∗

2 ) + 314eν1 + 686eν2

(77 − 42i)eδ1 + (77 + 42i)eδ∗
1 − 157(eδ2 + eδ∗

2 + eν1) − 343eν2 − 1099e−t−2y − 157
, (3.4)

where

δ1 =
(

−1

2
+ 3

2
i

)
t + (1 + i)x − (2 + i)y + (1 + i)z,

δ2 =
(

−1

2
+ 3

2
i

)
t + i x − (1 + i)y + i z,

ν1 = x − y + z,

ν2 = −t + x − 3y + z. (3.5)

The collision effect between twodifferent types of solu-
tions does not destroy the periodicity of the first-order
breather solution of Eq. (1.1) (see Fig. 6a and b).

Interestingly,when the parameters in formula (2.21),
(2.22) are adjusted to the same values as above, the
hybrid solution u1b−1s appears as the interaction solu-

tion of the first-order periodic line wave and the 1-kink
soliton in the (x, z)-plane. In the dynamic behavior of
this hybrid solution of Eq. (1.1), the periodic line wave,
also known as the line breather, appears from a constant
background wave within a finite time interval in the
middle and generates themaximum amplitude at t = 0,
but it will eventually degenerate into the same constant
background wave as time goes on (see Fig. 7). This
first-order periodic line wave is a homoclinic orbital
wavewith uniformly varyingwave heights in the (x, z)-
plane. A key visual difference between it and the first-
order breather solution of Eq. (1.1) is that the former
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Fig. 6 The hybrid solutions
of the first-order breather
solution and the 1-kink
soliton solution, the
first-order kink-shaped
breather solution and the
1-kink soliton solution of
Eq. (1.1) in the (x, y)-plane
at t = 0. a, c The 3D plot.
b, d The density plot with
contours. (Color online)

has periodicity in space and localization in time, while
the periodicity and locality of the latter are respectively
reflected in the x and y directions on the (x, y)-plane.
This also means that the first-order line breather solu-
tion only exists for a limited short period of time. That
is, when |t | 
 0, the first-order periodic line wave will
be almost completely immersed in the 1-kink soliton
wave and only the 1-kink soliton will appear in the
diagram of this hybrid solution.

Similarly, the mixed solution consisting of the first-
order kink-shaped breather solution and the 1-kink soli-
ton solution of Eq. (1.1) is also obtained under the
parameters N = 3, p1 = −q1 = k1 = 8, p3 = p∗

2 =
q3 = q∗

2 = k2 = k∗
3 = 1 + i , η01 = η02 = η03 = 0 (see

Fig. 6c and d). These hybrid solutions are all definitely
derived from the expansion of the 3-soliton solution of
Eq. (1.1).

By taking N = 4, p2 = p∗
1 = k1 = k∗

2 = i ,
q2 = q∗

1 = 1 + i , p3 = p4 = q3 = −q4 = −k3 =

−k4 = −1, η01 = η02 = η03 = η04 = 0 in formula (2.21),
(2.22), the hybrid solution of the first-order breather
solution and the 2-kink soliton solution of Eq. (1.1) is
shown in Fig. 8a, b and c.

Thedynamic behavior of the hybrid solution consist-
ing of the first-order kink-shaped breather solution and
the 2-kink soliton solution can also be intuitively ana-
lyzed under the parameters N = 4, p2 = p∗

1 = 1
6 + i ,

q2 = q∗
1 = 5

2 − i , k2 = k∗
1 = − 1

6 − i , p3 = p4 = q3 =
−q4 = −k3 = −k4 = −1, η01 = η02 = η03 = η04 = 0 in
Fig. 8d, e and f. These hybrid solutions are solved based
on the 4-soliton solution of Eq. (1.1). One thing that can
be obviously observed is that in the dynamic behavior
of these hybrid solutions, the collision between the 2-
kink soliton solutions and the breather solutions of Eq.
(1.1) does not disrupt the periodicity in the x-direction
and the localization in the y-direction of the breathers
on the (x, y)-plane, and the breathers maintain their
original oscillating waveforms for propagation.

123



15642 L. Ying, M. Li

Fig. 7 The hybrid solution of the first-order periodic solution
and the 1-kink soliton solution of Eq. (1.1) in the (x, z)-plane at
different times with parameters: N = 3, p1 = −q1 = k1 = 1,

p3 = p∗
2 = k3 = k∗

2 = i , q3 = q∗
2 = −1−i , η01 = η02 = η03 = 0.

a t = −15. b t = −5. c t = 0. d t = 10. e t = 15. (Color online)

4 The rational solutions of the (3+1)-dimensional
gsww equation

In view of the earlier research [59–63], the rational
solutions of nonlinear waves can be derived by tak-
ing the long wave limits of the soliton solutions based
on the Hirota bilinear method. The lump solutions of
the (3+1)-dimensional generalized shallow water wave
equation, as some special rational function solutions
localized in space, will be discussed emphatically in
this section.

Case I

Consider the case of N = 2.
The parameters in formula (2.21), (2.22) are stipu-

lated as follows

N = 2, q1 = λ1 p1, k1 = γ1 p1, q2 = λ2 p2,

k2 = γ2 p2, η01 = η02 = iπ, (4.1)

and then the limits pi → 0 (i = 1, 2) are performed.
Hence, the f in formula (2.21) is rewritten as a poly-
nomial function

f = θ1θ2 + α12, (4.2)
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Fig. 8 The hybrid solutions of the first-order breather solu-
tion and the 2-kink soliton solution, the first-order kink-shaped
breather solution and the 2-kink soliton solution of Eq. (1.1) in

the (x, y)-plane at different times. a, d t = −10. b, e t = 0. c, f
t = 10. (Color online)

where

θi = yλ2i + (zγi + x)λi − tγi
λi

, (i = 1, 2),

α12 = − 6λ1λ2(λ1 + λ2)

(λ1 − λ2)(γ1λ2 − γ2λ1)
.

(4.3)

Letting λ2 = λ∗
1 = −i , γ1 = γ2 = 1, and combining

the transformation (2.3), the first-order lump solution
of Eq. (1.1) is solved as

u1−lump = −4(x + z)

(x + z)2 + (t + y)2
. (4.4)

The dynamic behavior of the first-order lump solution
u1−lump at different times is shown in Fig. 9.

Due to the concentrated distribution of energy, it
produces a local lump with two wave crests, one above
the horizontal plane and the other below the horizontal

plane, resulting in this lump presenting awave peak and
a wave trough. It can be intuitively found that in a finite
space, u1−lump , as a rational solution of Eq. (1.1),main-
tains a perfect profile around the control center of its
waveform and moves on a constant background with-
out diffusion or collapse. Nevertheless when x → ±∞
or y → ±∞, the first-order lump solution u1−lump

degenerates to 0, which indicates that its asymptotic
background is zero.

It is worth mentioning that when the parameters in
formula (2.21), (2.22) is constrained to p2 = p∗

1 =
q2 = q∗

1 = k1 = k∗
2 = 1 + i , η01 = η02 = 0, the first-

order breather solution is transformed into the first-
order line rogue wave (RW) solution of Eq. (1.1) as
follows
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Fig. 9 The first-order lump
solution of Eq. (1.1) in the
(x, y)-plane at different
times. a t = −30. b t = 0. c
t = 30. d The density plot
with contours. (Color
online)

uRW = (2 + 2i)eχ1 + (2 − 2i)eχ∗
1 − 4eχ2

−1 − (eχ1 + eχ∗
1 ) + eχ2

, (4.5)

where

χ1 = (1 − i)t + (1 + i)x + (1 + i)y + (1 − i)z,

χ2 = 2t + 2x + 2y + 2z.
(4.6)

The first-order line rogue wave, as a finite form of the
first-order line breather solution of Eq. (1.1), is gen-
erated in a constant background, rising or decaying
with time evolution, and its maximumwave crest value
appears at t = 0 and x + y = 0 (see Fig. 10). The first-
order line rogue wave solution of Eq. (1.1) is localized
in time and space, and the wave height at infinity of the
(x, y)-plane tends to zero. Therefore, this line wave
has the typical characteristic of a rogue wave solution:
coming and going without a trace.

Case II

Consider the case of N=4.

By constraining the parameters in formula (2.21),
(2.22) as

N = 4, q1 = λ1 p1, k1 = γ1 p1,

q2 = λ2 p2, k2 = γ2 p2,

q3 = λ3 p3, k3 = γ3 p3, q4 = λ4 p4, k4 = γ4 p4,

η01 = η02 = η03 = η04 = iπ, (4.7)

and performing the limits pi → 0 (i = 1, 2, 3, 4), the
f in formula (2.21) is completely transformed from a
exponential function to a purely rational function as
follows

f = θ1θ2θ3θ4 + α12θ3θ4 + α13θ2θ4 + α14θ2θ3

+α23θ1θ4 + α24θ1θ3 + α34θ1θ2

+α12α34 + α13α24 + α14α23,

(4.8)

where

θi = yλ2i + (zγi + x)λi − tγi
λi

,

αi j = − 6λiλ j (λi + λ j )

(λi − λ j )(γiλ j − γ jλi )
,
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Fig. 10 The first-order line rogue wave solution of Eq. (1.1) in the (x, y)-plane at different times. a t = −25. b t = 10. c t = 0. d
t = 10. e t = 25. (Color online)

(i < j, i, j = 1, 2, 3, 4). (4.9)

Taking λ2 = λ∗
1 = −i , λ4 = λ∗

3 = −2i , γ1 = γ2 =
γ3 = γ4 = 1, and combining the transformation (2.3),
the second-order lump solution of Eq. (1.1) is presented
as

u2−lump = (−288x3 − 864x2z − (36ρ1 + 864z2)x

−288z3−36ρ1z−7872t−15360y)/(36x4+144x3z

+(9ρ1 + 216z2)x2 + (144z3 + 18ρ1z + 3936t

+7680y)x + 36z4 + 9ρ1z
2 + (3936t + 7680y)z

+9ρ2t
2 + 360t y3 + 144y4 + 46720), (4.10)

where

ρ1 = 5t2 + 16t y + 20y2,

ρ2 = t2 + 10t y + 33y2.
(4.11)

The intuitive diagram of the second-order lump solu-
tion u2−lump is also given (see Fig. 11).

After the evolution of t , u2−lump only undergoes
parallel shift in asymptotic motion, but its permanent
lumps pattern does not change. Thus, the form of

u2−lump at t = 0 is discussed without losing general-
ity. The wave crests and troughs of u2−lump have dou-
bled compared to the first-order lump solution of Eq.
(1.1). Additionally, when x → ±∞ or y → ±∞, the
second-order lump solution u2−lump will also degener-
ate to zero and disappear from the field of view.

5 The semi-rational solutions of the
(3+1)-dimensional gsww equation

The key to the construction of the semi-rational solu-
tions of Eq. (1.1) lies in the application of taking the
long wave limit of partial exponential functions similar
to Sect. 4 and the special restrictions on the parameters
in formula (2.21), (2.22).

When N = 3, by setting the parameters in formula
(2.21), (2.22) as

N = 3, q1 = λ1 p1, k1 = γ1 p1, q2 = λ2 p2,

k2 = γ2 p2, η01 = η02 = iπ, (5.1)

and taking the limits p1, p2 → 0, the f in formula
(2.21) can be updated as a combination of polynomial
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Fig. 11 The second-order
lump solution of Eq. (1.1) in
the (x, y)-plane at t = 0. a
The 3D plot. b The density
plot with contours. (Color
online)

and exponential functions

f = (θ1θ2+α13θ2+α23θ1+α13α23+α12)e
η3

+θ1θ2 + α12,

(5.2)

where

αi3 = − 6(p23q3λ
2
i + p3q23λi )

−p3k3λ2i + (3p23q3+k3+p3γi )q3λi − q23γi
,

(i = 1, 2), (5.3)

and η3 is the same as in (2.22), θi (i = 1, 2), α12 are the
same as in (4.3). In particular, if the parameters λ2 =
λ∗
1 = −2i and the remaining parameters are all real

numbers, such as γ1 = γ2 = 1, p3 = q3 = k3 = −2,
η03 = 0, and then combining the transformation (2.3),
the semi-rational solution of Eq. (1.1) consisting of the
first-order lump solution and the 1-kink soliton solution
can be obtained as

ulump−1s = ((12688(x2 + z2) + (25376z + 4208)x

+4208z + 3172t2 + (25376y + 22656)t

+50752y2 + 90624y + 37632)eτ

−12688(x + z))/((3172(x2 + z2) + (6344z

+4224)x + 4224z + 793t2 + (6344y + 5664)t

+12688y2 + 22656y + 11520)eτ

+3172x2 + 6344xz + 3172z2 + 793(t + 4y)2),

(5.4)

where

τ = 10t − 2x − 2y − 2z. (5.5)

The first-order lump will pass through the 1-kink soli-
ton of Eq. (1.1) over time. Their collision is elastic, and

the amplitude increases and the energy is concentrated
at the intersection (see Fig. 12).

By the same means, the dynamic behavior of the
semi-rational solution of Eq. (1.1) consisting of the
first-order line rogue wave and the 1-kink soliton is
further presented. It can be seen intuitively that the
collision between the first-order line rogue wave and
the 1-kink soliton results in the maximum amplitude at
t = 0 and x + z = 0 (see Fig. 13). In addition, because
the line roguewave is localized in space and time, it will
degenerate into a constant plane wave when |t | 
 0,
that is, only the 1-kink soliton can be seen at this time,
and the amplitude of the line rogue wave of Eq. (1.1)
tends to zero at the infinity of the (x, z)-plane.

When N = 4, the parameters are constrained in
formula (2.21), (2.22) as follows

N = 4, q1 = λ1 p1, k1 = γ1 p1, q2 = λ2 p2,

k2 = γ2 p2, η01 = η02 = iπ, (5.6)

and then the limits p1, p2 → 0 are performed. Thus,
the f in formula (2.21) is rewritten as

f = (θ1θ2 + α13θ2 + α23θ1 + α13α23 + α12)e
η3

+(θ1θ2 + α14θ2 + α24θ1 + α14α24 + α12)e
η4

+(θ1θ2 + α13θ2 + α14θ2 + α23θ1 + α24θ1

+α13α23 + α13α24 + α14α23 + α14α24

+α12)e
η3+η4+A34 + θ1θ2 + α12,

(5.7)

where

αi4 =
− 6(p24q4λ

2
i + p4q24λi )

−p4k4λ2i + (3p24q4 + k4 + p4γi )q4λi − q24γi
,
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Fig. 12 The semi-rational solution consisting of the first-order lump solution and the 1-kink soliton solution of Eq. (1.1) in the
(x, y)-plane at different times. a t = −5. b t = 0. c t = 5. (Color online)

Fig. 13 The semi-rational solution consisting of the first-order
line rogue wave solution and the 1-kink soliton solution of
Eq. (1.1) in the (x, z)-plane at different times with parameters:

N = 3, λ2 = λ∗
1 = −2i , γ1 = γ2 = 1, p3 = q3 = k3 = −2,

η03 = 0. a t = −10. b t = −2. c t = 0. d t = 5. e t = 10. f The
sectional drawing. (Color online)
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Fig. 14 The semi-rational solutions consisting of the first-order
lump solution and the 2-kink soliton solution, the first-order lump
solution and the first-order breather solution, the first-order lump

solution and the first-order kink-shaped breather solution of Eq.
(1.1) in the (x, y)-plane at t = 0. a, b, c The 3D plot. d, e, f The
density plot with contours. (Color online)

(i = 1, 2), (5.8)

and αi3 (i = 1, 2) are the same as in (5.3), η3, η4, eA34

are the same as in (2.22), θi (i = 1, 2), α12 are the
same as in (4.3). Here, if the parameters λ2 = λ∗

1 = −i
and the remaining parameters are all real numbers as
γ1 = γ2 = p3 = −p4 = q3 = 2q4 = k3 = −k4 = 1,
η03 = η04 = 0, and then combining the transformation
(2.3), the semi-rational solution of Eq. (1.1) consisting
of the first-order lump solution and the 2-kink soliton
solution can be proposed (see Fig. 14a and d).

However, when the parameters λ2 = λ∗
1 = −i ,

γ1 = γ2 = 1, and the remaining two groups of param-
eters are restricted to be complex conjugate, two kinds
of the semi-rational solutions of Eq. (1.1) can be con-
structed. If the remaining parameters p4 = p∗

3 = k4 =
k∗
3 = 2i , q4 = q∗

3 = 2 − 2i , η03 = η04 = 2π , the semi-
rational solution consisting of the first-order lump solu-
tion and the first-order breather solution can be derived
(see Fig. 14b and e). When the remaining parameters

p4 = p∗
3 = q3 = q∗

4 = 1 + i , k4 = k∗
3 = 1 − 2i ,

η03 = η04 = 2π , the semi-rational solutions consist-
ing of the first-order lump solution and the first-order
kink-shaped breather solution is presented (see Fig. 14c
and f). For these lump-soliton and lump-breather semi-
rational solutions, when η0i → 0 (i = 3, 4), the lump
will collide with the 2-kink soliton of Eq. (1.1) (see
Fig. 14a and d). When |η0i | 
 0 (i = 3, 4), the lump
will completely separate from the breathers ofEq. (1.1),
and the periodicity and amplitude of the breather solu-
tions remain stable (see Fig. 14b and e, c and f).

6 Conclusions

Some exact solutions of the (3+1)-dimensional gener-
alized shallow water wave equation and the dynamic
behaviors between them are systematically studied in
this paper. The explicit N -soliton solution of Eq. (1.1)
is derived based on the Hirota bilinear method and
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the standard perturbation method. The multi-soliton
solutions of Eq. (1.1) exhibit kink characteristics due
to pi �= 0 (i = 1, 2, · · · , N ), and the elastic col-
lision behaviors of these solutions are discussed (see
Figs. 1, 2 and 3). By adding constraints to the parame-
ters of the original N -soliton solution, the higher-order
breather solutions of Eq. (1.1) with periodic oscilla-
tion and localization on the (x, y)-plane are also solved
(see Figs. 4 and 5). The hybrid solutions consisting of
two types of breather solutions, the kink-shaped soliton
solutions and the periodic solution (see Figs. 6, 7 and 8),
and the line rogue wave solution (see Fig. 10) together
enrich the dynamic behaviors between different types
of solutions of Eq. (1.1). It can be seen that both the
periodic solution and the line roguewave solution grow
and decay over time in a constant background.

In addition, the lump solutions (see Fig. 9, 11) are
constructed by taking the long wave limit of the soli-
ton solutions of Eq. (1.1). The difference between the
line rogue wave solution and the lump solution is not
only reflected in their shapes, but also in their local-
ities, that is, the former has locality in both time and
space, while the latter only has locality in space. When
N > 2, the dynamic behaviors of Eq. (1.1) are better
described by the semi-rational solutions consisting of
the lump, the kink-shaped solitons, the line rogue wave
and the breathers (see Figs. 12, 13 and 14). Some spe-
cial constraints of the parameters play an important role
in affecting the diversity and the dynamic behaviors
of these solutions. It′s worth noting that the higher-
order kink-shaped soliton and breather solutions, the
line rogue wave solution, the RW-soliton and lump-
breather semi-rational solutions, and the hybrid solu-
tions consisting of the breather solutions, the kink-
shaped soliton solutions and the periodic solution of
Eq. (1.1) have never been reported in the previous lit-
erature. The dynamic behaviors of these solutions con-
structed in this paper also reflect the amazing ordering
caused by nonlinear actions. The research results of
this paper are helpful to the research of other (3+1)-
dimensional nonlinear evolution equations, enrich the
theory of nonlinear dynamic systems, and help explain
some nonlinear physical phenomena in nature.
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