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Abstract The dual-memristor hyperchaotic map has

not yet received much attention and application, and

its complexity and flexibility deserve further improve-

ment. To this end, a novel two-dimensional hybrid

dual-memristor (HDM) hyperchaotic map with com-

plexity enhancement is constructed by connecting two

different discrete memristors through self-feedback

and sinusoidal transformation. The considered map

has line invariant points related to the initial condi-

tions of the discrete memristor, and it is Lyapunov

stable or unstable. Taking the coupling strengths,

memristor parameters, and initial conditions as tun-

able parameters, complex dynamical behaviors are

investigated by numerical methods, including special

bifurcation modes, a plethora of strange attractors,

hyperchaotic attractors, and multi-stability behaviors.

In particular, the performance evaluation of strange

attractors with different topological structures is

performed, and the complexity enhancement charac-

teristic of the hyperchaotic attractor is confirmed by

excellent dynamical performance indicators. In addi-

tion, without affecting the dynamical performance, the

flexibility of the HDMmap is effectively improved by

switching control. Afterward, the pseudo-random

number generator and image encryption strategy are

proposed based on the hyperchaotic sequences

generated by the HDM map to improve its practical

application value. The proposed encryption strategy

fully utilizes the high randomness, complexity, and

flexibility of the hyperchaotic sequences, exhibiting

remarkable applicability and robustness in encrypting

both typical color and non-typical grayscale images.

Comprehensive analyses, including histogram, corre-

lation, and information entropy analyses, as well as

differential, data loss, and noise attacks, are conducted

to thoroughly evaluate the performance of the encryp-

tion strategy. The results indicate that the strategy

achieves superior encryption effectiveness and high

security. Finally, a microcontroller-based digital cir-

cuit experiment platform is developed for verifying

the numerical results.

Keywords Dual-memristor map � Hyperchaos �
Strange attractors � Multi-stability � Complexity

enhancement � Image encryption

1 Introduction

As a nonlinear circuit element that describes the

relationship between charge and magnetic flux, the

memristor has promoted the development of various

fields since it was proposed and manufactured [1, 2],

such as nonlinear systems, neuromorphic computing,

secure communication, and prediction classification

[3–6]. In particular, because of the inherent internal
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state variables and excellent nonlinear characteristics,

memristors instead of traditional nonlinear terms to

construct nonlinear systems not only conform to the

practical physical significance but also can induce

more abundant dynamical behaviors [7, 8]. Specifi-

cally, utilizing nonlinear memristors to simulate the

electromagnetic radiation and the neural synapse, Lin

et al. [9, 10] proposed five-dimensional and eight-

dimensional memristive Hopfield neural network

models, which exhibit complex hyperchaotic behav-

iors. Then, the performance of hyperchaotic sequences

was verified through image encryption experiments.

Moreover, Ding et al. [11] investigated the chaotic

dynamics and multi-stability phenomena of a six-

dimensional memristive coupled tabu learning neuron

model with electromagnetic radiation, and the ran-

domness of the model was tested in voice encryption.

However, high-dimensional models of memristive

systems require expensive and complex computational

resources, and the resulting hyperchaotic and chaotic

behaviors often exhibit relatively low complexity.

Especially when implementing these behaviors on

some finite precision devices, the influence of noise

and measurement errors can lead to degradation

phenomena in low-complexity chaos [12–14], directly

affecting the performance and application effects of

these nonlinear systems. On the other hand, using

diverse prediction techniques such as echo state

networks [15], long short-term memory neural net-

works [16], and temporal convolutional networks [17]

can accurately reproduce the evolution process of

these chaotic or hyperchaotic sequences. However,

this does not completely guarantee the security of

chaos-based image encryption and secure communi-

cation, nor the effectiveness in chaos-based signal

detection. Therefore, implementing high-complexity

hyperchaotic phenomena with low-dimensional mod-

els is crucial for extending the wide application of

memristive systems or maps and is also the main

motivation behind this paper. Compared with contin-

uous memristors, discrete memristors are promising to

solve these significant challenges mentioned above

because the discrete memristive map can produce

more complex chaotic or hyperchaotic behaviors in

the case of lower dimensions and has higher compu-

tational efficiency [18, 19]. Therefore, it is valuable

and exciting work to construct the novel discrete

memristor map and enhance the complexity of

dynamical behavior.

For the above purpose, the tremendous ideal

discrete memristors are proposed [20, 21], which

show complex nonlinear characteristics and are also

consistent with the three essential feature fingerprints

of the memristor [22]. Significantly, the memristive

hyperchaotic map increases the complexity of the

dynamical behavior to a certain extent and produces

diversified applications. It is worth noting that the

memristive mapping model can generate complex

hyperchaotic attractors in only two dimensions, while

the continuous-time system requires at least four

dimensions. Specifically, Bao et al. [23] improved the

complexity of the traditional Logistic map by intro-

ducing a discrete memristor model, which shows

critical stability and hyperchaotic behaviors. Lai et al.

[24] constructed a two-dimensional (2-D) memristive

Gaussian mapping model based on a sinusoidal

memristor and generated hidden hyperchaotic attrac-

tors. Of course, the hyperchaotic attractors were also

found in 2-D memristive Lozi, Hénon, and Tent maps,

which have high randomness [5, 25–28]. Among

them, a general 2-D memristive mapping model based

on a cosinusoidal memristor was proposed in [5],

which could enhance complexity and also achieve

amplitude-controlled characteristics. In particular,

there are also relevant reports on enhancing the

complexity of maps utilizing nonlinear transformation

[29–31], in which the map based on sinusoidal and

logarithmic transformation can show more complex

dynamical behavior. To our knowledge, the above

memristive maps are generated by coupling a discrete

memristor and a traditional map. In a nutshell, whether

the map composed of only discrete memristors has

excellent dynamical performance and how to enhance

its complexity is a problem worthy of further consid-

eration and a new research hotspot.

Very recently, the universal 2-D single-memristor

hyperchaotic map was proposed in [32], and the

hyperchaotic behaviors and coexisting multi-stability

phenomena were found in four specific maps. Based

on [32], by introducing two identical discrete mem-

ristors, a 3-D parallel dual-memristor hyperchaotic

map was constructed in [33], and the extreme multi-

stability related to the initial conditions was studied.

Similarly, some high-dimensional memristive map-

ping models were proposed by cascade, parallel, and

composite operations and applied to pseudo-random

number generators (PRNGs) in [34]. Although the

memristive maps presented in [33, 34] can produce
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hyperchaotic behaviors, the dimension is higher and

does not show the novel amplitude-controlled and

offset-boosted dynamical behaviors described in

[5, 29, 32, 35], that is, the flexibility is low. It can

also be found that these maps rarely consider the

coupling between two different types of discrete

memristors, and the hyperchaotic dynamical behavior

has not been enhanced and applied in image encryp-

tion. In general, it is significant to develop hyper-

chaotic maps with simple algebraic structures by

composing different discrete memristors. Similarly,

enhancing the complexity and flexibility of these maps

will make outstanding contributions to improving the

practical value of engineering applications based on

hyperchaos.

Driven by the problems mentioned above, a novel

2-D hybrid dual-memristor (HDM) hyperchaotic map

with excellent complexity is proposed in this paper,

which connects two different discrete memristors in

parallel through self-feedback and sinusoidal trans-

formation as in [31]. The innovation and main

contributions of this paper are summarized as follows.

(1) A novel 2-D HDM hyperchaotic mapping model

with line invariant points is proposed, which is very

different from the model in [33]. The highlight is that

the mapping model takes into account two different

discrete memristors and can enrich the dynamical

behavior and enhance the complexity. (2) The com-

plicated bifurcation mechanisms and the coexisting

multi-stability of the HDM map are analyzed, and the

strange attractors with different topological structures

induced by parameters are disclosed. The comparison

results of dynamical performance show that the

hyperchaotic sequences generated by the considered

map have excellent complexity enhancement charac-

teristics, and the PRNG test results also confirm that

the sequence has high randomness. (3) The switching

control strategy of the HDM map is investigated,

which realizes the amplitude-controlled and offset-

boosted characteristics of the hyperchaotic sequences,

and proves the application value of the map in image

encryption experiments.

The research is divided into three parts: modeling,

dynamical analysis, and two applications, as shown in

the schematic diagram in Fig. 1. Specifically, Part 1

presents the modeling process, which explains the

structure of the proposed HDM map with complexity

enhancement. In Part 2, the dynamical analysis is

introduced, including the detailed steps of stability

analysis, numerical simulation, evaluation of com-

plexity enhancement, and digital circuit experimental

verification. Furthermore, the applications of hyper-

chaotic sequences in PRNG and image encryption are

paid more attention to in Part 3.

The remainder of the paper is arranged as follows.

In Sect. 2, a novel 2-D HDM hyperchaotic map is

proposed by combining two different memristors and

sinusoidal transformation. In Sect. 3, numerical sim-

ulations reveal the bifurcation mechanism, strange

attractor behavior, and coexisting multi-stability of the

HDM map. In Sect. 4, the complexity enhancement

characteristic of the HDM map is proved, the PRNGs

are designed, and the digital circuit implementation

experiments are performed. In Sect. 5, the flexible

switching control for hyperchaotic sequences is

investigated and applied to image encryption. Finally,

Sect. 6 concludes the paper.

2 The 2-D hybrid dual-memristor hyperchaotic

mapping model

This section proposes a 2-D HDM hyperchaotic

mapping strategy based on sinusoidal transformation

and establishes its simplified mathematical model. At

the same time, we analyze in detail the stability of the

invariant points that depend on parameters and initial

conditions.

2.1 Description of discrete memristor

Due to the unique nonlinearity and iterative mecha-

nism, discrete memristors play an essential role in

constructing hyperchaotic maps. The continuous

memristor can be converted into a discrete memristor

by the forward Euler method [20] and the backward

differential theory [21]. Therefore, an ideal charge-

controlled discrete memristor model can be described

by

vn ¼ M qnð Þin;
qnþ1 ¼ in þ hqn;

�
ð1Þ

where vn, in, and qn are the n-th iteration values of

voltage v tð Þ, current i tð Þ, and charge q tð Þ in the

continuous memristor; qnþ1 is the (nþ 1)-th iteration

value and h represents the iteration step size, usually

set to 1. Specifically, since the 2-D HDM hyperchaotic
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map has different discrete memristor models, accord-

ing to [32], two types of DMmodels can be established

by

vn ¼ q2n � a
� �

in;
qnþ1 ¼ in þ qn;

�
ð2Þ

and

vn ¼ qnj j � bð Þin;
qnþ1 ¼ in þ qn;

�
ð3Þ

wherein the model described in Eq. (2) is called a

quadratic discrete memristor (QDM), while Eq. (3)

represents an absolute discrete memristor (ADM). As

can be seen from Eqs. (2) and (3), the quadratic and

absolute functions represent the nonlinear character-

istics of discrete memristors, and the change of their

internal state qn makes them have a special memory

effect. To demonstrate the essential characteristic

fingerprints of the two discrete memristors, a ¼ b ¼ 1

is fixed, and the discrete bipolar periodic signal I ¼
0:1 sin xnð Þ A is chosen as the current excitation,

where x is the angular frequency (rad/s) and n

represents the n-th iteration.When the initial condition

of two discrete memristors is q0 ¼ 0 C, the output

characteristics on the in � vn plane present a hysteresis

loop across the origin and the lobe area shown in

Fig. 2a and c gradually decreases as x increases.

Fig. 1 Schematic diagram of the research in this paper

(a) (b)

(c) (d)/ Ani

/V
nv

Fig. 2 Pinch hysteresis loops of two discrete memristors with

I ¼ 0:1 sin xnð ÞA. aCharacteristics of QDM varying withx for

q0 ¼ 0 C. bMulti-stable characteristics of QDMvarying with q0
forx ¼ 0:03 rad/s. cCharacteristics of ADMvarying withx for

q0 ¼ 0 C. dMulti-stable characteristics of ADMvarying with q0
for x ¼ 0:03 rad/s
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Surprisingly, when x is set to 0.03 rad/s, multiple

types of pinch hysteresis loops induced by different

initial conditions are shown in Fig. 2b and d, which

also confirm that the two discrete memristors are

multi-stable.

2.2 Complexity enhancement strategy

and mathematical model of HDM map

To enhance the complexity of the existing dual-

memristor maps, a general complexity enhancement

strategy based on sinusoidal transformation is pro-

posed, and a novel HDM hyperchaotic mapping model

containing two different discrete memristors is con-

structed. Inspired by [31], the general novel complex-

ity enhancement structure of the dual-memristor map

is shown in Fig. 3.

In Fig. 3, two different charge-controlled discrete

memristors are coupled in parallel and have the same

input xn. Significantly, the memristance M1 qnð Þ and

M2 qnð Þ are enhanced by the sinusoidal transformation,

which makes the model and the generated hyper-

chaotic sequence more complex. Then, the enhanced

signal is converted into the output iteration value xnþ1

by the sum function, which is fed back to the input port

to perform the next iteration. Therefore, according to

Fig. 3, a general novel HDM hyperchaotic mapping

model with complexity enhancement can be modeled

by

xnþ1 ¼ k1 sin M1 qnð Þxnð Þ þ k2 sin M2 qnð Þxnð Þ;
qnþ1 ¼ xn þ qn;

(
ð4Þ

where k1 and k2 are the coupled coefficients. In fact,

the HDM mapping model should be three-dimen-

sional, but because the change of charge qn in the ideal

discrete memristors is described by the same algebraic

structure as shown in Eqs. (2) and (3), to make the

model simpler and improve computational efficiency,

Eq. (4) considers that the change of charge qn is the

same, which can also exhibit intricate dynamical

behaviors. It is worth explaining that the HDM

mapping model is suitable for coupling any two types

of discrete memristors.

After substituting QDM and ADM represented by

Eqs. (2) and (3) into Eq. (4), respectively, a specific

HDM mapping model can be derived as

xnþ1 ¼ k1 sin q2n � a
� �

xn
� �

þ k2 sin qnj j � bð Þxnð Þ;
qnþ1 ¼ xn þ qn:

(

ð5Þ

When Eq. (5) is modulated by coupling strengths

(k1 and k2) and memristor parameters (a and b), it can

exhibit abundant dynamical behaviors and generate

more complex hyperchaos sequences.

2.3 Line invariant point and its stability analysis

For nonlinear discrete maps, the linear analysis

method based on small perturbation is often used to

explore the stability of invariant points. Assume that

the invariant point of the HDM mapping model (5) is

S ¼ xeq; qeq
� �

and when small perturbations Dxn ¼
xn � xeq and Dqn ¼ qn � qeq are added to S, respec-

tively, Eq. (5) can be converted into

xeq þ Dxnþ1 ¼ F1 xeq þ Dxn; qeq þ Dqn
� �

;

qeq þ Dqnþ1 ¼ F2 xeq þ Dxn; qeq þ Dqn
� �

;

(
ð6Þ

where F1 �ð Þ and F2 �ð Þ are the right-hand expressions of
Eq. (5). When the trajectory is zoomed into an

infinitely small area near S, the nonlinear interaction

can be ignored, and Eq. (6) can be approximated

linearly by

xeq þDxnþ1

qeq þDqnþ1

" #
�

F1 xeq
� �

F2 qeq
� �

" #

þ

oF1

oxn
oF2

oxn

oF1

oqn
oF2

oqn

2
664

3
775 xn¼xeq

qn¼qeq

���� Dxn
Dqn

" #
:

ð7Þ

Because xeq ¼ F1 xeq
� �

and qeq ¼ F2 qeq
� �

, Eq. (7)

is equivalent to

Fig. 3 General novel complexity enhancement structure of the

dual-memristor map
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Dxnþ1

Dqnþ1

" #
� JS

Dxn
Dqn

" #

¼

oF1

oxn
oF2

oxn

oF1

oqn
oF2

oqn

2
664

3
775 xn¼xeq

qn¼qeq

���� Dxn
Dqn

" #
; ð8Þ

where JS is the Jacobian matrix of S. Therefore, the

stability of the HDM map is related to small pertur-

bations and can be judged by the eigenvalues of the

characteristic equation of JS. Specifically, S ¼ 0; gð Þ
can be calculated from Eq. (5), which indicates that

the HDM map has an infinite number of line invariant

points. Meanwhile, the expression of JS at S ¼ 0; gð Þ
can also be obtained by

JS ¼ k1 g2 � að Þ þ k2 gj j � bð Þ 1

1 1

� �
: ð9Þ

The corresponding characteristic polynomial can

be derived as

det kI � JSð Þ ¼ k� 1ð Þ k� k1 g2 � a
� �

þ k2 gj j � bð Þ
� �� �

:

ð10Þ

Therefore, the eigenvalue of JS can be solved as

k1 ¼ 1; k2 ¼ k1 g2 � a
� �

þ k2 gj j � bð Þ: ð11Þ

According to the stability theory of discrete systems

[36], since k1j j ¼ 1 is constant, S can only be

unstable ( k2j j[ 1) and Lyapunov stable ( k2j j � 1),

that is, critically stable. For initial condition-depen-

dent stability, because g in Eq. (11) is separable, the

stability region of S can be determined by g, and it

should be noted that the parameters used for analysis

are greater than 0. Let D1 ¼ k22 þ 4k1 ak1 þ bk2 þ 1ð Þ
and D2 ¼ k22 þ 4k1 ak1 þ bk2 � 1ð Þ, when S is Lya-

punov stable, g need to meet

g2 k2�
ffiffiffiffiffiffi
D1

p

2k1

�k2þ
ffiffiffiffiffiffi
D1

p

2k1

� �
, for ak1þbk2�1

g2 k2�
ffiffiffiffiffiffi
D1

p

2k1

k2�
ffiffiffiffiffiffi
D2

p

2k1

� �
[ �k2þ

ffiffiffiffiffiffi
D2

p

2k1

�k2þ
ffiffiffiffiffiffi
D1

p

2k1

� �
. for ak1þbk2[1

8>>><
>>>:

ð12Þ

Otherwise, S is unstable.

For parameters-dependent stability, when g ¼ 0:1,

a ¼ 1, and b ¼ 1 are fixed, k2j j corresponding to each

parameter set (k1, k2) can be calculated according to

Eq. (11) by setting k1 2 1 : 0.005:2:5½ � and

k2 2 �1 : 0.005:1½ �. Therefore, the stability distribu-

tion of S related to coupling strengths is shown in

Fig. 4a, where the Lyapunov stable region presents a

triangular shape filled with dark gray, and the yellow

region represents the unstable. Similarly, When k1 ¼
1:5 and k2 ¼ 0:8 are fixed, k2j j corresponding to (a, b)
can also be obtained with a 2 �5 : 0:02 : 5½ � and

b 2 0 : 0.02:10½ �. Figure 4b shows the stable distribu-

tion of S related to memristor parameters on the 2-D

parameter plane and has a tilted Lyapunov stable re-

gion. As we can see, the cyan dotted line in Fig. 4

represents the boundary condition calculated by

Eq. (11), which can clearly distinguish the Lyapunov

stable region from the unstable region.

In summary, the stability of the HDM mapping

model (5) can be controlled by coupling strengths,

memristor parameters, and initial conditions, resulting

in complex dynamical behaviors in the

unstable region.

3 Dynamical analysis by numerical methods

Based on the stability analysis, this section studies the

coupling strength-induced and memristor parameter-

induced bifurcation mechanisms, as well as the

coexisting multi-stability induced by initial condi-

tions. Various strange chaotic/hyperchaotic attractors

are excavated through dynamical analysis techniques,

which have high complexity. In addition, the numer-

ical simulations are performed in MATLAB, and the

total number of iterations is 25,000. To eliminate the

transient effect of the state trajectories, the first 10,000

data points are discarded.

3.1 Parameter-induced complex dynamical

behaviors

To distinguish various dynamical behaviors in the

HDM map, the relevant bifurcation parameters are

mapped to the 2-D parameter space, and the 2-D

bifurcation diagram filled with different colors can be

obtained by calculating the period number of the

corresponding state trajectories for each set of param-

eters. In addition, the 2-D Lyapunov exponent (LE)

spectrum can be used to confirm different dynamical

behavior distributions depicted by the 2-D bifurcation

diagram.
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Specifically, when the memristor parameters are set

to a; bð Þ ¼ 1; 1ð Þ, the coupling strength-induced 2-D

bifurcation diagram and LE spectrum on the k1 � k2
plane are given, as shown in Fig. 5, where k1 2 1; 2:5½ �
and k2 2 �1; 1½ �. It is worth mentioning that the LE of

the HDM map is calculated using the QR decompo-

sition method [37] for each set of bifurcation param-

eter adjustments. The identification of chaotic and

hyperchaotic behaviors is accomplished by accurately

counting the number of positive LEs. Specifically,

chaos is characterized by one positive LE while

hyperchaos requires at least two positive LEs. More-

over, if all LEs are non-positive, the resulting dynam-

ical behaviors are classified as periodic and further

distinguished into different periods based on the cycle

number of peaks. For Fig. 5a, the hyperchaos (HC)

with two positive LEs is filled with red, the chaos (CH)

with one positive LE and one negative LE is filled with

yellow, and the quasi-period (QP) with a zero LE is

filled with magenta. In addition, for periodic oscilla-

tions with two negative LEs, the stable point (SP), the

period-2 to period-8 (P02, P04, P06, and P08), and the

Fig. 4 Stability distribution diagram of S on 2-D parameter plane for g ¼ 0:1. a Stability of S related to coupling strengths (k1 and k2)
for a ¼ 1 and b ¼ 1; b Stability of S related to memristor parameters (a and b) for k1 ¼ 1:5 and k2 ¼ 0:8

Fig. 5 For x0; q0ð Þ ¼ 0:1; 0:1ð Þ and a; bð Þ ¼ 1; 1ð Þ, the coupling strength-induced dynamical behaviors on the k1 � k2 plane with

k1 2 1; 2:5½ � and k2 2 �1; 1½ �. a 2-D bifurcation diagram; b 2-D LE spectrum
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multi-period (MP) attractors are marked by other

colors, respectively. Of course, the divergence behav-

iors (DI) are represented by light gray. For the 2-D LE

spectrum shown in Fig. 5b, the greater the LE value of

the state xn, the darker the color, and the LE spectrum

corresponds precisely to the dynamical behaviors

depicted in Fig. 5a.

For k1; k2ð Þ ¼ 1:5; 0:8ð Þ, the memristor parameter-

induced bifurcation behaviors are visualized in Fig. 6,

where a 2 �5; 5½ � and b 2 0; 10½ �. Similarly, ten

dynamical behaviors appear in the 2-D bifurcation

diagram shown in Fig. 6a and are labeled with the

same colors as Fig. 6a. Of course, Fig. 6b indicates

that the 2-D LE spectrum also accurately matches the

2-D bifurcation diagram. Figures 5 and 6 disclose that

coupling strengths and memristor parameters can

affect the HDM mapping model (5) to generate

diverse dynamical behaviors. It should be noted that

the stability distribution of Figs. 5 and 6 is slightly

different from that of Fig. 4, which is caused by k1j j ¼
1 and further illustrates the diversified dynamical

evolutions of the map.

3.2 Bifurcation mechanisms and strange attractor

The evolution process of different dynamical behav-

iors can be characterized in detail by the 1-D

bifurcation diagram and LE spectrum controlled by

the coupling strengths and memristor parameters,

from which various strange attractors with different

topological structures can be captured. For the sake of

convenience, the dynamical behaviors driven by k1,

k2, a, and b are defined as Case 1 with

k1; k2; a; bð Þ ¼ k1; 0:1; 1; 1ð Þ, Case 2 with

k1; k2; a; bð Þ ¼ 1; k2; 1; 1ð Þ, Case 3 with

k1; k2; a; bð Þ ¼ 1:5; 0:8; a; 4ð Þ, and Case 4 with

k1; k2; a; bð Þ ¼ 1:5; 0:8; 0:2; bð Þ, respectively. There-

fore, Fig. 7 reveals different bifurcation mechanisms

of four cases, and Fig. 8 visualizes the typical strange

attractors.

For Case 1, when the bifurcation interval of the

control parameter k1 is set to k1 2 1:5; 2:1½ �, the

bifurcation diagram of the HDM map and the corre-

sponding LEs are shown in Fig. 7a. As k2 increases,

the state trajectory (x, q) first switches from period-2

bifurcation for k1 2 1:5; 1:65½ � to a quasi-periodic

bifurcation with zero LE for k1 2 1:65; 1:78½ �, then
from period-4 bifurcation for k1 2 1:78; 1:87½ � to a

hyperchaotic domain with two positive LEs for k1 2
1:87; 2:05½ � via a narrower period-8 bifurcation, and

finally degenerates into a stable point attractor.

Meanwhile, the above-mentioned dynamical behav-

iors can be verified by comparing the bifurcation

diagram at the top and LE at the bottom in Fig. 7a. In

addition, several typical parameter-driven hyper-

chaotic (k1 ¼ 2:05 and k1 ¼ 2), period-4 (k1 ¼ 1:85),

period-8 (k1 ¼ 1:8), and quasi-periodic (k1 ¼ 1:7)

attractors with different topological structures are

visualized by the phase diagram in Fig. 8a1–a5.

For Case 2, when the bifurcation parameter k2 is set

to k2 2 0:6; 1:5½ �, the bifurcation diagram and LE

spectrum varying with k2 are shown at the top and

Fig. 6 For x0; q0ð Þ ¼ 0:1; 0:1ð Þ and k1; k2ð Þ ¼ 1:5; 0:8ð Þ, the memristor parameter-induced dynamical behaviors on the a� b plane

with a 2 �5; 5½ � and b 2 0; 10½ �. a 2-D bifurcation diagram; b 2-D LE spectrum
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bottom of Fig. 7b. It can be seen from Fig. 7b that the

trajectory transits from period-2 to quasi-periodic

bifurcation at k2 ¼ 0:92 and enters period-4 bifurca-

tion at k2 ¼ 1:07. Furthermore, the considered map

also contains a small chaotic domain for

k2 2 1:21; 1:23½ �, and the hyperchaotic domain with

a narrow periodic window is located in

k2 2 1:23; 1:31½ � [ 1:33; 1:44½ �. Meanwhile, typical

strange attractors with different shapes representing

different bifurcation stages are also measured from

Fig. 8b1–b5.

For Case 3, as the memristor parameter a increases

in a 2 �1:8; 1:8½ �, it can be seen that when a 2
�0:44;�0:2½ � [ 1:51; 1:8½ � and a 2 �0:2; 0:6½ �[

0:66; 1:51½ �, the HDM map can generate more com-

plex chaotic and hyperchaotic behaviors in an exten-

sive range, respectively, and their first LE value is

larger than the first two cases, as shown in Fig. 7c. Of

course, various periodic behaviors are distributed in

a 2 �1:8;�0:44½ � [ 0:6; 0:66½ �. According to Fig. 7c,

several strange attractors induced by a are shown in

Fig. 8c1–c5, such as spiral hyperchaotic (a ¼ 1:2),

period-5 (a ¼ 0:7), and symmetric chaotic attractors

(a ¼ �0:2) with two segments.

For Case 4, Fig. 7d shows the bifurcation diagram

and LE spectrum related to the memristor parameter b

with b 2 2; 5:3½ �. When b 2 3:24; 3:36½ �[
3:51; 4:38½ � [ 4:44; 5:21½ �, the HDM map is leading

(b)(a)

(c) (d)

Fig. 7 1-D bifurcation diagram and LE spectrum corresponding

to the four cases with x0; q0ð Þ ¼ 0:1; 0:1ð Þ. a Case 1 with

k1; k2; a; bð Þ ¼ k1; 0:1; 1; 1ð Þ; b Case 2 with

k1; k2; a; bð Þ ¼ 1; k2; 1; 1ð Þ; c Case 3 with

k1; k2; a; bð Þ ¼ 1:5; 0:8; a; 4ð Þ; d Case 4 with

k1; k2; a; bð Þ ¼ 1:5; 0:8; 0:2; bð Þ
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to hyperchaos because both LEs are positive, and

chaos appears in b 2 2:96; 3:24½ � [ 3:36; 3:51½ � with
only one positive LE. Unlike Case 3, with the change

of b, period-6 behavior occurs for the first time and is

located in b 2 2:28; 2:62½ �. Similarly, symmetric

hyperchaotic (b ¼ 5), chaotic with hollow (b ¼ 3:4

and b ¼ 3:2), quasi-periodic (b ¼ 2:7), and period-6

(b ¼ 2:6) attractors are depicted in Fig. 8d1–d5.

As a result, compared with Fig. 7, the HDM map

has larger chaotic and hyperchaotic intervals driven by

a and b, and the maximum LE exceeds 0.5, which is

almost not achieved in the related memristive maps.

At the same time, slight variations in parameters can

induce complex bifurcation behaviors and strange

attractors with different topologies, which also indi-

cate that the control parameters affect the HDM map

to generate abundant dynamical behaviors, as shown

in Fig. 8.

3.3 Local basin of attraction and coexisting multi-

stability

Another novel dynamical behavior is coexisting multi-

stability that can be reflected by the local basin of

attraction induced by the initial conditions. Since the

Lyapunov stable and unstable regions of the HDM

map.are related to the initial condition q0 according to

Eqs. (11) and (12), the 3-D local basins of attraction

labeled can be obtained by calculating the periodic

number and LEs for four cases, as shown in Fig. 9.

Then, the initial conditions (x0 2 �2; 2½ � and

q0 2 �2; 2½ �) are taken as the x-axis and y-axis, while

the parameters (k1 2 1:7; 2½ � for Case 1, k2 2 1:2; 1:5½ �
for Case 2, a 2 �0:5; 1:5½ � for Case 3, and b 2 3; 5½ �
for Case 4) represent the z-axis. From the z-axis

direction in Fig. 9, the color distribution intervals are

approximately consistent with the dynamical behavior

distribution intervals of four cases depicted in Fig. 7,

so the HDM map has strong robustness to changes in

1 2.05k

2 1.43k 2 1.35k 2 1.23k

HCH HCH P04 P08 QP
(a1) (a2) (a3) (a4) (a5)

HCH HCH CH P04 QP
(b1) (b2) (b3) (b4) (b5)

CH HCH P05 HCH CH
(c1) (c2) (c3) (c4) (c5)

HCH CH CH QP P06
(d1) (d2) (d3) (d4) (d5)

x

q

1 2k 1 1.85k 1 1.8k 1 1.7k

2 1.1k 2 1k

1.7a 1.2a 0.7a 0.6a 0.2a

5b 3.4b 3.2b 2.7b 2.6b

Fig. 8 Visualization of strange attractors with different

topologies for x0; q0ð Þ ¼ 0:1; 0:1ð Þ. a Case 1 with

k1 ¼ 2:05; 2; 1:85; 1:8; and 1:7; b Case 2 with

k2 ¼ 1:43; 1:35; 1:23; 1:1; and 1; c Case 3 with

a ¼ 1:7; 1:2; 0:7; 0:6; and � 0:2; d Case 4 with

b ¼ 5; 3:4; 3:2; 2:7; and 2:6
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initial conditions. However, the x0 � q0 planes of

Fig. 9 corresponding to each k1, k2, a, and b show

different dynamical distributions, that is, the signifi-

cantly different basins of attraction, indicating that the

HDM map is multi-stable.

To reveal the essence of coexisting multi-stability

and the robust performance of hyperchaotic/chaotic

sequences, considering Case 4 as a representative, two

central symmetric local basins of attraction are shown

in Fig. 10 by selecting two sections in Fig. 9d. When

b ¼ 5 is fixed for Case 4, Fig. 10a shows the

coexisting bi-stability of periodic points marked in

blue and hyperchaotic behaviors marked in red on the

x0 � q0 plane. However, for b ¼ 3:4, the bi-stability

phenomenon in Fig. 10b is different from that of

b ¼ 5, because the HDM map exhibits yellow-labeled

chaos and periodic points. Since most regions on the

x0 � q0 plane are attractive to hyperchaos and chaos

and there is no unbounded phenomenon, the HDM

map shows strong robustness and ergodicity for initial

conditions.

Since Sect. 2.3 indicates theoretically that the

stability of the HDM map depends on q0, the

bifurcation diagram driven by q0 with x0 ¼ 0:1 is

reflected in Fig. 11. The bifurcation interval of the

point attractors in Fig. 11a is

Fig. 9 3-D local basins of attractor for four cases with x0 2
�2; 2½ � and q0 2 �2; 2½ �. a k1 2 1:7; 2½ � for Case 1 on the x0 �
q0 � k1 plane; b k2 2 1:2; 1:5½ � for Case 2 on the x0 � q0 � k2

plane; c a 2 �0:5; 1:5½ � for Case 3 on the x0 � q0 � a plane; d
b 2 3; 5½ � for Case 4 on the x0 � q0 � b plane
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q0 2 �1:75;�1:35½ � [ 1:24; 1:46½ �, and the remaining

parameter domains represent hyperchaotic behavior

with two positive LEs. In addition, when b changes to

3.4, the point attractors are distributed in

q0 2 �1:55;�1:03½ � [ 0:93; 1:22½ �, and the remaining

parameter domains represent chaotic attractors with a

positive LE, as shown in Fig. 11b. As depicted in

Fig. 11, the bifurcation intervals occupied by chaos

and hyperchaos are wide, and their LE values are

uniformly distributed, proving the strong robustness of

chaos and hyperchaos. However, the theoretically

calculated Lyapunov stable domains are q0 2

�1:6319;�1:2404½ � [ 1:2404; 1:6319½ � for b ¼ 5 and

q0 2 �1:3920;�0:9240½ � [ 0:9240; 1:3920½ � for

b ¼ 3:4, respectively, which are slightly different

from the parameter domain of the stability point. The

reason is also that the Lyapunov stability defined by

k1j j ¼ 1 is a critical stable state. The above analysis

manifests that the HDM map has extremely compli-

cated coexisting multi-stability phenomena, and the

generated chaos and hyperchaos are robust to changes

in initial conditions.

Fig. 10 2-D local basins of attractor for Case 4 with x0 2 �2; 2½ � and q0 2 �2; 2½ �. a b ¼ 5; b b ¼ 3:4

Fig. 11 Bifurcation diagram driven by q0 with x0 ¼ 0:1. a b ¼ 5; b b ¼ 3:4
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4 Complexity enhancement analysis and PRNG

test

This section analyzes the complexity of strange

attractors generated by the HDM map from a quan-

titative perspective, and the complexity enhancement

performance of hyperchaotic sequences is compre-

hensively compared. In addition, pseudo-random

number generators (PRNGs) are designed and tested

to verify the high randomness of hyperchaotic

sequences.

4.1 Dynamical performance analysis of strange

attractors

It can be seen from Sect. 3.2 that the qualitative

analysis reveals the complex evolution mechanism of

strange attractors, but a variety of dynamical perfor-

mance indicators can quantitatively measure the

performance of attractors, which is the key to

complexity analysis. Therefore, for the HDM map,

comprehensive dynamical performance indicators of

typical strange attractors in four cases, such as LE,

spectral entropy (SE), permutation entropy (PE),

sample entropy (SampE), information entropy (IE),

C0 complexity (C0), and correlation dimension

(CorDim), are calculated and summarized in Table 1.

Please note that to obtain reliable conclusions, the

iteration step size of the numerical simulation in this

section is set to 110,000, and the first 10,000 data

points are discarded.

According to the analysis for Table 1, the hyper-

chaotic attractors induced by four parameters have two

positive LEs, which are larger than those of chaotic

and periodic attractors, indicating that the hyper-

chaotic sequences have more complicated character-

istics. Meanwhile, the normalized SE shows that

hyperchaotic attractors are more similar to random

signals than chaotic and periodic attractors, especially

0.9333 and 0.9494 for a ¼ 1:2 and b ¼ 5, respec-

tively. In particular, in the comparisons of PE, SampE,

and C0, it can also be found that all the hyperchaotic

attractors, especially when a ¼ 1:2 in Case 3, have

superior dynamical performance. However, IE values

of hyperchaotic and chaotic attractors are closer to 8,

representing more information, that is, the higher the

uncertainty. Finally, by comparing the CorDim value,

it can be concluded that the fractal characteristics of

hyperchaotic/chaotic attractors are more complex than

the periodic behaviors. Therefore, the greater the

dynamical performance indicators of the strange

attractors, the higher the randomness of the corre-

sponding time series and the more complicated the

oscillation form.

Although the four hyperchaotic attractors in Table 1

have excellent dynamical performance, their struc-

tures and iterative sequences are different, as shown in

Fig. 12. Importantly, to test and verify that the

Table 1 Dynamical performance indicators of typical strange attractors in four cases

Cases Parameters Attractors LE1, LE2 SE PE SampE IE C0 CorDim Q

Case 1 2 Hyperchaos 0.2369, 0.1252 0.9175 3.6687 1.0447 7.9838 0.1750 1.9313 2.0104

1.85 Period-4 - 0.0066, - 0.0067 0.1461 2.6325 0.4055 3.8611 0.0025 0.0000 0.8793

1.7 Quasi-period 0.0000, - 0.2440 0.0048 2.6549 0.4175 7.9848 0.0001 1.0065 1.4781

Case 2 1.43 Hyperchaos 0.3271, 0.0167 0.8337 3.5275 0.8615 7.9844 0.5622 1.7826 1.9870

1.23 Chaos 0.0679, -0.0021 0.2835 2.6125 0.2620 7.9861 0.0165 1.5920 1.6023

1.1 Period-4 - 0.2383, - 0.4827 0.1461 1.3863 0.4055 2.0838 0.0024 0.0000 0.4129

Case 3 1.2 Hyperchaos 0.5791, 0.0603 0.9333 5.3748 1.2147 7.9881 0.9738 2.6247 2.4686

0.7 Period-5 - 0.0316, - 0.0316 0.1544 2.2479 0.0000 2.8065 0.0096 0.0000 0.6444

-0.2 Chaos 0.2230, - 0.0127 0.872 3.1394 0.6477 7.9865 0.1444 1.3648 1.7957

Case 4 5 Hyperchaos 0.6369, 0.0372 0.9494 5.2512 1.2947 7.9858 0.9918 1.7348 2.3602

3.2 Chaos 0.1755, - 0.0212 0.8560 3.0793 0.7134 7.9852 0.1149 1.6377 1.8176

2.6 Period-6 - 0.1097, - 0.2635 0.0000 1.7918 0.0000 1.8086 0.0000 0.0000 0.4034

The bold indicates that the dynamical performance of the hyperchaos is optimal in each case
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proposed map has complexity enhancement charac-

teristics, it is necessary to evaluate the hyperchaotic

attractors comprehensively. Therefore, the average

value of the eight performance indicators is defined as

Q and described by

Q¼ LE1 + LE2 + SE + PE + SampE + IE + C0 + CorDim

8
:

ð13Þ

According to the comprehensive evaluation of the

Q value in Table 1, the hyperchaotic attractor corre-

sponding to a ¼ 1:2 in Case 3 depicted in Fig. 12a3

and b3 has better dynamical performance than other

hyperchaotic attractors and is worth further compar-

ison and application. It is worth mentioning that the

distribution of Q values in the k1 � k2 and a� b

parameter plane corresponds exactly to the dynamical

distributions depicted in Figs. 5 and 6, which can be

explained by the Q-value spectrum shown in Fig. 13.

Specifically, under the inducement of adjustable pa-

rameters, as the periodic behavior switches to more

complex hyperchaotic behavior, the Q values increase

and approach yellow color, indicating an increase in

the complexity of strange attractors. Consequently, the

Q-value spectrum can reflect the dynamical perfor-

mance of strange attractors, which is beneficial for

exploring various high-performance hyperchaotic

attractors.

4.2 Complexity enhancement of hyperchaotic

sequences

To emphasize the complexity enhancement of the

proposed HDM map, the comparisons and analyses of

the dynamical performance indicators between the

excellent hyperchaotic sequence corresponding to a ¼
1:2 in Case 3 and other chaotic/hyperchaotic

sequences generated by multiple maps are performed.

The maps used for comparisons are the MTMmap [5],

STB map [31], QDM map [32], Bao’s map1 [33],

Bao’s map2 [33], Lai’s map [38], NDMH map [39],

Hénon map [40], and Lozi map [41]. At the same time,

each map is set as the optimal parameters to ensure the

fairness of the results, and comprehensive dynamical

performance indicators are summarized in Table 2.

According to the indicators in Table 2, except for

LE2, the hyperchaotic attractor generated by the

proposed map exhibits the best dynamical perfor-

mance, especially the values of LE1, PE, and CorDim.

Specifically, compared with the QDM and NDMH

maps constructed by only a single discrete memristor,

the HDM map considering two discrete memristors

can significantly promote the dynamical complexity.

Particularly important is that the 3-D Bao’s map1 and

Bao’s map2 are also constructed by two identical

memristors, while the proposed HDM map is 2-D and

contains two different memristors. However, the

proposed map can generate more fascinating hyper-

chaotic sequences and enhance the complexity of

Fig. 12 Phase points and iterative sequences of hyperchaotic attractors generated by the HDM map for four cases. (a1, b1) k1 ¼ 2 for

Case 1; (a2, b2) k2 ¼ 1:43 for Case 2; (a3, b3) a ¼ 1:2 for Case 3; (a4, b4) b ¼ 5 for Case 4
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Bao’s map1 and Bao’s map2 by the sinusoidal

transformation in the case of lower dimension, which

is of great significance and value. In addition, it can be

seen from Table 2 that the complexity enhancement

performance of the HDM map is more satisfactory

than that of the STB map and Lai’s map, which also

use sinusoidal transformation. By coupling the dis-

crete memristor and the traditional map, the MTM

map can generate good hyperchaotic sequences, but its

complexity is lower than that of the proposed map,

which can be evaluated by the values of Q. Finally,

two traditional maps can only generate chaotic

attractors with one positive LE and one negative LE.

In contrast, the proposed map can generate two

positive LEs, and the value of LE1 is the largest.

Ultimately, compared with the maps using different

construction methods, the hyperchaotic sequence

generated by the HDM map has the characteristics of

complexity enhancement, which can be widely

applied in chaos-based engineering fields, such as

secure communication and image encryption.

4.3 Design and test of PRNGs

Hyperchaos is often applied to image encryption and

other fields as the pseudo-random number (PRN), so

Fig. 13 Q-value spectrum shown on the 2-D parameter plane with x0; q0ð Þ ¼ 0:1; 0:1ð Þ. a For a; bð Þ ¼ 1; 1ð Þ, k1 2 1; 2:5½ � and
k2 2 �1; 1½ �; b For k1; k2ð Þ ¼ 1:5; 0:8ð Þ, a 2 �5; 5½ � and b 2 0; 10½ �

Table 2 Dynamical performance indicators of different maps

Maps Parameters LE1, LE2, LE3 SE PE SampE IE C0 CorDim Q

Proposed map (1.5, 0.8, 1.2, 4) 0.5791, 0.0603 0.9333 5.3748 1.2147 7.9881 0.9738 2.6247 2.4686

MTM map [5] (- 0.6, 1.78) 0.3211, 0.1549 0.8686 4.1488 1.0870 7.9854 0.6795 1.7559 2.1251

STB map [31] (1.9, 0.6) 0.3270, 0.0852 0.8087 3.8525 1.0517 7.9843 0.4675 1.7244 2.0377

QDM map [32] 1.78 0.2672, 0.0921 0.9226 3.4495 0.9503 7.9841 0.1781 1.6324 1.9345

Bao’s map1 [33] (0.86, 0.86) 0.1782, 0.1057,

0.0000

0.8854 3.6910 0.8734 7.9853 0.0913 1.6975 1.9385

Bao’s map2 [33] (0.9, 0.9) 0.2898, 0.0003,

0.0028

0.9257 2.4582 0.2369 7.9691 0.1466 0.9355 1.6203

Lai’s map [38] (- 0.1, 2.12, - 0.85, 0.1) 0.2908, 0.0514 0.7327 3.4494 0.9352 7.9870 0.3479 1.6093 1.9255

NDMH map [39] (1.5,- 1,0.04,0.5,1.72,1) 0.1896, 0.0648 0.5585 3.7274 0.9357 7.9853 0.1761 2.1525 1.9739

Hénon map [40] (1.4, 0.3) 0.4203, -1.6243 0.9319 3.6511 0.8838 7.9868 0.8382 1.2058 1.7867

Lozi map [41] (1.7, 0.5) 0.4717,-1.1644 0.9124 3.8398 1.0182 7.9861 0.7701 1.3893 1.9028
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the design of PRNG and the randomness test of PRN

are critical. Therefore, this section mainly studies the

application performance of the HDMmap in PRNG by

the NIST SP800-22 suite.

Taking Case 3 and Case 4 as examples, two

hyperchaotic sequences with superior dynamical per-

formance are defined as XCase3 ¼
x 1ð Þ; x 2ð Þ; � � � x nð Þ; � � �f g with a ¼ 1:2 and XCase4 ¼
x 1ð Þ; x 2ð Þ; � � � x nð Þ; � � �f g with b ¼ 5. When each x nð Þ

in XCase3 and XCase4 is converted to a 52-bit binary

stream xB nð Þ according to the IEEE 754 binary

floating point number standard, by selecting the 37th

to 44th bits in the mantissa of xB nð Þ, two PRNGs can

be constructed as

PCase3 ið Þ ¼ xB ið Þ37:44;
PCase4 ið Þ ¼ xB ið Þ37:44:

(
ð14Þ

Therefore, each PRNG in Eq. (14) can generate an

8-bit binary PRN related to the original hyperchaotic

sequence in an iteration process. At this time, 120 sets

of PRN test samples can be obtained through

14,999,999 iterations, and the sample length is 106.

Finally, with the help of NIST SP800-22 containing 15

test items, a strict randomness test experiment is

performed, and the randomness of the PRNGs is

measured according to the P value (P� valueT ) and

the pass rate. When P� valueT � 0:0001, PRN is

uniformly distributed [42]. In addition, for PRNs with

a sample size of 120, when the significance level is set

to a ¼ 0:01, the minimum PRN pass rate can be

calculated as 0.9628 by

p̂� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ
120

r
; ð15Þ

where p̂ ¼ 1� a. Therefore, the test results of PRNs

generated by two PRNGs are counted in Table 3,

where the subtest with an asterisk represents the

average value. Since the corresponding P� valueT
and pass rate of PRNGs for Case3 and Case4 are

greater than 0.0001 and 0.9628, respectively, it is

demonstrated that the PRNs have passed the strict

randomness test. In a word, PRNG tests show that

hyperchaotic sequences generated by the HDM map

have high randomness and application prospects.

4.4 Digital circuit experimental verification

It is well known that digital circuits play an important

role in map-based engineering [5, 24]. To verify

Table 3 NIST SP800-22

test results for two PRNGs
No. Statistical tests PRNG for Case3 PRNG for Case4

P-valueT Pass rate P-valueT Pass rate

� 0:0001 � 0:9628 � 0:0001 � 0:9628

01 Frequency 0.4528 1.0000 0.1703 1.0000

02 Block Frequency 0.5009 0.9833 0.3505 1.0000

03 Cum. Sums (Forward) 0.6198 1.0000 0.6890 1.0000

Cum. Sums (Backward) 0.2430 1.0000 0.6890 0.9917

04 Runs 0.7728 0.9833 0.8486 0.9833

05 Longest Run 0.6890 0.9917 0.9320 0.9833

06 Rank 0.2993 0.9833 0.1005 0.9917

07 FFT 0.0106 0.9917 0.5174 0.9833

08 Non-Ovla. Temp.* 0.4735 0.9899 0.5350 0.9912

09 Ovla. Temp 0.6890 1.0000 0.9705 0.9750

10 Universal 0.8195 1.0000 0.4220 0.9667

11 Appr. Entropy 0.1481 1.0000 0.9573 0.9917

12 Ran. Exc.* 0.3871 0.9941 0.4215 0.9863

13 Ran. Exc. Var.* 0.5275 0.9913 0.4960 0.9855

14 Serial(1st) 0.5009 0.9917 0.2873 0.9667

Serial(2nd) 0.7565 1.0000 0.7887 0.9833

15 Linear Complexity 0.3242 0.9833 0.7399 1.0000

Success Count 15/15 15/15 15/15 15/15
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various strange attractors presented in the numerical

methods, especially the hyperchaotic attractors, it is

essential to develop a digital circuit experimental

platform for the HDM map. The proposed digital

circuit experimental platform consists of a high-

performance STM32F407ZGT6 development board

with a 32-bit ARM Cortex-M4 processor, 168 MHz

main frequency, 1024 KB embedded Flash and

192 KB embedded SRAM functions, a dual-channel

16-bit DAC8563 module for digital-to-analog conver-

sion, a high-precision oscilloscope YOKOGAWA

DL850E, and some peripheral circuits, as shown in

Fig. 14. According to the HDM model (5) and the

relevant parameters we are concerned with in Fig. 8,

an iterative program based on C language is written

and executed in the microcontroller to generate the

corresponding digital signals. Subsequently, the dig-

ital signals corresponding to the state variables are

converted into analog voltages through the DAC8563

module and accurately captured by the scopecorder. It

is worth noting that the range of the two channels of

the DAC8563 is specified as - 10 V to 10 V, and at

the same time, it is decomposed into 2 V/div in the

oscilloscope, so that the voltage values corresponding

to each channel can be obtained directly.

Through the digital circuit implementations of the

HDM map under different parameters, abundant and

accurate experimental results are displayed in Fig. 15.

By comparing the strange attractors depicted in

Figs. 15 and 8, it clearly turns out that the developed

microcontroller-based digital circuit platform for the

HDM map can accurately reproduce the results of the

numerical methods. That is to say, the effectiveness of

the numerical results and the practicability of the

HDM map are manifested.

5 Flexible switching control and application

in image encryption

To promote the flexibility and verify the practical

application value of the proposed map, this section

mainly studies the flexible switching control of the

HDM map and the application of the hyperchaotic

sequence after switching control in image encryption.

5.1 Flexible switching control of hyperchaotic

sequences

In addition to complexity enhancement and random-

ness, the flexibility of hyperchaotic sequences cannot

be ignored for practical engineering applications.

Although some memristive discrete maps with sinu-

soidal or cosinusoidal memductance can achieve non-

destructively offset-boosted switching, the flexibility

is not high due to the lack of amplitude-controlled

characteristics. Inspired by [35], the variable substi-

tution is used to make the HDMmap have both offset-

boosted and amplitude-controlled characteristics.

Assuming that the amplitude-controlled factors are a
and b, and the offset-boosted factors are c and d, the
flexible switching control of the HDM map can be

realized after setting xn ¼ a~xn þ c and qn ¼ b~qn þ d,
where ~xn and ~qn are the switched sequences. There-

fore, the HDM map can be transformed into

a~xnþ1 ¼ k1 sin b~qn þ dð Þ2�a
	 


a~xn þ cð Þ
	 


þ k2 sin b~qn þ dj j � bð Þ a~xn þ cð Þð Þ � c;

b~qnþ1 ¼ b~qn þ a~xn þ c:

8>><
>>:

ð16Þ

For b; c; dð Þ ¼ 1; 0; 0ð Þ and a; b; dð Þ ¼ 1; 1; 0ð Þ,
taking the hyperchaotic sequence x corresponding to

a ¼ 1:2 in Case 3 as an example, according to

Eq. (16), the amplitude-controlled characteristics

related to a and the offset-boosted characteristics

related to c are depicted in Fig. 16. As shown in

Fig. 16a1, as a increases, the amplitude of the iteration

Fig. 14 A microcontroller-based digital circuit experimental

platform for the HDM map
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sequence ~x decreases proportionally, and the corre-

sponding phase point on the ~x� ~q plane in Fig. 16a2

shrinks along the x-axis, which demonstrates that a can
control the amplitude of ~x arbitrarily. However, as c
varies, since the hyperchaotic sequence ~x and the

phase points depicted in Fig. 16b1 and b2 are switched

with offset fixed to 5 and the ~x keeps the amplitude

difference unchanged, the offset-boosted characteris-

tics related to c are verified. When the control

parameters are set to a 2 1; 5½ � and c 2 �10; 10½ �,
respectively, the magenta bifurcation points in

Fig. 16a3 and b3 display a shrinking and tilting trend,

respectively, while that of the state ~q depicted by the

brown bifurcation points is not affected. That further

indicates that flexible and independent switching

control can be achieved by adjusting a and c. It is
emphasized that Fig. 16a4 and b4 reveals the influence

mechanism of control factors on dynamical perfor-

mance. Except for the slight change of the C0 value,

other dynamical performance indicators show a

stable fluctuating straight line, indicating that the

switching control hardly changes the incomparable

dynamical performance of the original hyperchaotic

sequences.

It should be noted that the flexible switching control

for ~q can be executed via b and d, which can yield the

same conclusions. Therefore, through switching con-

trol, the hyperchaos sequences generated by the HDM

map have high flexibility and can be flexibly applied to

various engineering fields without changing the

dynamical performance.

5.2 Application in image encryption

Since the hyperchaotic sequence generated by the

HDM map has high complexity, randomness, and

flexibility, it can be used as a pseudo-random sequence

to enhance the security of image encryption. This

section proposes an image encryption scheme based

Fig. 15 Verification results of the microcontroller-based digital

circuit platform for the HDM map with x0; q0ð Þ ¼ 0:1; 0:1ð Þ. a
Case 1 with k1 ¼ 2:05; 2; 1:85; 1:8; and 1:7; b Case 2 with

k2 ¼ 1:43; 1:35; 1:23; 1:1; and 1; c Case 3 with

a ¼ 1:7; 1:2; 0:7; 0:6; and � 0:2; d Case 4 with

b ¼ 5; 3:4; 3:2; 2:7; and 2:6
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on the HDM map, and the experimental results are

discussed in detail.

5.2.1 Image encryption scheme design

Considering the lack of a diffusion process in [9, 10], a

novel encryption strategy is introduced in detail,

which mainly includes plain image input, hyper-

chaotic sequence generator, permutation, hybrid dif-

fusion, substitution, and cipher image output

processes, as shown in Fig. 17. Please note that the

encryption process will be illustrated using the

encryption of a color image as an example.

(1) Plain image input: Input a plain color image P

with size M 	 N 	 3, and decompose it into

three pixel matrices of red PR, green PG, and

blue PB with sizeM 	 N. Next, PR is taken as a

representative to illustrate the rest of the

encryption process.

(2) Hyperchaotic sequence generator: Generate key

sequences to encrypt the plain image P. By

switching control based on the HDM map, the

security of image encryption is enhanced

because the control factors (a, b, c and d)
enlarge the secret key space and can generate

hyperchaotic key sequences with arbitrary

amplitude and offset. Therefore, after M 	 N

iterations, the hyperchaotic sequence generator

can output three different pseudo-random key

sequences (K1, K2 and K3), which are described

as

K1 ¼ x;

K2 ¼ mod floor xþ qð Þ=2ð Þ 	 1015
� �

; 256
� �

;

K3 ¼ mod floor x	 1015
� �

; 256
� �

;

8><
>:

ð17Þ

where mod x; 256ð Þ represents the remainder of

x dividing by 256, while floor xð Þ is the nearest
integer less than or equal to x.

(3) Permutation: To reduce the correlation of pix-

els, PR is converted into a row vector with size

1	 L, and permutated according to the index of

K1 in ascending order. The process is described

as

P1
R 1; jð Þ ¼ PR index K1 1; jð Þð Þð Þ; ð18Þ

where j ¼ 1; 2; . . .; L and L ¼ M 	 N.

(4) Hybrid diffusion: A hybrid diffusion scheme in-

cluding forward, row-column association, and

backward diffusions is designed and only needs

to perform one round. If the diffused pixel

matrices are defined as P2
R, P

3
R and P4

R, respec-

tively, the forward diffusion process is imple-

mented by

Fig. 16 Performance of flexible switching control for the HDM map. (a1-a4) For b; c; dð Þ ¼ 1; 0; 0ð Þ, the amplitude-controlled

characteristics related to a; (b1-b4) For a;b; dð Þ ¼ 1; 1; 0ð Þ, the offset-boosted characteristics related to c
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P2
R 1;1ð Þ¼mod P1

R 1;1ð ÞþK2 1ð Þ;256
� �

;

P2
R 1;jð Þ¼mod P2

R 1;j�1ð ÞþP1
R 1;jð ÞþK2 jð Þ;256

� �
;

(

ð19Þ

where j ¼ 2; 3; . . .; L. In the row-column asso-

ciation diffusion process, the diffused pixel is

the sum of the pixel values of adjacent rows,

columns, and itself. At this time, P2
R is trans-

formed into a matrix with size M 	 N, then the

process is described as

P3
R 1; 1ð Þ ¼ mod P2

R 1; 1ð Þ þ P2
R 1;Nð Þ þ P2

R M; 1ð Þ; 256
� �

; i ¼ j ¼ 1;

P3
R i; 1ð Þ ¼ mod P2

R i; 1ð Þ þ P3
R i� 1; 1ð Þ þ P2

R i;Nð Þ; 256
� �

; i� 2;

P3
R 1; jð Þ ¼ mod P2

R 1; jð Þ þ P3
R 1; j� 1ð Þ þ P2

R M; jð Þ; 256
� �

; j� 2;

P3
R i; jð Þ ¼ mod P2

R i; jð Þ þ P3
R i � 1; 1ð Þ þ P3

R 1; j� 1ð Þ; 256
� �

; i� 2 and j� 2:

8>>>><
>>>>:

ð20Þ

Similar to forward diffusion, converting P3
R to a

row vector with size 1	 L, the backward

diffusion process is expressed as

P4
R 1; Lð Þ ¼ mod P3

R 1;Lð Þ þ K2 Lð Þ; 256
� �

;

P4
R 1; jð Þ ¼ mod P4

R 1; jþ 1ð Þ þ P3
R 1; jð Þ þ K2 jð Þ; 256

� �
;

(

ð21Þ

where j ¼ L� 1; L� 2; . . .; 1.

(5) Substitution: An XOR operation is used in this

process, described as

P5
R 1; jð Þ ¼ P4

R 1; jð Þ 
 K3 jð Þ; ð22Þ

where j ¼ 1; 2; . . .; L.

(6) Cipher image output: The final cipher image C

can be obtained by reorganizing the encrypted

P5
R, P5

B, and P5
C into an image with size

M 	 N 	 3, and the corresponding decryption

process is the reverse operation of the encryp-

tion process.

5.2.2 Experimental result analysis

To evaluate the performance of the encryption strat-

egy, six different typical color plain images with size

512	 512, named Lena, Peppers, Mandrill, Airplane,

House, and Sailboat, are used for encryption experi-

ments, as shown in Fig. 18. It is important to note that

the typical test case images possess strong represen-

tativeness and ensure that the proposed encryption

strategy performs well across a wide range of image

categories, thereby increasing its generality and

applicability. Additionally, these intentionally

selected images have varying levels of complexity

and features, which effectively test the robustness and

reliability of the strategy. Notably, all these images are

sourced from publicly available datasets [43], and the

proposed encryption strategy has received widespread

recognition in relevant fields for its effectiveness in

encrypting these images. To comprehensively verify

the effect of the encryption method, it is necessary to

conduct encryption experiments in some non-typical

test case images. Therefore, six non-typical grayscale

images with different sizes are also considered,

including Lung, Bird, and Moon Surface with a size

of 256	 256, and Brain, Bridge, and Fingerprint with

a size of 512	 512, as shown in Fig. 19. Firstly, the

Permutation

Hyperchaotic sequence 
generator

SubstitutionHybrid
diffusion 

Forward Row-column 
association Backward

1 Round

Plain image Cipher image
P

HDM map

Switching control

Secret keys

1K 2K 3K

C

Fig. 17 Schematic diagram of the proposed image encryption scheme
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secret key is set to k1; k2; a; b; x0; q0; a; b; c; dð Þ ¼
1:5; 0:8; 1:2; 4; 0:1; 0:1; 1:5;�1:5; 0:2;�0:2ð Þ and the

key space can be calculated as

1015þ16þ15þ15þ17þ16þ15þ15þ16þ16 ¼ 10146 � 2485 �
2100 according to the key sensitivity analysis. Then,

to display the effectiveness of the encryption strategy,

the analyses of the histogram, pixel correlation,

information entropy, differential attacks, data loss

and noise attack are considered.

(1) Histogram analysis: The frequency of pixel

values can be counted by the histogram, repre-

senting the distribution of image information.

The histogram of the six typical color plain

images genuinely reflects the statistical charac-

teristics of the pixel values in the red, green, and

blue channels, as shown in Fig. 18b. However,

the encrypted cipher images depicted in

Fig. 18c present a chaotic and complex phe-

nomenon, which effectively hides all the valu-

able information of the plain images. At the

same time, Fig. 18d shows that the pixel values

corresponding to the cipher images are uni-

formly distributed. In addition, for the non-

typical grayscale images with different sizes and

Fig. 18 Encryption results of six different typical color plain images. a Plain images; b Histogram of plain images; c Cipher images;

d Histogram of cipher images
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categories given in Fig. 19a, the proposed

encryption strategy can effectively change the

distribution characteristics of the pixel values of

the plain images in Fig. 19b and obtain the

relatively stable pixel values displayed in

Fig. 19d, indicating that the encryption strategy

also has high applicability to non-typical

images. Therefore, based on the difference

between the plain images and the cipher images

in Figs. 18 and 19, it is demonstrated that the

proposed strategy can effectively encrypt the

plain image and resist statistical attacks.

(2) Correlation analysis: The correlation between

adjacent pixels is often measured by the corre-

lation coefficient qxy in the horizontal, vertical,

and diagonal directions. When two adjacent

pixel values are x and y, respectively, according

to [44], qxy can be expressed as

Fig. 19 Encryption results of six different non-typical grayscale plain images. a Plain images; b Histogram of plain images; c Cipher
images; d Histogram of cipher images
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qxy ¼

PN
i¼1

x ið Þ � E xð Þð Þ y ið Þ � E yð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

x ið Þ � E xð Þð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

y ið Þ � E yð Þð Þ2
s ;

ð23Þ

where E xð Þ and E yð Þ are the average of the N

pixel values x ið Þ and y ið Þ. To evaluate the

correlation of images, 20,000 pixel pairs are

used, and the calculation results are summarized

in Table 4. Please note that in the statistical

results of encryption performance for six dif-

ferent non-typical grayscale plain images listed

in Table 5, qxy is calculated as the average of the
correlation coefficients in the horizontal, verti-

cal, and diagonal directions. It can be concluded

that the qxy of plain images is close to 1, while

the qxy of encrypted cipher images is close to 0,

which shows that the correlation of plain images

can be significantly reduced. Therefore, the

proposed scheme can resist correlation attacks

and strengthen the security of plain images.

(3) Information entropy analysis: The useful infor-

mation in the image can be measured by

information entropy, and the greater the infor-

mation entropy, the higher the degree of confu-

sion and randomness of the image. A standard

method for calculating information entropy can

be expressed as

H xð Þ ¼ �
X255
i¼0

p xið Þ log2 p xið Þ; ð24Þ

Table 5 Statistical results of encryption performance for six non-typical grayscale plain images

Non-typical images Size Average correlation coefficient Information entropy NPCR UACI

Plain images Cipher images Plain images Cipher images

Lung 256	 256 0.98105 0.00221 6.0762 7.9969 99.6111 33.4887

Bird 256	 256 0.98027 0.00307 6.7744 7.9972 99.6145 33.4682

Moon Surface 256	 256 0.91702 - 0.00131 6.7903 7.9974 99.6166 33.4629

Brain 512	 512 0.97338 0.00028 6.9209 7.9993 99.6140 33.4657

Bridge 512	 512 0.92136 0.00077 5.7056 7.9993 99.6035 33.4684

Fingerprint 512	 512 0.90401 - 0.00047 6.7279 7.9994 99.6058 33.4746

Table 4 Statistical results of correlation analysis for six typical images

Typical images Plain images Cipher images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.96133 0.97626 0.94968 0.00301 0.00090 - 0.00070

Peppers 0.97018 0.97302 0.96057 - 0.00123 - 0.00073 0.00740

Mandrill 0.89579 0.83709 0.80959 - 0.00319 - 0.00167 0.00135

Airplane 0.96278 0.95071 0.92432 - 0.00184 - 0.00084 0.00210

House 0.95283 0.95664 0.91775 0.00444 0.00074 - 0.00036

Sailboat 0.96654 0.96288 0.94918 0.00061 - 0.00169 0.00394

Table 6 Statistical results of information entropy, NPCR, and

UACI for six typical color cipher images

Images Information entropy NPCR UACI

R G B

Lena 7.9994 7.9992 7.9994 99.6043 33.4668

Peppers 7.9992 7.9994 7.9993 99.6080 33.4652

Mandrill 7.9994 7.9992 7.9993 99.6152 33.4636

Airplane 7.9993 7.9992 7.9993 99.6096 33.4722

House 7.9992 7.9993 7.9993 99.6120 33.4793

Sailboat 7.9992 7.9992 7.9992 99.6058 33.4544
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where p xið Þ represents the probability of the

pixel value xi. For an encrypted image with high

randomness due to p xið Þ ¼ 1=256, the ideal

information entropy is 8. Therefore, the infor-

mation entropy of six typical color and six non-

typical grayscale cipher images is listed in

Tables 5 and 6, respectively. Since the values of

the information entropy are all very close to 8, it

is proved that the cipher images have high

randomness, and the encryption strategy can

effectively improve the security of plain images.

(4) Differential attack analysis: Since the differen-

tial attack on the cipher image may restore the

plain image, the number of pixel change rate

(NPCR) and the unified average changed

intensity (UACI) are commonly used to mea-

sure the ability of the encryption strategy to

resist differential attacks. According to [45], the

ideal NPCR and UACI are 99.6094% and

33.4635%, respectively. In order to obtain

statistically significant results and increase

credibility, 150 encryption experiments are

performed by randomly adding 1 to a pixel of

the typical and non-typical cipher images, and

the average values of NPCR and UACI are

shown in Tables 5 and 6. The statistical results

show that the NPCR and UACI of all plain

images are very close to the ideal value, which

proves that the cipher image is susceptible to the

small changes of the plain image, and the

Fig. 20 Experimental data loss and noise attack analysis results for Peppers and Sailboat. (a1, c1) Cipher images; (b1, d1) Decrypted
plain image; (a2-a4) Cipher images with 1/16, 1/4, and 1/2 data loss; (b2-b4)Decrypted plain images corresponding to (a2-a4); (c2-c4)
Cipher images with 1%, 5%, and 10% salt and pepper noise; (d2-d4) Decrypted plain images corresponding to (c2-c4)
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encryption strategy can perfectly resist the

differential attack.

(5) Data loss and noise attack analysis: It is essential

to evaluate the decryption performance because

the cipher image may be intercepted and

interfered by noise. For this purpose, after

cutting some data and adding noise to the cipher

images, the decryption process is performed,

and the robustness is analyzed. Figure 20a and b

provides the decryption results of the Peppers

cipher image for data loss, from which it can be

observed that the decrypted Peppers plain image

can clearly reflect the original information.

When different intensities of salt and pepper

noise are added to the Sailboat cipher image, the

simulation results shown in Fig. 20c and d also

highlight that the decryption process of the

encryption scheme has good robustness. There-

fore, the encryption strategy can effectively

resist data loss and noise attacks.

From the above analysis, it can be concluded that

the hyperchaotic key sequence generated by the HDM

map shows high security performance and significant

encryption effects in typical and non-typical image

encryption. Therefore, the proposed HDMmap can be

further applied to secure communication.

6 Conclusions

The existing dual-memristor map has low complexity

and flexibility, and the application value has not been

verified. This paper has proposed a novel 2-D HDM

mapping model with complexity enhancement

through two different discrete memristors and sinu-

soidal transformation. The considered map has line

invariant points related to coupling strengths, mem-

ristor initial condition, and parameters, while their

stability is analyzed in detail. Strange attractors with

multiple topological structures have been found in this

map, such as periodic, quasi-periodic, chaotic, and

hyperchaotic attractors. At the same time, the complex

coexisting multi-stability is revealed through 3-D

local basins of attraction, and the robust bi-stability

dependent on initial conditions is further studied. In

addition, the excellent dynamical performance of

strange attractors, especially multiple hyperchaotic

attractors, is measured by comprehensive performance

indicators. Importantly, by comparing with various

maps, the complexity enhancement characteristic of

the hyperchaotic sequence is strictly proved, and its

high randomness is tested by PRNGs. In particular, the

flexibility of the hyperchaotic sequence has been

promoted by switching control, and the application

value of the considered map that integrates all

excellent performance is verified in image encryption.

Specifically, the cipher images exhibit the uniformly

distributed pixel values with extremely low correla-

tion coefficients among them, as well as the informa-

tion entropy close to 8, proving that the strategy can

effectively enhance the security and randomness of the

plain images. In terms of resistance to attacks, the

NPCR and UACI values close to the ideal values

demonstrate that the encryption strategy can effec-

tively resist differential attacks. Under noise and data

loss attacks, the original information of the cipher

images can still be recovered, indicating that the

strategy has strong robustness. Importantly, the

encryption tests focus on typical color and non-typical

grayscale images, providing strong support for the

effectiveness and universality of the strategy. Finally,

the developed microcontroller-based digital circuit

platform accurately captures various strange attrac-

tors. In the future, it is worthwhile to construct dual-

memristor mapping models with periodic memris-

tances further to study the flexible switching control

and extreme multi-stability.
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