
Nonlinear Dyn (2023) 111:15233–15261
https://doi.org/10.1007/s11071-023-08654-w

ORIGINAL PAPER

Enhancing PINNs for solving PDEs via adaptive collocation
point movement and adaptive loss weighting

Jie Hou · Ying Li · Shihui Ying

Received: 25 April 2023 / Accepted: 3 June 2023 / Published online: 4 July 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract Physics-informedneural networks (PINNs)
are an emerging method for solving partial differential
equations (PDEs) and have been widely applied in the
field of scientific computing. In this paper,we introduce
a novel adaptive PINN model for solving PDEs. The
model draws on the idea of traditional adaptive meth-
ods and incorporates the adaptive collocation point
movement method into the PINNs model. It can use
residual information from the PDE or characteristics
of the solution function itself to guide the movement of
collocation points, giving an appropriate distribution
of collocation points for specific problems, improv-
ing the predictive accuracy of the model, and avoid-
ing overfitting. Additionally, the model introduces an
adaptive loss weighting strategy, which updates adap-
tive weights continuously by minimizing negative log-
likelihood estimation to achieve adaptive weighting of
the loss function, thereby improving the convergence
rate and accuracy of the model. Finally, we conduct
extensive experiments, including the one-dimensional

J. Hou · Y. Li (B)
School of Computer Engineering and Science, Shanghai
University, Baoshan, Shanghai 200444,
People’s Republic of China
e-mail: yinglotus@shu.edu.cn

J. Hou
e-mail: houjie@shu.edu.cn

S. Ying
Department of Mathematics, School of Science, Shanghai Uni-
versity, Baoshan, Shanghai 200444, People’s Republic of China
e-mail: shying@shu.edu.cn

Poisson equation, two-dimensional Poisson equation,
Burgers equation, Klein–Gordon equation, Helmholtz
equation, and Lid-Driven problem, to demonstrate the
effectiveness and accuracy of the proposed model. The
experimental results show that the model can signifi-
cantly improve predictive accuracy and generalization
ability. The data and code can be found at https://github.
com/hsbhc/AMAW-PINN.

Keywords Physics-informed neural networks ·
PDEs · Adaptive collocation points · Loss weighting

1 Introduction

PDEs [1,2] are an important mathematical tool for
describing a variety of physical and engineering phe-
nomena, including heat conduction, soundwaves, elec-
tromagnetic waves, and fluid flow [3,4]. The applica-
tions of PDEs are extensive in natural and engineer-
ing sciences, involving numerous practical problems in
weather forecasting, astrophysics [5,6], fluid dynamics
[7,8], chemical reactions, andmaterials science, among
others [9]. However, since analytical solutions of PDEs
are usually only obtainable in special cases, numerical
methods have become the primary approach for solv-
ing PDEs. Traditional numerical methods have strict
theoretical foundations, high accuracy, and reliability
[10–12]. Nonetheless, these methods can be computa-
tionally expensive and typically require specific treat-
ment for dealing with complex problems.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08654-w&domain=pdf
https://github.com/hsbhc/AMAW-PINN
https://github.com/hsbhc/AMAW-PINN

15234 J. Hou et al.

In recent years, deep neural networks (DNNs) [13]
have become a focal point of research across nearly all
scientific and engineering domains, exhibiting remark-
able capabilities for tackling a variety of challenging
problems. In fields such as image recognition [14],
natural language processing [15], speech recognition
[16], medical image diagnosis [17], and cancer dis-
covery [18,19], DNNs have achieved substantial suc-
cess. In the field of scientific computing, DNNs also
have shown great potential in solving both forward and
inverse problems of PDEs [20,21]. Many researchers
have investigated methods for solving PDEs based
on deep neural networks, such as the deep Galerkin
method (DGM) [22], physics-informed neural net-
works (PINNs) [23], auxiliary physics-informed neural
networks (A-PINN) [24], gradient-enhanced physics-
informed neural networks (gPINNs) [25], the Deep-
ONet operator learning framework [26,27], and the
PDE-Net framework [28]. As a result, DNNs have
emerged as important tools for solving mathematical
and physical equations as well as various engineering
problems.

PINNs suggested by Raissi et al. [23] as a repre-
sentative model have been proven to be a flexible and
effective approach. In PINNs, the governing equation
of PDE is encoded as a loss function that is integrated
into the neural network architecture. By optimizing
this loss function, the governing equations are satis-
fied after training the neural network, thereby enforcing
the physical constraints of the problem. This approach
provides a flexible and computationally efficient way
to incorporate prior knowledge about physics into the
neural network training process, allowing for accurate
and robust solutions to be obtained for a wide range of
PDE problems. PINNs and their variants [29–35] have
achieved promising results in solving both forward and
inverse PDE problems, including Navier–Stokes equa-
tions [36], fractional PDEs [37], differential-integral
equations [24], stochastic differential equations [38],
high-dimensional PDEs [39], and more. Moreover,
PINNs have been applied to a range of engineering
problems and achieved significant results, including
fluid simulation [40], materials [41], thermal simula-
tion [42],medical applications [43], and geological sur-
veying [44], among others [45,46].

Despite their remarkable success, PINNs still face
challenges in solving complex problems. Therefore,
further refinement and targeted improvements are nec-
essary to enhance their adaptability to specific prob-

lems, accuracy, computational efficiency, and gener-
alization capabilities [47]. Continuous refinement and
optimization can lead to significant improvements in
the performance of PINNs and enable them to play a
more important role in a wider range of scientific and
engineering applications. Recently, researchers have
found that when the number of collection points is
insufficient, the loss function of PINNs may become
an under-constrained optimization problem, resulting
in training errors that approach zero but the solution
differs significantly from the true solution [48]. To
address this issue, the researchers proposed a novel
coupled-automatic-numerical differentiation method
(CAN-PINN), which combines automatic differentia-
tion and numerical differentiation techniques to accu-
rately solve the problem even with an insufficient num-
ber of collection points. It is worth noting that the col-
lection points in the PINNs model resemble the grid
points in traditional numerical methods, their positions
have an important impact on the performance of the
model [49].

Therefore, there have been efforts to develop adap-
tive methods for the distribution of collection points in
PINNs. Lu et al. [21] proposed a residual-based adap-
tive refinement (RAR)method that adds new collection
points to locations with high PDE residuals. Nabian et
al. [50] proposed a collection point resampling strat-
egy that resamples all residual points according to a
probability density function proportional to their PDE
residuals.Additionally,Wuet al. [49] conducted a com-
prehensive study on non-adaptive and residual-based
adaptive sampling in PINNs and proposed two unified
methods, residual-based adaptive distribution (RAD)
and residual-based adaptive refinement with distribu-
tion (RAR-D), which include the collection point sam-
pling strategies proposed in studies [51–55]. These
residual-based adaptive methods have improved the
performance of PINNs, especially in shock problems.
However, these methods only focus on the residuals
and overlook the inherent characteristics of the solution
function. They only attend to locationswith large resid-
uals,whichmay lead to an excessive number of colloca-
tion points at these locations while leaving other loca-
tions with insufficient collocation points, thus affecting
the generalization capability of the model. In addition,
these methods usually require computing the residu-
als, which increases the computational and time costs.
Therefore, more efficient and accurate methods are
needed to adapt to different types of PDE problems.

123

Enhancing PINNs for solving PDEs via adaptive collocation 15235

Currently, most research focuses on developing
residual-based adaptive algorithms, and there is little
attention paid to the role of solution characteristics in
guiding the distribution of collection points, such as
the gradient information of the solution. In traditional
adaptive methods [56,57], grid refinement or coarsen-
ing can be performed in corresponding regions based
on the error indicators,which canbe definedby the vari-
ation of the numerical solution on the grid, the gradient
of the numerical solution [58], etc. This paper draws
inspiration from traditional adaptive mesh refinement
methods and proposes a new adaptive collection point
movementmethod. Thismethod can ensure that collec-
tion points are more densely distributed in regions with
rapid changes,while being evenly distributed in smooth
regions, thereby improving the predictive accuracy of
the model, avoiding the neural network paying extreme
attention to difficult-to-fit regions, and preventing over-
fitting.

Different from previous adaptive collocation point
methods, themethod proposed in this paper that divides
collocation points into fixed and movable sets. During
the adaptive process, only movable collocation points
are updated to provide a suitable distribution of the col-
location points, and without increasing the number of
collocation points. In the proposed method, in addition
to using residual information to guide collocation point
movement, we also fully consider the characteristics of
the solution itself and design a sampling method based
on gradient information. In addition, the convergence
of PINNs models can be effectively accelerated and
their accuracy can be improved by appropriately bal-
ancing different loss terms through the use of suitable
weights [59,60]. Hence, this paper integrates the adap-
tive collection point movement method with the adap-
tive lossweighting technique proposed byKendall et al.
[61] and introduces the adaptive collection point move-
ment and adaptive loss weighting for physics-informed
neural network (AMAW-PINN) to improve the per-
formance of the model, resulting in enhanced predic-
tion accuracy, improved computational efficiency, and
increased training robustness.

The model has a wide range of extended applica-
tions for solving complex partial differential equations
and related problems in the fields of science, engineer-
ing, and applied mathematics. In particular, the model
shows significant advantages in dealing with shock
wave problems. With the model, we can obtain accu-

rate numerical solutions, which provide powerful tools
and methods for solving practical problems.

Specifically, our main contributions can be summa-
rized as follows:

• A new adaptive collection point movement method
is proposed, which can provide a suitable distribu-
tion of collection points according to the specific
problem, improving the accuracy of the model.

• The adaptive process for the collection points can
be guided by the gradient information of the solu-
tion, which is more in line with the physical char-
acteristics of the problem and has a smaller com-
putational cost.

• The utilization of adaptive loss weighting tech-
nology to balance the weight of the loss func-
tion improves prediction accuracy and convergence
rate.

The remaining parts of this paper are organized as
follows. Section2 first reviews the principle of PINNs,
then introduces in detail the proposed adaptive col-
lection point movement method and model details. In
Sect. 2.3, the principle of adaptive loss weighting tech-
nology is introduced, and it is combined with the adap-
tive collection point movement method. In Sect. 3, we
conduct a number of numerical experiments on bench-
mark problems to evaluate the efficiency and precision
of the proposed method. In Sects. 4 and 5, we discuss
the advantages of this work and summarize this work.

2 Methods

2.1 The brief overview of PINNs

In this section, we give a quick introduction to PINNs,
which are used to solve nonlinear PDEs. PINNs can
infer a continuous solution function u(x, t) based on
physical equations. Consider a general nonlinear PDE:

ut + Nx[u] = 0, x ∈ �, t ∈ [0, T],
u(x, 0) = I (x), x ∈ �,

u(x, t) = B(x, t), x ∈ ∂�, t ∈ [0, T],
(1)

where x and t represent the spatial and temporal coor-
dinates, respectively. ut is the time derivative term, and
Nx[·] is a differential operator. The aim is to find the
solution functionu(x, t)under these knownconditions.

123

15236 J. Hou et al.

Based on the original work of PINNs, we utilize a
neural network f (x, t; θ) to approximate the solution
function u(x, t), where θ denotes the set of parameters
for the neural network.Wecan express a neural network
with an input layer, L − 1 hidden layers, and an output
layer as follows:

x0 = [x, t]T ,

Ll

(
xl−1

)
= w(l)xl−1 + b(l), l = 1, . . . , L .

f (x, t; θ) = (LL ◦ · · · ◦ σ ◦ L1)
(
x0

)
, (2)

where x0 is the input vector, θ = {w(l),b(l)}Ll=1 is the
collection of weights and biases in the neural network,
◦ denotes the composition operator, and σ is the activa-
tion function. The activation function commonly used
in PINNs is the hyperbolic tangent function, denoted
as tanh(x).

Subsequently, we substitute f (x, t; θ) into Eq. (1)
and define the residual:

r(x, t; θ) := ∂

∂t
f (x, t; θ) + Nx [f (x, t; θ)] , (3)

where the partial derivatives concerning the variables
can be effortlessly obtained utilizing automatic differ-
entiation. The loss function of the PINNs model con-
sists of multiple loss components, and its general form
is expressed as:

L(θ) = λiLi (θ) + λbLb(θ) + λrLr (θ), (4)

where λi , λb, and λr are the weight parameters for
the corresponding loss terms, while Li (θ),Lb(θ), and
Lr (θ) represent the initial condition loss term, bound-
ary condition loss term, and residual loss term, respec-
tively. The specific forms of these loss terms are:

Li (θ) = 1
Ni

∑Ni
j=1

[
f
(
x j
i , 0; θ

)
− I (x j

i)
)]2

,

Lb(θ) = 1
Nb

∑Nb
j=1

[
f
(
x j
b, t

j
b ; θ

)
− B

(
x j
b, t

j
b

)]2
,

Lr (θ) = 1
Nr

∑Nr
j=1

[
r
(
x j
r , t

j
r ; θ

)]2
,

(5)

where {x j
i , I (x

j
i)}Ni

j=1 denotes the initial point data,

{(x j
b, t

j
b), B(x j

b, t
j
b)}Nb

j=1 represents the boundary point

data, and {x j
r , t

j
r }Nr

j=1 refers to the internal collocation
points, Ni , Nb, Nr are the respective number of data

points. The initial point data serves to enforce the initial
condition on the neural network, while the boundary
point data is used to ensure that the neural network sat-
isfies the boundary condition. The internal collocation
points are randomly selected coordinate points from the
domain � to compute the residual loss, which forces
the neural network f (x, t; θ) to fulfill the governing
equation. Once the training data is prepared, we can
employ gradient descent methods commonly used in
deep learning, such asAdam, SGD, or L-BFGS, to opti-
mize the neural network parameters. Byminimizing the
loss function and bringingL(θ) as close to zero as pos-
sible, we can consider the neural network f (x, t; θ)

as an approximate solution function u(x, t) for Eq. (1)
when the loss reaches a minimum value.

2.2 Adaptive collocation point movement for PINNs

The PINNs model is highly concise and efficient, and
has beenwidely applied to the solution of various PDEs
with good results. However, in some cases, the solution
obtained by PINNs may not be ideal. By observing the
form of the PINNs loss function, it can be seen that the
initial and boundary conditions belong to the labeled
learning in traditional machine learning, which is a typ-
ical supervised training. Neural networks easily con-
verge in supervised learning.However, the residual loss
term has no labels, and it is a soft constraint. This soft
constraint may lead to the neural network being unable
to optimize in the right direction when there are few
collocation points or the collocation point distribution
is unreasonable [62]. On the other hand, the importance
of each region in the computational domain is differ-
ent. In some regions, the solution function is relatively
smooth, and the neural network can easily fit it; while
in other regions, the solution function has strong non-
linearity, and more points are needed in these difficult-
to-fit regions to obtain good solution results. There-
fore, when the distribution of collocation points cannot
adapt to the specific problem, PINNs cannot provide
good solutions, especially when there are few colloca-
tion points. Therefore, a reasonable strategy for select-
ing collocation points tailored to the specific problem
is crucial, and the distribution of collocation points can
be adjusted through adaptive methods to obtain better
solution results.

In traditional numerical methods, adaptive moving
mesh technology can continuously adjust the mesh

123

Enhancing PINNs for solving PDEs via adaptive collocation 15237

Fig. 1 AM-PINN: Adaptive collocation point movement for
PINNs. PNrn is the set of fixed collocation points, which are
fixed during the model training and generated by the uniform

sampling strategy. PNrm is the set of movable collocation points
which can be dynamically changed during the training process

in regions with significant variations, refine the mesh
points during the iteration process, couple the distri-
bution of mesh points with the physical solution, and
thus improve the accuracy and resolution of the solution
without increasing the number of mesh points. In the
PINNs model framework, we do not need to consider
the issue of mesh partitioning and only need to focus
on the positions of the collocation points. Therefore,
adaptive technology can be easily introduced.

Inspired by traditional moving mesh methods, this
paper introduces adaptive moving mesh technology
into the PINNs model and proposes an iterative model
of adaptive collocation point movement PINN (AM-
PINN). This model allows the dynamic movement of
collocation points during the training process, making
the collocation points densely distributed in important
areas and uniformly distributed in regular areas, thus
finding a suitable collocation point distribution for spe-
cific problems. The AM-PINN framework is illustrated
in Fig. 1.

Specifically, we denote the initial point set as PNi ,
the boundary point set as PNb , and the set of Nr collo-
cation points as PNr . Thus,

PNr =
{
x j
r , t

j
r

}Nr

j=1
. (6)

Then, the collocation points PNr are divided into two
parts, PNrn and PNrm .

PNr = PNrn ∪ PNrm , (7)

where PNrn = {x j
rn, t

j
rn}Nrn

j=1 refers to a fixed set of collo-
cation points that remain unchanged during the model
training process. These points are generated through a
uniform sampling strategy. On the other hand, PNrm =
{x j

rm, t jrm}Nrm
j=1 represents a set of movable collocation

points that gradually aggregate to the important com-
puting areas during the training process, similar to the
grid moving process in the moving mesh method (i.e.,
gradually aggregating in regionswith large gradients of
the solution). By combining these two sets of colloca-
tion points, we can achieve adaptive movement of the
collocation points that participate in the training pro-
cess. We demonstrate the approach using a simple 2D
function, as shown in Fig. 2.

u(x, y) = 100e−10(x2+y2). (8)

Themovement ofmovable collocationpoints is achieved
by resampling this set of points during the training pro-
cess, similar to the process of grid refinement or coars-
ening in the moving mesh method based on the error
estimator. Many works [21,49] have shown that adding

123

15238 J. Hou et al.

collocation points with larger residuals can help the
PINN model converge quickly during the training pro-
cess. Therefore, some adaptive PINN training methods
that use the residual of collocation points as an error
estimator have been designed, such as RAR and RAD.
RAR requires constantly adding points with larger
residuals to the collocation point set,whileRADresam-
ples the collocation points across the entire domain
based on the residual distribution.

In contrast to previous approaches in adaptive col-
location point methods, this paper introduces a novel
adaptive collocation point movement. This method
divides the collocation points into two sets: fixed and
movable. Unlike traditional methods, where all collo-
cation points are updated during the adaptive process,
our approach focuses solely on updating the movable
collocation points. The proposed method not only uti-
lizes residual information to guide the movement of
collocation points but also takes into account the char-
acteristics of the solution itself. Firstly, we define Eq.
(9) as an indicator of the variation of the solution func-
tion.

ω =
√
1 + α|u|2 + β ‖∇u‖2 + γ

∥∥∇2u
∥∥2, (9)

where α, β, and γ are adjustable coefficients. This
formula includes the function value, gradient value,
and second-order derivative value, which is sufficient
to measure the variation of the solution in the local
area and is highly flexible. For most problems, the
commonly used gradient indicator is sufficient, which
means that we only need to set α = 0, β = 1, and
γ = 0. Thus,

ω(x) =
√
1 + ‖∇u(x)‖2. (10)

Next, we define a probability density function and
resample the movable collocation points in the compu-
tational domain based on the probability density func-
tion:

p(x) = wk(x)∑
wk(x)

, (11)

where k is a hyperparameter. p(x) becomes a uniform
distribution when k = 0, and as k increases, the sam-
pling points will be more concentrated in the high-
gradient areas.We still use the simple two-dimensional

function Eq. (8) as an example to demonstrate the effect
of the parameter k on sampling, as shown in Fig. 3.
Additionally, if we replace w(x) with the absolute
value of the collocation point residual |r(x)|, where
r(x) is calculated by Eq. (3), the gradient indicator
can be replaced by the residual indicator. In this paper,
the adaptive collocation point movement based on the
residual indicator is called RAM, while that based on
the gradient indicator is called WAM.

The movement of movable collocation points PNrm

during model training is achieved by resampling based
on the probability density function p(x), which results
in the aggregation of collocation points in important
computational areas. Additionally, fixed collocation
points PNrn ensure that collocation points are evenly
distributed in regular computational areas, prevent-
ing the model from focusing too much on difficult-
to-fit areas and ignoring smooth areas. By combining
PNrn and PNrm , collocation points can achieve adap-
tive movement, with uniform distribution in smooth
areas and dense distribution in difficult-to-fit areas,
thus adapting to specific problems and automatically
providing appropriate collocation point distributions to
improve model accuracy.

During the specific iterative training, we move the
collocation points PNrm every certain number of train-
ing iterations. A more general approach is to use the
L-BFGS optimizer for optimization, which will auto-
matically stop training after convergence, allowing for
the movement of collocation points and the start of the
next round of training.However, theL-BFGSoptimizer
is prone to falling into local minima. Therefore, in each
training round, we can first use the Adam optimizer to
optimize for a certain number of iterations to update the
parameters to appropriate initial values, and then use
the L-BFGS optimizer to converge [63]. The specific
algorithm of AM-PINN is shown in Algorithm 1. AM-
count is the number of rounds for adaptive collocation
point movement.

2.3 Adaptive loss weighting for AM-PINN

In the previous section, we introduced the AM-PINN
model in detail. In this section, to achieve automatic
weighting of the loss function, we introduce the adap-
tive loss weighting technique into AM-PINN and pro-
pose the AMAW-PINN model to further improve per-

123

Enhancing PINNs for solving PDEs via adaptive collocation 15239

Fig. 2 An example of collocation points: PNr = PNrn ∪ PNrm , Nr = 2000, Nrn = Nrm = 1000

Fig. 3 The parameter k can control the degree of concentration of sampling points, where ω(x, y) = u(x, y) and k = 0.5, 1, 2

Algorithm 1: Training for AM-PINN
Input: λi , λb, λr ,Nrn,Nrm, RAM/WAM, AM-count.
Output: θ∗

1 Initialize PNrn ,PNrm ,PNi ,PNb ;
2 for i = 0, 1, · · · , AM − count do
3 Optimize with Adam optimizer for a certain number of

iterations;
4 Train the model with L-BFGS optimizer until

convergence;
5 Calculate the probability density function p(x);
6 Move PNrm according to p(x);
7 if error < ε then
8 break;
9 end

10 end
11 return θ∗

formance. The model structure of AMAW-PINN is
shown in Fig. 4.

The loss function of AM-PINN is the same as that
of PINNs, consisting of multiple loss terms. Many
studies have shown that the loss function of PINNs
is a multi-task loss function, and balancing the differ-
ent loss terms using appropriate weights λi , λb, λr can
effectively accelerate the convergence of the PINNs
model and improve its accuracy [59,60]. It is essen-
tial to introduce the adaptive loss weighting technique
in the AM-PINN model. This technique eliminates the

tedious and time-consuming process of manually tun-
ing the loss weights. Moreover, when one round of
training AM-PINN converges, and the movable col-
location points PNrm get updated, the distribution of
the collocation points changes, resulting in a change
of the training data used to compute the residual loss
Lr (θ). Thus, AM-PINN requires constantly using an
adaptive loss balancing technique to determine appro-
priate weights λi , λb, λr that can adapt to the entire
training iteration process of the AM-PINN model.

In this paper, to balance the loss of each task, we
use the multi-task learning approach described in [61].
The homoscedastic uncertainty of each task is used to
modify the weights of the loss function. Specifically,
this method updates the adaptive weights throughmax-
imum likelihood estimation to automaticallyweight the
loss of each task. We incorporate this method into the
AM-PINNmodel and proposeAMAW-PINN. The spe-
cific adaptive weight algorithm is as follows.

First, we model the output of the neural network as
a Gaussian probability distribution:

p(u|NN (x, t, θ)) = N (u|NN (x, t, θ), σ 2), (12)

where σ is the noise parameter, representing the uncer-
tainty of the task. Assuming there are K tasks in total,

123

15240 J. Hou et al.

Fig. 4 AMAW-PINN: Adaptive loss weighting for AM-PINN. si , sb, sr are trainable adaptive parameters

we maximize the joint probability distribution of all
tasks.

p(u1, u2, ..., uK |NN (x, t, θ)) =
K∏

k=1

p(uk |NN (x, t, θ)).

(13)

Next, we take the negative logarithm of the likelihood
function to get the negative log-likelihood as the desired
loss function.

− log p(u1, u2, ..., uK |NN (x, t, θ))

= −
K∑

k=1

log p(uk |NN (x, t, θ)) (14)

= −
K∑

k=1

logN (uk |NN (x, t, θ), σ 2
k) (15)

∝
K∑

k=1

(
1

2σ 2
k

Lk + 1

2
log σ 2

k

)
. (16)

The first term in Eq. (16) represents the weighted loss
function for each task, and the second term is a regular-
ization term that penalizes tasks with high uncertainty.
Minimizing Eq. (16) is equivalent to maximizing the
joint probability distribution of all tasks, thereby adap-
tively assigning appropriate weight coefficients to each
task to balance their loss functions. Each task corre-
sponds to an uncertainty parameter σ , and if a task is

easy to learn with low uncertainty, it will be assigned
a higher weight, while a task with high uncertainty
will have its weight reduced. The regularization term
ensures that σ does not become too large and prevents
the model from ignoring difficult tasks.

In summary, the final adaptive loss function of
AMAW-PINN based on uncertainty is given by:

L(θ, σ) = 1

2σ 2
i

Li (θ) + 1

2σ 2
b

Lb(θ) + 1

2σ 2
r
Lr (θ)

+ 1

2
log σ 2

i + 1

2
log σ 2

b + 1

2
log σ 2

r , (17)

where trainable uncertainty parameters σ = σi , σb, σr
are added. During actual training, in order to avoid
the denominator becoming zero as much as possible
and since log σ 2 is more stable than σ 2, we intro-
duce trainable adaptive parameters s = {si , sb, sr },
where sk = log σ 2

k . Then, the adaptive loss function
of AMAW-PINN can be expressed as:

L(θ, s) = 1

2
e(−si)Li (θ) + 1

2
e(−sb)Lb(θ)

+ 1

2
e(−sr)Lr (θ)

+ 1

2
si + 1

2
sb + 1

2
sr (18)

∝ e(−si)Li (θ) + e(−sb)Lb(θ) + e(−sr)Lr (θ)

+ si + sb + sr . (19)

123

Enhancing PINNs for solving PDEs via adaptive collocation 15241

We use Eq. (19) as the final loss function for AMAW-
PINN. The trainable parameters s = {si , sb, sr } are
incorporated into the model, and they can be optimized
using gradient-based optimizers such as SGDorAdam,
and can have different learning rates(denoted as AW-lr)
than the network parameters θ . In comparison with the
standard PINNsmodel, λk corresponds to e(−sk). Algo-
rithm2 shows the training algorithm forAMAW-PINN.
Adam − i ters is the number of Adam optimizations
per training round.

Algorithm 2: AMAW-PINN
Input: λi , λb, λr ,Nrn,Nrm, RAM/WAM, AM-count,

Adam-iters, AW-lr.
Output: θ∗, s∗

1 Initialize the adaptive weight parameters s = {si , sb, sr };
2 Initialize PNrn ,PNrm ,PNi ,PNb ;
3 for i = 0, 1, · · · , AM − count do
4 for j = 0, 1, · · · , Adam − i ter do
5 s j+1 ← AdamL(θ j , s j);
6 θ j+1 ← AdamL(θ j , s j);
7 end
8 Train the model with L-BFGS optimizer until

convergence;
9 Calculate the probability density function p(x);

10 Move PNrm according to p(x);
11 if error < ε then
12 break;
13 end
14 end
15 return θ∗, s∗

3 Results

In this section, we consider a variety of partial dif-
ferential equations and provide a series of numerical
experiments to verify the efficacy of the proposedmeth-
ods. We use standard PINN as the baseline, and name
the adaptive collocation point movement PINN as AM-
PINN (based on residual sampling referred to as RAM
and based on gradient sampling referred to as WAM).
Additionally, we name the model with the introduction
of adaptive loss weighting as AMAW-PINN (based on

residual sampling referred to as RAM-AW and based
on gradient sampling referred to as WAM-AW). In the
WAM andWAM-AWmodels, we use a uniform gradi-
ent indicator to compute ω(x). The formula is as fol-
lows:

ω(x) =
√
1 + [ux1(x; θ)]2 + · · · + [uxn (x; θ)]2 (20)

In the RAM and RAM-AW models, the formula for
calculating ω(x) is as follows:

ω(x) =| r(x; θ) | (21)

We first study the performance of the AM-PINNmodel
on a one-dimensional Poisson equation. The results
show that the predictions given by theAM-PINNmodel
are more accurate. Then, we study the performance
of both the AM-PINN and AMAW-PINN models on
a two-dimensional Poisson equation. The experiments
not only validate the effectiveness of the AM-PINN
model but also demonstrate that the adaptive weights
can automatically balance the loss functions, improv-
ing the accuracy of the model. Next, we conduct exper-
iments on a series of benchmark examples, includ-
ing the Burgers equation, Klein–Gordon equation, and
Helmholtz equation. Finally, we use the WAM-AW
model to solve the Navier–Stokes equation in fluid
dynamics, which serves to further validate the efficacy
of our proposed model.

The prediction accuracy is measured by the rela-
tive L2 error. To compare the performance of differ-
ent models fairly, all comparative experiments are con-
ducted under the same conditions. Key parameters such
as Adam-iters (number of Adam iterations), Adam-lr
(Adam learning rate), LBFGS-iters (maximum num-
ber of L-BFGS iterations), AM-k (parameter k of the
probability density function p(x)), and AW-lr (learn-
ing rate of the adaptive weight parameter s) are kept
the same across all experiments. The values are listed
in Table 1. Table 8 shows the summary of the main
symbols and notations used in this work. PyTorch is
used to implement the neural network.

L2error =
√∑N

i=1 |̂u (xi , ti) − u (xi , ti)|2√∑N
i=1 |u (xi , ti)|2

(22)

123

15242 J. Hou et al.

Table 1 Uniform hyperparameter values

Adam-iters Adam-lr LBFGS-iters AM-k AW-lr

5000 0.001 50000 1 0.001

3.1 One-dimensional Poisson equation

Wefirst consider the one-dimensional Poisson equation
with Dirichlet boundary conditions:

{
uxx = g(x), x ∈ � = [−1, 1]
u = h(x), x ∈ ∂�

(23)

where the boundary function h(x) and forcing term
g(x) are known. We aim to solve for the function u(x)
in the domain x ∈ [−1, 1] that satisfies the Poisson
equation with Dirichlet boundary conditions.

The solution to this equation is chosen as u(x) =
0.1 sin(4πx) + tanh(50x), which exhibits a steep
change near x = 0. In this example, we utilize a fully
connected neural network f (x; θ) to approximate the
function u(x), which has four hidden layers and each
layer is composed of 20 neurons. Subsequently, the
residual of the PDE can be expressed as:

r(x; θ) := fxx (x; θ) − g(x) (24)

The loss function L(θ) is constructed using the equa-
tion and boundary conditions, and it consists of two
components:

L(θ) = λbLb(θ) + λrLr (θ) (25)

where

Lb(θ) = 1

Nb

Nb∑
j=1

[
f
(
x j
b ; θ

)
− h

(
x j
b

)]2
(26)

Lr (θ) = 1

Nr

Nr∑
j=1

[
r(x j

r ; θ)
]2

(27)

In this example, we conduct experiments using
PINN, WAM, and RAM, respectively. To better illus-
trate the positive effect of adaptive collocation point
movement on the solution accuracy, we also set up
a randomly uniform sampled Random-PINN model
by setting the probability density function parameter

k to 0. In this experiment, all neural network struc-
tures are identical, and the weights of the loss func-
tion are set to λb = 10, λr = 1. The boundary points
{x j

b }Nb
j=1, Nb = 2 are the two endpoints of the com-

putational domain, and the internal collocation points
PNr are divided into two parts, PNrn and PNrm , where
Nr = Nrn + Nrm = 60, Nrn = Nrm = 30. The
fixed collocation points PNrn are chosen as equidistant
points within the [−1, 1] interval. During the training
of PINN, we use 60 equidistant collocation points. The
training process employs the Adam optimizer with a
0.001 learning rate, and each model is optimized for
a total of 100,000 epochs. For the WAM, RAM, and
Randommodels, the collocation points PNrm aremoved
every 10,000 epochs. To compare the accuracy of dif-
ferent models, we sample 10,000 test points at equal
intervals within the [−1, 1] range and calculate the test
loss and the relative L2 error every 2,000 epochs.

The experimental results are shown in Figs. 5 and
6. Both the standard PINN and Random-PINN cannot
accurately solve the equation. They fail to fit the true
solution in the vicinity of x = 0 where the function
has large gradients. In contrast, the RAM and WAM
methods can solve the problem well, and can obtain
accurate results even near x = 0, thanks to the fact
that they move a portion of the collocation points close
to x = 0. In addition, it can be observed from Fig. 5
that after training, the residuals of the four models near
x = 0 are relatively higher compared to other regions.
Compared with PINN, the RAM and WAM models
have smaller residuals near x = 0. This fully demon-
strates that the AM-PINN can adjust the distribution of
collocation points according to specific problems, so
that the distribution of collocation points adapts to the
problem to be solved, and thereby improves the accu-
racy of solutions. Figure6 shows the testing results of
the four models during training. The relative L2 error
and residual of the standard PINN experience a phe-
nomenon of first decreasing and then increasing, which
indicates that these collocation points cannot provide
more information for training and the model suffers
from overfitting. Since the collocation points used by
Random-PINN are randomly sampled, its relative L2
error and residual fluctuate greatly. In contrast, theAM-
PINNmethod has a lower testing error and test residual,
and its residual decreases more steadily.

To further demonstrate the advantages of the AM-
PINN model, we varied the number of collocation
points. Specifically,we startwith 30 points and increase

123

Enhancing PINNs for solving PDEs via adaptive collocation 15243

Fig. 5 The solution results of the one-dimensional Poisson equation, with a total of 60 collocation points

Fig. 6 The changes in relative L2 error and test residual for the four models

123

15244 J. Hou et al.

Table 2 The one-dimensional Poisson equation: the relative L2 error of the four methods with Nr equal to 30, 50, 70, 90, and 110

Nr 30 50 70 90 110

PINN 0.2213068 0.21227087 0.00694599 0.09327888 0.00613681

Random 0.2971648 0.12158904 0.02824025 0.00277377 0.00579698

RAM 0.16465099 0.01065355 0.00446645 0.00244714 0.00439695

WAM 0.05506437 0.00188192 0.00556956 0.00348987 0.00403545

Fig. 7 The test residual and the relative L2 error of the four models as the number of collocation points varies

them by 20 at each step, up to a maximum of 110
points. In each configuration, we keep the number of
fixed and movable collocation points equal, that is,
Nrn = Nrm = 1

2Nr , while keeping other settings con-
stant. The results are presented in Table 2 and Fig. 7.
TheAM-PINN approach attains greater precision com-
pared to alternative models, both for RAM and WAM
cases. With the increase in collocation points, the dif-
ferences in accuracy among the four models become
smaller. From the testing residual in Fig. 7, the AM-
PINN method has a smaller test residual, which indi-
cates that its results are more reliable and the model
has better generalization ability.

3.2 Two-dimensional Poisson equation

Next, let us consider the following two-dimensional
Poisson equation to further test the model proposed in
this paper:

{
uxx + uyy = g(x, y), x, y ∈ � = [−1, 1]2,
u = h(x, y), x, y ∈ ∂�,

(28)

where g(x, y) and h(x, y) are known functions. We
assume that the solution to this problem has two peaks,
with the form given as:

u(x, y) = e−k[(x−x1)2+(y−y1)2] + e−k[(x−x2)2+(y−y2)2],
(29)

where the magnitude of k represents the steepness of
the function, and (x1, y1), (x2, y2) are the coordinates
of the two peaks. In this experiment, we choose k to
be 500, with the peak coordinates set as (0.5, 0.5) and
(−0.5,−0.5).

We employ a fully connected neural network,
denoted as f (x, y; θ), to approximate u(x, y). The
residual expression for this problem is as follows:

r(x, y; θ) := fxx (x, y; θ) + fyy(x, y; θ) − g(x, y)

(30)

123

Enhancing PINNs for solving PDEs via adaptive collocation 15245

(a) Absolute error for PINN (b) Absolute error for RAM (c) Absolute error for WAM

(d) Cross-sectional views for PINN (e) Cross-sectional views for RAM (f) Cross-sectional views for WAM

(g) Distribution of PNrm for PINN (h) Distribution of PNrm for RAM (i) Distribution of PNrm for WAM

Fig. 8 Two-dimensional Poisson equation: the absolute error, cross-sectional views, and distribution of movable collocation points for
PINN and AM-PINN

Following this, we formulate the loss function as fol-
lows:

L(θ) = λbLb(θ) + λrLr (θ) (31)

where

Lb(θ) = 1

Nb

Nb∑
j=1

[
f
(
x j
b , y j

b ; θ
)

− h
(
x j
b , y j

b

)]2
(32)

Lr (θ) = 1

Nr

Nr∑
j=1

[
r(x j

r , y j
r ; θ)

]2
(33)

In this example, the loss function weights are set as
λb = 100, λr = 1, and the training data configuration

is defined as Nb = 400, Nr = 2000. Specifically, 100
data points are uniformly sampled at each boundary,
resulting in a total of 400 boundary data points. Nrn and
Nrm are both chosen as 1000, with collocation points
initialized as uniformly sampled points within the com-
putational domain. The number of iteration rounds for
AM-PINN is set to 10. For testing, a 256×256 uniform
grid is used to compute the relative L2 error.

Figure8 illustrates the absolute error, cross-sectional
views, and distribution of movable collocation points
for PINN and AM-PINN. As seen in 8, the adaptive
movement of collocation points leads to their cluster-
ing in steep regions, which reduces the error of the
model. In RAM, movable collocation points are more

123

15246 J. Hou et al.

Fig. 9 The relative L2 error of the two-dimensional Poisson
problem with the number of iterative rounds

dispersed and gather in areas with larger residuals,
while in WAM, they are more densely distributed in
regions where the function is steep and uniformly dis-
tributed in other areas. Both RAM and WAM models
achieve a good approximation of the solution function.
Additionally, Fig. 9 shows the convergence curves of
AM-PINNwith iterations increases. It can be observed
that both RAM andWAMconverge quickly to minimal
error.

To further demonstrate the effectiveness of AM-
PINN, we conduct experiments with varying numbers
of collocation points. In these experiments, we change
the number of fixed collocation points while keeping
the number ofmovable collocation points constant, and
set the number of iteration rounds for AM-PINN to 5.
The experimental results are shown in Table 3, indicat-
ing that AM-PINN can achieve higher accuracy.

In previous experiments, we manually set the loss
function weights as λb = 100, λr = 1. Now, instead of
manually setting the weights, we employ an adaptive
loss weighting method to automatically learn appro-
priate weights. According to the AMAW-PINNmodel,
we modify the loss function as follows:

L(θ, s) = e(−sb)Lb(θ) + e(−sr)Lr (θ) + sb + sr (34)

where s = {sb, sr } are both initialized as 0, which is
equivalent to setting the weights to 1 in the standard
loss function. The parameters s are optimized using the
Adam optimizer with a learning rate of AW-lr = 0.001.
The number of movable collocation points is still set

as Nrm = 1000, and experiments are conducted for
Nrn = 500 and Nrn = 1000, respectively.

Figure10 presents the iteration convergence curves
for both the RAM-AW and WAM-AW models. As
seen in Fig. 10, incorporating the adaptive loss weight-
ing technique into the AM-PINN model significantly
improves the accuracy of the model and convergence
speed. As shown in Fig. 11, adaptive weights gradually
change with iterations and ultimately converge. Conse-
quently, AMAW-PINN can adaptively allocate weights
to the loss terms, which enhances the solution accu-
racy of the model. Observing Fig. 11, it can be seen
that the weight of the boundary condition is signifi-
cantly larger than the weight of the internal collocation
point residual loss, which validates the effectiveness
of the adaptive loss weighting. By employing adap-
tive weighting, the model can dynamically adjust the
weights,which enables it to focusmore on learning eas-
ier tasks while still addressing tasks with higher uncer-
tainty. This approach helps the model strike a balance
between all the tasks and optimize its performance.

The relative L2 error of the experiments is shown
in Table 4. The standard PINN cannot correctly solve
the problem when the loss function weights are set as
λb = 1, λr = 1, regardless of whether Nrn = 500 or
Nrn = 1000. However, using the adaptive collocation
point movement model can improve the accuracy by an
order ofmagnitude. The integration of adaptiveweights
in the model can further improve accuracy by another
order of magnitude. This fully validates the effective-
ness of the AMAW-PINN model, which can not only
find suitable collocation point distributions for specific
tasks but also automatically weight the loss function,
balancing the loss of each task and achieving thedesired
prediction accuracy.

Next, we give a series of benchmark numeri-
cal experiments to investigate the effectiveness and
high performance of the AMAW-PINN model. This
includes testing the performance of the proposedmodel
on shockwave problems and strongly time-dependent
problems.

3.3 Burgers equation

Initially, we examine the Burgers equation, which is
a fundamental partial differential equation in fluid
dynamics, describing the dynamics of viscous fluids
[64,65]. It exhibits shockwave behavior, making it ana-

123

Enhancing PINNs for solving PDEs via adaptive collocation 15247

Table 3 The relative L2 error of the two-dimensional Poisson equation with Nrm = 1000 movable collocation points

Nrn 500 1000 1500 3000

PINN 3.43E−01 6.18E−01 4.15E−01 2.29E−01

RAM 3.41E−02 3.35E−02 4.65E−02 6.60E−02

WAM 2.41E−02 6.29E−02 4.70E−02 5.14E−02

Fig. 10 Left: Nrn = 500, a comparison between RAM and RAM-AW models. Right: Nrn = 1000, a comparison between WAM and
WAM-AW models

Fig. 11 Left: Nrn = 500, the change in weights e(−s) for RAM-AW. Right: Nrn = 1000, the change in weights e(−s) for WAM-AW

Table 4 the relative L2 errors for various models with Nrm = 1000

Nrn 500 1000
Method PINN RAM WAM PINN RAM WAM

w/o AW 8.52E−01 1.23E−01 1.44E−01 1.30E+00 1.01E−01 1.89E−01

w/ AW 9.06E−01 2.79E−02 4.00E−02 1.00E+00 9.03E−02 4.86E−02

123

15248 J. Hou et al.

lytically challenging to solve and a research focus in the
field of nonlinear dynamics. The equation is given as
follows:

⎧
⎨
⎩
ut + uux = μuxx , x ∈ [−1, 1], t ∈ [0, 1],
u(0, x) = − sin(πx),
u(t,−1) = u(t, 1) = 0,

(35)

In this work, μ = 0.01
π

is taken. The AMAW-PINN
model is used to solve this equation with a network
structure consisting of 4 hidden layers, each with 20
neurons. The equation’s residual is defined as follows:

r(x, t; θ) := ft + f fx − 0.01

π
fxx (36)

The derivative terms in r(x, t; θ) can be obtained using
automatic differentiation. The loss function is defined
as follows:

L(θ, s) = e(−si)Li (θ) + e(−sb)Lb(θ) + e(−sr)Lr (θ)

+ si + sb + sr (37)

where

Li (θ) = 1

Ni

Ni∑
j=1

[
f
(
x j
i , 0; θ

)
+ sin(πx j

i)
]2

(38)

Lb(θ) = 1

Nb

Nb∑
j=1

[
f
(
x j
b , t jb ; θ

)]2
(39)

Lr (θ) = 1

Nr

Nr∑
j=1

[
r(x j

r , t jr ; θ)
]2

(40)

where {x j
i }Ni

j=1 represents the initial points, {x j
b , t jb }Nb

j=1

represents the boundary points, and {x j
r , t jr }Nr

j=1 repre-
sents the randomly sampled collocation points within
the computational domain.

In this experiment, we initialize si = sb = sr = 0.
The training data is composed of 100 initial points
(Ni = 100), 200 boundary points (Nb = 200) ran-
domly sampled at each of the two boundaries x = −1
and x = 1, and 2000 collocation points (Nr = 2000)
within the computational domain, with 1500 fixed col-
location points (Nrn = 1500) and 500 movable collo-
cation points (Nrm = 500). The weight parameters s
are optimized by the Adam optimizer. The total num-
ber of iteration rounds for adaptive movement is set to
10.

Figures12 and 13 show the comparison between the
predicted solutions by RAM-AW andWAM-AWmod-
els and the exact solution for the Burgers equation. The
results demonstrate that AMAW-PINN can effectively
solve Burgers equation. From Fig. 14a and b, it can be
observed that the convergence paths of the loss function
weights of RAM-AW and WAM-AWmodels are quite
similar, with the weights of the boundary and initial
conditions becoming larger. Figure14c indicates that,
compared with the standard PINN, AMAW-PINN can
achieve an error level of 10−4 using only 2000 collo-
cation points, while PINN can only reach an error level
of 10−2. Additionally, after the first training iteration,
it can be seen that the error of AMAW-PINN is larger
than that of PINN, which may be because the weights
of the loss function have not yet converged. Figure15
shows the absolute error, residual, and distribution of
movable collocation points for PINN, RAM-AW, and
WAM-AW models. RAM-AW and WAM-AW models
have smaller errors and residuals, and the movable col-
location points are concentrated at the location of the
shock.

We also conduct on the AMAW-PINN model with
varying numbers of fixed points Nrn while maintaining
a constant count of 500 movable points (Nrm = 500).
Training the model for 10 iteration rounds, the pre-
diction accuracy is assessed by computing the arith-
metic mean and standard deviation of the relative L2
errors over the final 5 iteration rounds. The results are
recorded in Table 5. WAM-AW achieves good results
when Nrn is set to 1000, 1500, and 2000, with a pre-
diction accuracy about two orders of magnitude higher
than that of the baseline model under the same con-
ditions. The RAM-AW model obtains relatively poor
results when Nrn = 1000, but achieves the best predic-
tion accuracy at Nrn = 1500 and Nrn = 2000.

3.4 Klein–Gordon equation

In the experiment on the Burgers equation, we validate
the capacity of the proposed method to handle nonlin-
ear shock problems. We further validate the ability of
AMAW-PINN to handle time-dependent problems by
considering the Klein–Gordon equation. The problem
not only provides the initial values of the solution but
also the first-order time derivative at the initial time.
The Klein–Gordon equation is the most basic equa-
tion in relativistic quantum mechanics and quantum

123

Enhancing PINNs for solving PDEs via adaptive collocation 15249

Fig. 12 The exact solution and predicted solution of Burgers equation

(a) Cross-sectional views for RAM-AW (b) Cross-sectional views for WAM-AW

Fig. 13 Predicted cross-sectional plots of Burgers equation using RAM-AW and WAM-AW

(a) The evolution of RAM-AW weights (b) The evolution of WAM-AW weights (c) Iteration convergence

Fig. 14 The weight variation of the loss function and iteration convergence curves of RAM-AW and WAM-AW for Burgers equation

field theory, and it is a nonlinear equation that plays an
important role in many scientific fields such as quan-
tum mechanics, particle physics, and nonlinear optics
[66,67]. The problem can be expressed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

utt + αu + βu + γ uk = g(x, t), x ∈ [0, 1], t ∈ [0, 1]
u(x, 0) = h1(x)
ut (x, 0) = h2(x)
u(0, t) = h3(t)
u(1, t) = h4(t)

(41)

where α, β, γ , and k are known constants, and is the
Laplacian operator acting on the spatial variable. The
parameter k indicates that this equation is k-th order

nonlinear. The functions g(x, t), h1(x), h2(x), h3(t), h4(t)
are known functions, and the function u(x, t) is the
solution to the problem. In this experiment, we choose
α = −1, β = 0, γ = 1, k = 3. The following function
is used as the solution to Eq. (41) to evaluate ourmodel:

u(x, t) = x cos(5π t) + (xt)3. (42)

The external forcing term g(x, t) and the initial and
boundary conditions h1(x),h2(x),h3(t), h4(t) can all
be obtained from Eqs. (41) to (42).

The equation is solved using the RAM-AW and
WAM-AW models, with a fully connected neural net-

123

15250 J. Hou et al.

(a) Absolute error for PINN (b) Absolute error for RAM-AW (c) Absolute error for WAM-AW

(d) Residual for PINN (e) Residual for RAM-AW (f) Residual for WAM-AW

(g) Distribution of PNrm for PINN (h) Distribution of PNrm for RAM-AW (i) Distribution of PNrm for WAM-AW

Fig. 15 Burgers equation: the absolute error, residual, and distribution of movable collocation points for PINN and AMAW-PINN

Table 5 The relative L2 error for Burgers equation when Nrm = 500

Nrn 1000 1500 2000

PINN 3.24E−02 2.25E−02 1.16E−02

RAM-AW 3.93E−01 ± 1.25E−01 3.94E−04 ±9.66E−05 4.84E−04 ±1.39E−04

WAM-AW 1.38E−03 ±4.69E−04 7.36E−04 ±2.94E−04 7.29E−04 ±2.61E−04

work f (x, t; θ) with 4 hidden layers, each containing
20 neurons, used to approximate u(x, t). The residual
of the equation is defined as follows:

r(x, t; θ) := ft t − f + f 3 − g(x, t). (43)

The various derivative terms in the equation can
be obtained using automatic differentiation. We then
define the loss function, which is given by:

L(θ, s) = e(−si)Li (θ) + e(−sit)Li t (θ) + e(−sb)Lb(θ)

+ e(−sr)Lr (θ) + si + sit + sb + sr , (44)

123

Enhancing PINNs for solving PDEs via adaptive collocation 15251

Fig. 16 The exact solution and predicted solution of Klein–Gordon equation

(a) Cross-sectional views for PINN (b) Cross-sectional views for RAM-AW (c) Cross-sectional views for WAM-AW

Fig. 17 Predicted cross-sectional views of Klein–Gordon equation using PINN, RAM-AW, and WAM-AW

(a) The evolution of RAM-AW weights (b) The evolution of WAM-AW weights (c) Iteration convergence

Fig. 18 The weight variation of the loss function and iteration convergence curves of RAM-AW and WAM-AW for Klein–Gordon
equation

where

Li (θ) = 1

Ni

Ni∑
j=1

[
f
(
x j
i , 0; θ

)
− h1(x

j
i)

]2
, (45)

Li t (θ) = 1

Nit

Nit∑
j=1

[
ft

(
x j
i t , 0; θ

)
− h2(x

j
i t)

]2
, (46)

Lb(θ) = 1

Nb

Nb∑
j=1

[
f
(
x j
b , t jb ; θ

)
− u(x j

b , t jb)
]2

, (47)

Lr (θ) = 1

Nr

Nr∑
j=1

[
r
(
x j
r , t jr ; θ

)]2
, (48)

where {x j
i }Ni

j=1 and {x j
i t }Nit

j=1 are the initial points,

{x j
b , t jb }Nb

j=1 are the boundary points, and {x j
r , t jr }Nr

j=1
are the collocation points.

In this experiment, we initialize the adaptive weight
parameters si = sit = sb = sr = 0. The training data
consist of Ni = Nit = 100 initial points, Nb = 200
boundary points, and Nr = 2000 internal collocation
points. The initial points are evenly spaced on the inter-
val [0, 1], and the boundary points consist of 100 ran-
domly sampled points on each of the two boundaries.
Among the internal collocation points, Nrn = 1500 are
fixed and Nrm = 500 are movable. The weight parame-

123

15252 J. Hou et al.

(a) Absolute error for PINN (b) Absolute error for RAM-AW (c) Absolute error for WAM-AW

(d) Residual for PINN (e) Residual for RAM-AW (f) Residual for WAM-AW

(g) Distribution of PNrm for PINN (h) Distribution of PNrm for RAM-AW (i) Distribution of PNrm for WAM-AW

Fig. 19 Klein–Gordon: the absolute error, residual, and distribution of movable collocation points for PINN and AMAW-PINN

ters s are optimized using the Adam optimizer, and the
total number of iteration rounds for adaptivemovement
is set to 10.

Figure16 shows the true solution and predicted solu-
tion by the model. Figure17 shows the predicted slices
of PINN, RAM-AW, and WAM-AW. From the exper-
imental results, we can see that both RAM-AW and
WAM-AW can correctly solve the problem. Figure18a
and b shows the changes in adaptive weights, and we
find that RAM-AWandWAM-AWhave similar trends,
with the internal residual loss having the lowest weight
after weight convergence. Figure18c shows the con-
vergence curves of the relative L2 error for RAM-AW
andWAM-AWwith iteration rounds. From the curves,
we can see that RAM-AW and WAM-AW can quickly
reach a minimum error. Figure19 shows the absolute

error, residual, and distribution of movable colloca-
tion points for PINN, RAM-AW, andWAM-AW. From
Fig. 19, we can see that the errors and residuals of
RAM-AW and WAM-AW are relatively low. Observ-
ing the distribution of movable collocation points, we
found that PNrm of RAM-AWmainly distributes in the
lower right corner, and the residual plot of the model
shows that the residual in the lower right corner is rel-
atively large. The distribution of PNrm of WAM-AW is
closely related to the gradient of the function, and it is
denser in the area with a larger gradient.

In addition, tests are conducted on theRAM-AWand
WAM-AWmodels with different fixed points Nrn and a
constant number of movable points Nrm = 500. Table
6 reports the relative L2 error and its standard deviation
for each model. The PINN model fails to learn the cor-

123

Enhancing PINNs for solving PDEs via adaptive collocation 15253

Table 6 The relative L2 error for Klein–Gordon equation with Nrm = 500

Nrn 500 1000 1500

PINN 4.88E−02 5.13E−02 1.76E−01

RAM-AW 1.02E−03 ± 2.37E−04 3.33E−03 ±7.45E−04 1.89E−03 ±2.21E−04

WAM-AW 1.30E−03 ±6.90E−04 3.21E−03 ±3.07E−04 2.20E−03 ± 3.46E−04

rect solution when Nrn = 1500. The results show that
both RAM-AW and WAM-AW achieve good results
when Nrn is set to 500, 1000, and 1500, with a predic-
tion accuracy of about 1–2 orders of magnitude higher
than the baseline model under the same conditions.

3.5 Helmholtz equation

In this section, we consider the two-dimensional
second-orderHelmholtz equation.TheHelmholtz equa-
tion is fundamental in physics, engineering, and math-
ematics, and can be used to describe various wave
phenomena, including sound waves, electromagnetic
waves, and heat conduction [68]. The equation takes
the form of:

{
u(x, y) + k2u(x, y) = q(x, y), x, y ∈ � = [−1, 1]2
u = h(x, y), x, y ∈ ∂�

(49)

where is the Laplace operator, and k is a constant.
For this problem, we can easily construct a solution as
follows:

u(x, y) = sin(a1πx) sin(a2πy) (50)

where a1 and a2 are parameters. By substituting this
solution function intoEq. (49),we can obtain the source
term q(x, y) and the boundary condition h(x, y).
q(x, y) has the following forms:

q(x, y) = −(a1π)2u − (a2π)2u + k2u (51)

In this experiment, we choose k = 1, a1 = 1, and a2 =
4.Weuse theRAM-AWandWAM-AWmodels to solve
this equation. We use a fully connected neural network
f (x, y; θ) with 4 hidden layers, each containing 20
neurons, to approximate u(x, y). The residual of the

equation is defined as follows:

r(x, y; θ) := f (x, y; θ)+ f (x, y; θ)−q(x, y) (52)

The term f can be obtained using automatic differ-
entiation. The loss function is defined as follows:

L(θ, s) = e(−sb)Lb(θ) + e(−sr)Lr (θ) + sb + sr (53)

where

Lb(θ) = 1

Nb

Nb∑
j=1

[
f
(
x j
b , t jb ; θ

)
− h

(
x j
b , t jb

)]2
(54)

Lr (θ) = 1

Nr

Nr∑
j=1

[
r
(
x j
r , t jr ; θ

)]2
(55)

where the set {x j
b , t jb }Nb

j=1 represents the boundary

points, and {x j
r , t jr }Nr

j=1 represents randomly sampled
collocation points within the computation domain.

In this experiment, we initialize the adaptive weight
parameters sb = sr = 0. The training data con-
sists of 400 boundary points and 800 interior points.
The boundary points consist of 100 randomly sampled
points on each of the four boundaries. In the interior
points, 300 points are fixed and 500 points aremovable.
We use the Adam optimizer for updating the weight
parameters s, and the total number of iteration rounds
for adaptive movement is set to 10.

Figure20 shows the true solution and the predicted
solution given by the model. Figure21 compares the
true solution and the predicted solution on the cutting
plane. The results show that RAM-AW andWAM-AW
can solve the Helmholtz equation well. From Fig. 22a
and b, we can see that the weight changes of the loss
function of RAM-AW and WAM-AW are similar, and
after convergence, theweight of the boundary condition
is much larger than that of the residual loss. Figure22c
shows that compared with the standard PINN, RAM-
AW and WAM-AW can quickly reduce the relative L2
error to around 10−3 with only 800 collocation points,

123

15254 J. Hou et al.

Fig. 20 The exact solution and predicted solution of Helmholtz equation

Fig. 21 Predicted
cross-sectional views of
Helmholtz equation using
RAM-AW and WAM-AW

(a) Cross-sectional views for RAM-AW (b) Cross-sectional views for WAM-AW

(a) The evolution of RAM-AW weights (b) The evolution of WAM-AW weights (c) Iteration convergence

Fig. 22 The weight variation of the loss function and iteration convergence curves of RAM-AW andWAM-AW for Helmholtz equation

Table 7 The relative L2 error for Helmholtz equation with Nrm = 500

Nrn 300 500 1000

PINN 3.02E−02 1.47E−02 2.36E−02

RAM-AW 1.51E−03 ± 2.81E−04 2.00E−03 ±7.26E−04 8.36E−04 ±1.48E−04

WAM-AW 1.89E−03 ±3.39E−04 1.30E−03 ±1.75E−04 9.47E−04± 3.23E−04

123

Enhancing PINNs for solving PDEs via adaptive collocation 15255

(a) Absolute error for PINN (b) Absolute error for RAM-AW (c) Absolute error for WAM-AW

(d) Residual for PINN (e) Residual for RAM-AW (f) Residual for WAM-AW

(g) Distribution of PNrm for PINN (h) Distribution of PNrm for RAM-AW (i) Distribution of PNrm for WAM-AW

Fig. 23 Helmholtz equation: the absolute error, residual, and distribution of movable collocation points for PINN and AMAW-PINN

while PINN can only achieve 10−2. Figure23 plots the
absolute error, residual, and distribution of movable
collocation points for the PINN, RAM-AW, andWAM-
AWmodels. It can be seen that the errors and residuals
of RAM-AW andWAM-AW are smaller, and the mov-
able collocation points of RAM-AW are distributed in
areas with relatively large residuals, while the movable
collocation points ofWAM-AWare distributed in areas
with larger function gradients.

In addition, we conduct tests on the RAM-AW and
WAM-AW models with different values of the fixed
points Nrn while keeping the movable points Nrm =
500 fixed. Table 7 records the relative L2 error and its
standard deviation for each model. From Table 7, we
can see that RAM-AW and WAM-AW achieve good
results when Nrn is set to 300, 500, and 1000, with

a prediction accuracy at least one order of magnitude
higher than that of the baseline model under the same
conditions.

3.6 Flow in a lid-driven cavity

Finally, we apply the proposed method to study the
Lid-Driven cavity flow problem, which is a benchmark
problem in computational fluid dynamics and has a
wide range of applications in engineering and scientific
fields. In the Lid-Driven flow [69], the upper bound-
ary of the cavity is given a fixed x-direction velocity,
while the other edges of the cavity are stationary and
do not move. The incompressible Navier–Stokes equa-
tions may be used to analyze this example and can be

123

15256 J. Hou et al.

expressed as follows:

⎧⎪⎪⎨
⎪⎪⎩

u · ∇u + ∇ p = 1
Reu, in �

∇ · u = 0, in �

u(x) = (1, 0), on �1

u(x) = (0, 0), on �2

(56)

where u(x, y) = (u(x, y), v(x, y)) is the velocity vec-
tor field, p is the scalar pressure field, and Re is the
Reynolds number. In this paper, the Reynolds num-
ber is 100. The computational domain � is a two-
dimensional cavity, where (x, y) ∈ � = [0, 1]2. �1

is the upper boundary of the cavity with a velocity of
1 in the x-direction, and �2 represents the other three
boundaries with a velocity of 0. By solving this equa-
tion, the motion state of the fluid inside the cavity, such
as the distribution of the velocity and pressure fields,
can be obtained.

In this problem, three unknownscalar functions need
to be solved: u(x, y), v(x, y), and p(x, y). Therefore,
we use a fully connected neural network f (x, y; θ)

with 5 hidden layers, each containing 20 neurons, and
3 output neurons to approximate the solution of the
problem. In this case, the neural network needs to learn
all three unknown functions simultaneously, that is,

f (x, y; θ) = (u(x, y), v(x, y), p(x, y)). (57)

Next, we express Eq. (56) in scalar form:

uux + vuy + px = 1

Re
u (58)

uvx + vvy + px = 1

Re
v (59)

ux + vy = 0 (60)

The residual is defined as:

ru(x, y; θ) := uux + vuy + px − 1

Re
u (61)

rv(x, y; θ) := uvx + vvy + px − 1

Re
v (62)

rc(x, y; θ) := ux + vy (63)

where terms (u, v, p) are outputs of the neural network,
and their derivatives can be obtained using automatic
differentiation. Then, we define the loss function for

the neural network as:

L(θ, s) = e(−sb)Lb(θ) + e(−sr)Lr (θ) + sb + sr (64)

where

Lb(θ) = 1

Nb

Nb∑
j=1

{[u(x j
b , y j

b ; θ) − u j
b)]2

+ [v(x j
b , y j

b ; θ) − v
j
b)]2} (65)

Lr (θ) = 1

Nr

Nr∑
j=1

{[ru(x j
r , y j

r ; θ)]2

+ [rv(x j
r , y j

r ; θ)]2
+ [rc(x j

r , y j
r ; θ)]2} (66)

where {(x j
b , y j

b), (u j
b, v

j
b }Nb

j=1 are the boundary data of

the velocity vector, and {x j
r , y j

r }Nr
j=1 are the interior col-

location points used for minimizing the residual.
In this experiment, the WAM-AW model is utilized

to solve the problem. The adaptive weight parameters
sb and sr are initialized to zero. The training data con-
sists of 400 boundary points and 1000 interior points,
where the former are randomly sampledwith 100points
on each of the four boundaries. Among the interior
points, 500 are fixed and the remaining 500 are mov-
able. The Adam optimizer is employed to update the
weight parameters s, and the total number of iteration
rounds for adaptive movement is set to 4.

Figure24 shows | u(x, y) |= √
u2(x, y) + v2(x, y)

the reference and the predicted velocity fields by the
PINN and WAM-AW models. From the experimental
results, it canbe seen that thePINNmodel does not fully
capture the flow velocity changes, while theWAM-AW
model successfully predicts the accurate velocity field.
Figure25a illustrates the changes in the loss function
weights, and for this problem, theweights of the bound-
ary conditions and residual terms are not significantly
different. Figure25b shows the distribution of the mov-
able collocation points in the WAM-AW model. It can
be observed that the movable collocation points are
mainly concentrated near the upper boundary, indicat-
ing that the neural network will pay more attention to
the areas with dramatic velocity changes. Therefore,
the WAM-AW model has effectively learned the solu-
tion to the problem.

123

Enhancing PINNs for solving PDEs via adaptive collocation 15257

Fig. 24 The reference solution and predicted solution of Lid-Driven problem

(a) The evolution of WAM-AW weights (b) Distribution of PNrm for WAM-AW

Fig. 25 The weight variation of the loss function, distribution of movable collocation points of WAM-AW for Lid-Driven problem

4 Discussion

In this work, we propose an AMAW-PINN model for
solving partial differential equations. We perform a
series of numerical tests, which demonstrate that the
proposed model can significantly improve generaliza-
tion ability and prediction accuracy. This work pro-
vides a new model that can adaptively offer suitable
collocation point distributions for specific problems.
Due to the introduction of adaptive lossweighting tech-
niques, the model can also adaptively allocate weights
to the loss function. The proposed model can effec-
tively solve various partial differential equations and
can well address shock wave and interface problems.
The proposed model displays significant advantages,
particularly when the number of collocation points is
limited.

Despite the promising progress made in the cur-
rent research, there are still some open questions to

be addressed. How should the number of fixed and
movable collocation points be selected when facing a
specific problem? Can residual information and gradi-
ent information be combined to provide a more suit-
able collocation point distribution for the problem?We
believe that the distribution of collocation points and
the weighting of loss terms play a crucial role in the
performance of the model. Exploring and researching
these issues can not only help us better understand the
mechanisms of models and equations but also provide
more reliable theories andmethods for key applications
in the field of scientific computing and engineering.

5 Conclusion

In this paper, we propose a novel adaptive PINN
method for solving partial differential equations, called
AMAW-PINN. Firstly, we introduce the adaptive collo-
cation point movement PINN (AM-PINN). AM-PINN

123

15258 J. Hou et al.

has the ability to autonomouslymove collocationpoints
throughout the training process, which enables dense
distribution in difficult-to-fit regions and even distri-
bution in smooth areas. This results in a suitable col-
location point distribution tailored to specific prob-
lems and improving model performance. In the AM-
PINN model, we can use common residual informa-
tion to guide the movement of collocation points. Fur-
thermore, inspired by traditional adaptive techniques,
we propose that using the characteristics of the solu-
tion function itself to guide the movement of collo-
cation points and design a gradient-based collocation
point movement method. Secondly, to achieve adaptive
weighting of the loss function, we introduce adaptive
loss weighting techniques into the AM-PINN model
and propose the AMAW-PINN model. This model can
automatically assign weights to the losses of respective
tasks based on their uncertainties, which enables adap-
tive weighting of the loss function and enhances model
convergence rate and accuracy.

To investigate the efficiency and accuracy of the
proposed method, we first conduct ablation experi-
ments on one-dimensional Poisson equations and two-
dimensional Poisson equations to verify the effective-
ness of each part of the proposed model. Subsequently,
we conduct experimental studies on Burgers equations,
Klein–Gordon equations, Helmholtz equations, and
Lid-Driven problems. The experimental results demon-
strate that the proposedmethod can improve the predic-
tion accuracy and generalization ability of the model.
It is worth noting that the current model still uses either
residual information or gradient information separately
to guide the movement of collocation points. Effec-
tively combining both to provide a more efficient col-
location point distribution will be discussed in future
research reports.

6 Nomenclature

See Table 8.

Table 8 Nomenclature Summary of the main symbols and nota-
tions used in this work

Notation Description

PINN Physics-informed neural network

PDE Partial differential equation

AM-PINN Adaptive collocation point movement for
PINN

RAM AM-PINN based on the residual indicator

WAM AM-PINN based on the gradient indicator

AMAW-PINN Adaptive loss weighting for AM-PINN

RAM-AW AMAW-PINN based on the residual indicator

WAM-AW AMAW-PINN based on the gradient indicator

u(·) Solution of a PDE

Nx [·] A linear or nonlinear differential operator

I [·] A initial condition

B[·] A boundary condition

f (·; θ) Neural network representation of the latent
PDE solution

θ All trainable parameters of a neural network

r(·; θ) Residual of PDE

Li (θ) Initial condition loss

Lb(θ) Boundary condition loss

Lr (θ) Residual loss

λi , λb, λr The weight parameters for the corresponding
loss terms

L(θ) Aggregate training loss

Ni Number of initial points

Nb Number of boundary points

Nr Number of collocation points

Nrn Number of fixed collocation points

Nrm Number of movable collocation points

PN[·] A set of points

σ An uncertainty parameter for each task

sk = log σ 2
k Trainable adaptive parameters

AM-count The number of rounds for Adaptive
collocation point movement

Adam-iters Number of Adam optimizations per training
round

LBFGS-iters Maximum number of L-BFGS optimizations
per training round

Adam-lr the Adam learning rate for Adam optimizer

AM-k Parameter k of the probability density
function p(x)

AW-lr Learning rate of the adaptive weight
parameter s

e(−s) e(−sk) corresponds to λk

123

Enhancing PINNs for solving PDEs via adaptive collocation 15259

Author contributions All authors contributed to the study con-
ception and design. The experiments, data collection, and anal-
ysis were performed by JH. The first draft of the manuscript
was written by JH, and all authors commented on previous ver-
sions of the manuscript. All authors read and approved the final
manuscript.

Funding This work is supported by the National Key Research
and Development Program of China (No. 2021YFA1003004).

Data availability The data and code can be found at https://
github.com/hsbhc/AMAW-PINN.

Declarations

Comnflict of interests The authors declare that there is no con-
flict of interest regarding the publication of this paper.

References

1. Renardy, M., Rogers, R.C.: An Introduction to Partial Dif-
ferential Equations, vol. 13. Springer, New York (2006)

2. Strauss, W.A.: Partial Differential Equations: An Introduc-
tion. John Wiley & Sons, Hoboken (2007)

3. Ricardo, H.J.: A Modern Introduction to Differential Equa-
tions. Academic Press, London (2020)

4. Murray, J.D.: Mathematical Biology: I. An Introduction.
Springer, New York (2002)

5. Mészáros, P., Fox, D.B., Hanna, C., Murase, K.: Multi-
messenger astrophysics. Nat. Rev. Phys. 1(10), 585–599
(2019)

6. Smolarkiewicz, P.K., Kühnlein, C., Wedi, N.P.: Semi-
implicit integrations of perturbation equations for all-scale
atmospheric dynamics. J. Comput. Phys. 376, 145–159
(2019)

7. Balla, C.S., Alluguvelli, R., Naikoti, K., Makinde, O.D.:
Effect of chemical reaction on bioconvective flow in oxytac-
tic microorganisms suspended porous cavity. J. Appl. Com-
put. Mech. 6(3), 653–664 (2020)

8. Lye, K.O., Mishra, S., Ray, D.: Deep learning observables
in computational fluid dynamics. J. Comput. Phys. 410,
109339 (2020)

9. Markowich, P.: Applied Partial Differential Equations: A
Visual Approach. Springer, New York (2007)

10. Zhang, Y.: A finite difference method for fractional partial
differential equation. Appl.Math. Comput. 215(2), 524–529
(2009)

11. Taylor,C.A.,Hughes,T.J., Zarins,C.K.: Finite elementmod-
eling of blood flow in arteries. Comput. Methods Appl.
Mech. Eng. 158(1–2), 155–196 (1998)

12. Eymard,R.,Gallouët, T.,Herbin,R.: Finite volumemethods.
Handb. Num. Anal. 7, 713–1018 (2000)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436–444 (2015)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classi-
fication with deep convolutional neural networks. Commun.
ACM 60(6), 84–90 (2017)

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Esti-
mation of Word Representations in Vector Space. arXiv
preprint arXiv:1301.3781 (2013)

16. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,
Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,
Q., Chen,G., et al.: Deep speech 2: end-to-end speech recog-
nition in english and mandarin. In: International Conference
on Machine Learning, pp. 173–182 (2016). PMLR

17. Cai,X., Li,X., Razmjooy,N.,Ghadimi,N., et al.: Breast can-
cer diagnosis by convolutional neural network and advanced
thermal exchange optimization algorithm. In: Computa-
tional and Mathematical Methods in Medicine (2021)

18. Guo, Z., Xu, L., Si, Y., Razmjooy, N.: Novel computer-
aided lung cancer detection based on convolutional neu-
ral network-based and feature-based classifiers using meta-
heuristics. Int. J. Imaging Syst. Technol. 31(4), 1954–1969
(2021)

19. Huang, Q., Ding, H., Razmjooy, N.: Optimal deep learning
neural network using ISSA for diagnosing the oral cancer.
Biomed. Signal Process. Control 84, 104749 (2023)

20. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid
mechanics: learning velocity and pressure fields from flow
visualizations. Science 367(6481), 1026–1030 (2020)

21. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE:
a deep learning library for solving differential equations.
SIAM Rev. 63(1), 208–228 (2021)

22. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algo-
rithm for solving partial differential equations. J. Comput.
Phys. 375, 1339–1364 (2018)

23. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys. 378, 686–
707 (2019)

24. Yuan, L., Ni, Y.-Q., Deng, X.-Y., Hao, S.: A-PINN: aux-
iliary physics informed neural networks for forward and
inverse problems of nonlinear integro-differential equations.
J. Comput. Phys. 462, 111260 (2022)

25. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-
enhanced physics-informed neural networks for forward and
inverse PDE problems. Comput. Methods Appl. Mech. Eng.
393, 114823 (2022)

26. Lu, L., Jin, P., Pang,G., Zhang, Z., Karniadakis, G.E.: Learn-
ing nonlinear operators viaDeepONet based on the universal
approximation theorem of operators. Nat.Mach. Intell. 3(3),
218–229 (2021)

27. Wang, S., Wang, H., Perdikaris, P.: Learning the solution
operator of parametric partial differential equations with
physics-informed deeponets. Sci. Adv. 7(40), 8605 (2021)

28. Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs
from data with a numeric-symbolic hybrid deep network. J.
Comput. Phys. 399, 108925 (2019)

29. Bai, Y., Chaolu, T., Bilige, S.: Solving huxley equation using
an improved PINN method. Nonlinear Dyn. 105(4), 3439–
3450 (2021)

30. Wang, S., Teng, Y., Perdikaris, P.: Understanding and miti-
gating gradient flow pathologies in physics-informed neural
networks. SIAM J. Sci. Comput. 43(5), 3055–3081 (2021)

31. Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN:
parareal physics-informed neural network for time-

123

https://github.com/hsbhc/AMAW-PINN
https://github.com/hsbhc/AMAW-PINN
http://arxiv.org/abs/1301.3781

15260 J. Hou et al.

dependent PDEs. Comput. Methods Appl. Mech. Eng. 370,
113250 (2020)

32. Pang, G., D’Elia, M., Parks, M., Karniadakis, G.E.:
nPINNs: nonlocal Physics-Informed Neural Networks for a
parametrized nonlocal universal Laplacian operator. Algo-
rithms and Applications. J. Comput. Phys. 422, 109760
(2020)

33. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks. J. Comput. Phys. 404,
109136 (2020)

34. Li, Y., Xu, L., Ying, S.: Dwnn: deep wavelet neural net-
work for solving partial differential equations. Mathematics
10(12), 1976 (2022)

35. Chen, M., Niu, R., Zheng, W.: Adaptive multi-scale neural
network with resnet blocks for solving partial differential
equations. Nonlinear Dyn. 111(7), 6499–6518 (2023)

36. Yue, J., Li, J.: The physics informed neural networks for
the unsteady Stokes problems. Int. J. Num. Methods Fluids
94(9), 1416–1433 (2022)

37. Pang, G., Lu, L., Karniadakis, G.E.: fPINNs: fractional
physics-informed neural networks. SIAM J. Sci. Comput.
41(4), 2603–2626 (2019)

38. Han, J., Jentzen, A., et al.: Deep learning-based numerical
methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations.
Commun. Math. Stat. 5(4), 349–380 (2017)

39. Lyu, L., Zhang, Z., Chen, M., Chen, J.: MIM: a deep mixed
residual method for solving high-order partial differential
equations. J. Comput. Phys. 452, 110930 (2022)

40. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: NSFnets (Navier-
Stokes flow nets): physics-informed neural networks for the
incompressible Navier–Stokes equations. J. Comput. Phys.
426, 109951 (2021)

41. Jiang, X.,Wang, D., Fan, Q., Zhang,M., Lu, C., Lau, A.P.T.:
Physics-informed neural network for nonlinear dynamics in
fiber optics. Laser Photon. Rev. 16(9), 2100483 (2022)

42. Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis,
G.E.: Physics-informed neural networks for heat transfer
problems. J. Heat Transf. 143, 6 (2021)

43. Raymond, S.J., Cecchi, N.J., Alizadeh, H.V., Callan, A.A.,
Rice, E., Liu, Y., Zhou, Z., Zeineh, M., Camarillo, D.B.:
Physics-informed machine learning improves detection of
head impacts. Ann. Biomed. Eng. 1, 12 (2022)

44. Zheng, Q., Zeng, L., Karniadakis, G.E.: Physics-informed
semantic inpainting: application to geostatistical modeling.
J. Comput. Phys. 419, 109676 (2020)

45. Bai, Y., Chaolu, T., Bilige, S.: The application of improved
physics-informed neural network (IPINN) method in
finance. Nonlinear Dyn. 107(4), 3655–3667 (2022)

46. Wen, X.-K., Wu, G.-Z., Liu, W., Dai, C.-Q.: Dynamics
of diverse data-driven solitons for the three-component
coupled nonlinear schrödinger model by the MPS-PINN
method. Nonlinear Dyn. 109(4), 3041–3050 (2022)

47. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P.,
Wang, S., Yang, L.: Physics-informed machine learning.
Nat. Rev. Phys. 3(6), 422–440 (2021)

48. Chiu, P.-H., Wong, J.C., Ooi, C., Dao, M.H., Ong, Y.-S.:
CAN-PINN: a fast physics-informed neural network based
on coupled-automatic-numerical differentiation method.
Comput. Methods Appl. Mech. Eng. 395, 114909 (2022)

49. Wu, C., Zhu, M., Tan, Q., Kartha, Y., Lu, L.: A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Comput.
Methods Appl. Mech. Eng. 403, 115671 (2023)

50. Nabian, M.A., Gladstone, R.J., Meidani, H.: Efficient train-
ing of physics-informed neural networks via importance
sampling. Computer-Aided Civil Infrastr. Eng. 36(8), 962–
977 (2021)

51. Daw, A., Bu, J., Wang, S., Perdikaris, P., Karpatne, A.:
Rethinking the Importance ofSampling inPhysics-Informed
Neural Networks. arXiv preprint arXiv:2207.02338 (2022)

52. Gao,W.,Wang, C.: Active learning based sampling for high-
dimensional nonlinear partial differential equations. J. Com-
put. Phys. 475, 111848 (2023)

53. Tang, K., Wan, X., Yang, C.: DAS-PINNs: a deep adaptive
sampling method for solving high-dimensional partial dif-
ferential equations. J. Comput. Phys. 476, 111868 (2023)

54. Zeng, S., Zhang, Z., Zou, Q.: Adaptive deep neural networks
methods for high-dimensional partial differential equations.
J. Comput. Phys. 463, 111232 (2022)

55. Hanna, J.M., Aguado, J.V., Comas-Cardona, S., Askri, R.,
Borzacchiello, D.: Residual-based adaptivity for two-phase
flow simulation in porous media using Physics-informed
Neural Networks. Comput. Methods Appl. Mech. Eng. 396,
115100 (2022)

56. Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke,
J., Chan, C., Day, M., Friesen, B., Gott, K., Graves, D.,
et al.: Amrex: a framework for block-structured adaptive
mesh refinement. J. Open Sourc. Softw. 4(37), 1370–1370
(2019)

57. Berger,M.J., Oliger, J.: Adaptivemesh refinement for hyper-
bolic partial differential equations. J. Comput. Phys. 53(3),
484–512 (1984)

58. Díez, P., Huerta, A.: A unified approach to remeshing strate-
gies for finite element h-adaptivity. Comput. Methods Appl.
Mech. Eng. 176(1–4), 215–229 (1999)

59. McClenny, L., Braga-Neto, U.: Self-adaptive Physics-
Informed Neural Networks Using a Soft Attention Mech-
anism. arXiv preprint arXiv:2009.04544 (2020)

60. Xiang, Z., Peng,W., Liu, X., Yao,W.: Self-adaptive loss bal-
anced physics-informed neural networks. Neurocomputing
496, 11–34 (2022)

61. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using
uncertainty to weigh losses for scene geometry and seman-
tics. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7482–7491 (2018)

62. Subramanian, S., Kirby, R.M., Mahoney, M.W., Gho-
lami, A.: Adaptive Self-Supervision Algorithms for
Physics-Informed Neural Networks. arXiv preprint
arXiv:2207.04084 (2022)

63. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed
neural networks for high-speed flows. Comput. Methods
Appl. Mech. Eng. 360, 112789 (2020)

64. Bateman,H.: Some recent researches on themotion of fluids.
Monthly Weather Rev. 43(4), 163–170 (1915)

65. Basdevant, C., Deville, M., Haldenwang, P., Lacroix, J.,
Ouazzani, J., Peyret, R., Orlandi, P., Patera, A.: Spectral and
finite difference solutions of the Burgers equation. Comput.
Fluids 14(1), 23–41 (1986)

123

http://arxiv.org/abs/2207.02338
http://arxiv.org/abs/2009.04544
http://arxiv.org/abs/2207.04084

Enhancing PINNs for solving PDEs via adaptive collocation 15261

66. Wazwaz, A.-M.: New travelling wave solutions to the
Boussinesq and the Klein–Gordon equations. Commun.
Nonlinear Sci. Numer. Simulat. 13(5), 889–901 (2008)

67. Caudrey, P., Eilbeck, J., Gibbon, J.: The sine-Gordon equa-
tion as a model classical field theory. Il Nuovo Cimento B
25(2), 497–512 (1975)

68. Nédélec, J.-C.: Acoustic and Electromagnetic Equations:
Integral Representations for Harmonic Problems, vol. 144.
Springer, New York (2001)

69. Bruneau, C.-H., Saad,M.: The 2D lid-driven cavity problem
revisited. Comput. Fluids 35(3), 326–348 (2006)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

	Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting
	Abstract
	1 Introduction
	2 Methods
	2.1 The brief overview of PINNs
	2.2 Adaptive collocation point movement for PINNs
	2.3 Adaptive loss weighting for AM-PINN

	3 Results
	3.1 One-dimensional Poisson equation
	3.2 Two-dimensional Poisson equation
	3.3 Burgers equation
	3.4 Klein–Gordon equation
	3.5 Helmholtz equation
	3.6 Flow in a lid-driven cavity

	4 Discussion
	5 Conclusion
	6 Nomenclature
	References

