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Abstract Hybrid foil magnetic bearings (HFMB)

are highly suitable for oil-free turbomachinery and

high-speed compressors under variable conditions due

to their advantages such as frictionless operation at

low speeds, reliable high-speed operation and

adjustable dynamic performance. By adjusting the

working mode and load sharing ratio, HFMB can

optimize the dynamic performance and improve the

stability of the rotor system. This paper presents

investigations on the rotordynamics of a rigid rotor

supported by two HFMBs. The coastdown response of

the rotor supported by HFMBs and gas foil bearings

from 65 krpm to rest is recorded experimentally and

used to validate the calculated results of the rotordy-

namic model. Computational methods are used to

predict the effect of load sharing ratios and working

modes on rotordynamics as a function of HFMB

operating conditions. The effects of load and equilib-

rium position on the rotordynamics are also predicted.

Orbit simulations, Fast Fourier Transform, Poincaré

maps and bifurcation diagrams are used for the

theoretical analysis. The results show that an appro-

priate load sharing ratio with hybrid mode can

effectively improve the rotordynamic performance

of the HFMBs-rotor system, while increasing the load

can also significantly improve the stability of the

system.

Keywords Hybrid foil magnetic bearing �
Rotordynamics � Nonlinear support � Synchronous

vibration � Subsynchronous vibration

Abbreviations

A0 Cross-sectional area

of the magnetic

circuit

C Radial clearance

D Damping matrix

E Modulus of elasticity

EI Bending stiffness of

the top foil segment

e Eccentricity

F Vector of forces

Fmx;Fmy Electromagnetic

force

F1;F2 Electromagnetic

forces generated by

bias currents
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Fbx;Fby Radial force

generated by the

bearing

Fux;Fuy Radial force

generated by

unbalanced mass

FAMBrx;FAMBlx;FAMBry;FAMBly Radial force of the

AMB

FGFBlx;FGFBly Radial force of the

GFB

h Film thickness

h Dimensionless film

thickness ð¼h/C)

IT Translational

moment of inertia

IP Polar moment of

inertia

i0x1; i0x2; i0y1; i0y2 Equilibrium current

i0; ix1; ix2; iy1; iy2 Coil current

ki; kix1; kix2; kiy1; kiy2 Current stiffness

kx; kxx1; kxx2; kxy1; kxy2 Displacement

stiffness

L Axial length of

bearing

l0 Half-length of bump

M Mass matrix

Mxb;Myb Rotational moments

generated by bearing

forces

Mxu;Myu Rotational moments

generated by rotor

imbalance mass

m Rotor mass

mg Gravity of the rotor

mul;mur Unbalanced mass

N Number of turns of

coils

p; pl; pr Pressure

p Dimensionless

pressure ð¼p/Pa)

pa Ambient pressure

pi;j Pressure at different

nodes

R Radius of bearing or

rotor

s Distance between

grid points in the

circumferential

direction

t Time

tb Thickness of bump

foil

Dt Time step

ul, ur Radius of the

unbalance mass

v Poisson ratio

x; y Displacement of the

rotor mass center in

Cartesian

coordinates

x0x1; x0x2; x0y1; x0y2 Equilibrium position

x0; xx1; xx2; xy1; xy2 Rotor center

displacement

z; zl; zr Axial coordinate

z Dimensionless axial

coordinate ð¼z/R)

Dz Distance between

grid points in the

axial direction

zbl; zbr Distance from the

bearings to the rotor

mass center

zul; zur Distance from the

unbalance mass to

the rotor mass center

d Vector of the

displacement of the

rotor

e Local top foil

deflection

ei;j Deflection of the top

foil at different nodes

/ Initial phase

c ð¼ t
xÞ

l Gas viscosity

l0 Permeability of air

h; hl; hr Angular coordinate

h0 Attitude angle
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hx; hy Rotation angle of the

rotor along different

axes

s Anytime

t Excitation frequency

x Angular velocity of

rotor

K Bearing number

¼ 6lX
pa

R
x

� �2
� �

1 Introduction

The implementation of hybrid foil magnetic bearings

(HFMBs) in compact, oil-free turbomachinery

reduces start/stop friction and system vibration, and

increases reliability and high-speed operation [1, 2].

Since the 2000s, HFMBs in side-by-side or nested

configurations with different control algorithms have

been implemented as high-dynamic damping bearings

in oil-free (small size) rotating machines [3]. Com-

pared to gas foil bearings (GFBs) for high speed

operation, HFMBs have demonstrated superior relia-

bility in turbomachinery [2, 4–6]. Swanson et al. [4]

tested the load sharing capability on a test rig with a

maximum speed of 36 krpm and demonstrated for the

first time that HFMBs can achieve load sharing

between GFBs and Active Magnetic Bearings

(AMB) at different speeds and loads. Jeong and Lee

[6] proposed a control algorithm applied to HFMBs to

cope with sudden unbalance, and the experimental

results show that the HFMB can recover to a steady

state when the unbalanced mass changes abruptly.

Pham and Ahn [1] applied the HFMB to a flexible

rotor bearing system for the first time, and the

experimental results show that the HFMB has a better

vibration suppression performance compared to the

GFB. Jeong et al. [2] demonstrated a turbo-blower

supported by two HFMBs with PD-control. By

adjusting the proportional gain, the bearing stiffness,

eccentricity and dynamic performance can be changed

accordingly. The successful application of HFMBs in

turbo-blowers illustrates their potential value in high-

speed rotating machinery applications.

The hydrodynamic pressure generated between the

rotor and the top foil deforms the flexible foil

structures, giving the GFB a distinct nonlinear support

characteristic. Swanson [7] developed a simplified

bump foil damping model in which each bump is

reduced to a friction interface and a load-dependent

friction element is introduced. Lee et al. [8] modelled

the top foil as having relative deflection, locally

varying structural stiffness and damping, taking into

account the interaction between the bump foils,

friction between the bump foil and other contact

points. Lez et al. [9] developed a model to describe the

structure of a GFB in which the bump foils have three

degrees of freedom and can interact with each other,

taking into account frictional forces. Feng and Kaneko

[10] replaced each bump with a link spring structure

and used a finite element model to resolve the

deformation of the top foil. Larsen et al. [11] have

developed a finite element model of the foil structures

using nonlinear spring elements, taking into account

the effects of the foil flexibility and friction at the

contact points. The deflection of the foil structure

depends on the pressure in the fluid film and the

variation of the bearing gap, so the prediction of the

fluid film is another point of interest for the

researchers. Arakere and Nelson [12] solved the

problem of compressible elastohydrodynamics of

finite length GFBs by using an iterative

scheme (finite difference method) to numerically

solve the coupling of the nonlinear compressible

Reynolds equation with the elastic equation for the

deflection of the foil. Faria and San Andrés [13] have

developed procedures for solving the highly nonlinear

governing equations in high-speed gas lubrication for

the analysis of diffusion-convection thin film gas

flows. Ullah et al. [14–17] use the Levenberg–

Marquardt method with artificial neural networks, an

innovative convergence reliability technique, to pro-

vide numerical solutions to a wide range of fluid flow

problems. The nonlinear properties of the foil structure

and the fluid film result in the nonlinear behavior of the

GFBs-rotor system. Bhore and Darpe [18] used time-

domain orbital simulations to predict the nonlinear

dynamics of the flexible rotor-GFB system. Bonello

and Pham [19, 20] developed an efficient algorithm to

solve the static equations simultaneously. They also

applied transient nonlinear dynamic analysis and static

equilibrium analysis techniques to a real turbocharger.

Static stability can be promoted by increasing the

length-to-radius ratio, increasing the compliance of

the foil structure and reducing the undeformed radial

clearance of the GFB. The nonlinear steady-state

123

Investigations on the nonlinear dynamic characteristics 14881



response of a rotor supported by three pad segmented

GFBs was investigated numerically and experimen-

tally by Larsen et al. [21, 22]. Xu and Kim [23] applied

the measured nonlinear structural stiffness of the GFB

to time-domain transient rotordynamic simulations.

The results show that the dynamic coefficient is

strongly influenced by the loose foil structure when the

bearing load is small. Osmanski et al. [24] adopted the

compliant foil structure model of Ref. [9] to predict the

nonlinear time-domain rigid GFBs-rotor system. The

sticking phenomenon, although prevalent in foil

structures, cannot be captured by the dynamic friction

model. Guan et al. [25] predicted time-domain

dynamic results of a rigid rotor supported by active

bump-type foil bearings (ABFBs) and compared them

with experimental results.

The electromagnetic force increases rapidly as the

air gap decreases, leading to instability of the AMBs at

the equilibrium position. Therefore, the controller

should provide a restoring force, similar to a mechan-

ical spring, to maintain the rotor center near the

equilibrium position, and a damping component to

attenuate the oscillation [26–29]. The electromagnetic

force is proportional to the square of the coil current

and inversely proportional to the square of the air gap,

which is the natural characteristic of AMBs. The

saturation of the magnetic flux means that the

electromagnetic force is no longer affected by changes

in the coil current, which together with the natural

characteristics of AMBs constitutes the nonlinearity of

the electromagnetic force [30]. Chen and Lin [31]

proposed a robust non-singular terminal sliding-mode

control system to overcome the long convergence

time, system singularity, highly nonlinear and time-

varying problems of conventional terminal sliding

mode control. Kandil et al. [32] and Saeed et al. [33]

investigated the influence of different control param-

eters on the system periodic motions of a 16-pole

AMB and the effect of two different control config-

urations on the nonlinear dynamics of a six-pole AMB,

respectively. For a one-degree-of-freedom AMB,

Lindlau and Knospe [34] proposed a high-perfor-

mance feedback controller with l-synthesis that can

efficiently convert nonlinear systems into linear

targets and also guarantee a beam compliance perfor-

mance specification. Meanwhile, for the three-degree-

of-freedom six-pole AMBs, some scholars have

studied other control methods, including BP neural

network-based active disturbance rejection control

and linear/nonlinear active disturbance rejection

switching control, to decouple the AMBs-rotor system

[35, 36]. Zhang et al. [37] proposed a new multi-scale

method to analyze the nonlinear bifurcation behavior

of the AMBs-rotor system, which is strongly influ-

enced by the nonlinear electromagnetic force and

current saturation.

The nonlinear properties of GFBs and AMBs have

now been thoroughly and systematically investigated.

However, the mutual coupling of GFBs and AMBs in

HFMBs gives rise to unique and complex nonlinear

behaviors that have not been investigated. In this

paper, the locus of the rotor center is tracked by

simultaneously solving the equations of motion for the

rigid rotor, the deformation equations for the top and

bump foils, the unsteady Reynolds equation and the

PID-controlled electromagnetic force equation in the

time domain. The influence of the working mode and

the load sharing ratio as a function of the operating

conditions, as well as the load and the equilibrium

position as key parameters, on the nonlinear dynamic

characteristics of the rotor system is investigated.

The following study is categorized as follows: In

Sect. 2, a model of an HFMB and its rotor system is

presented. Section 3 describes the experimental setup

of the HFMB-rotor system and compares and validates

the results of the experimental tests and numerical

calculations. Section 4 analyses and discusses the

effects of working mode, load sharing ratio, load and

equilibrium position on the nonlinear dynamic behav-

ior of the rotor using numerical calculations. Conclu-

sions and future work are presented in Sect. 5.

2 Theoretical model

2.1 HFMB structure

Reference [38] first proposed the nested configuration

of HFMBs. In the literature, the top foil and the bump

foil are nested in the gap between the rotor and the

magnetic poles, as shown in Fig. 1. The space inside

the AMB, which traditionally contains the coils, is

used as the housing molding of the GFB with non-

magnetic epoxy. As the GFB is mounted in the inner

diameter of the AMB, the combination of the GFB and

the AMB is realized. It is important to note that the

radial thickness of the bump and top foils is part of the

air gap of the AMB. Therefore, the deformation of the
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bump foil and the top foil does not change the air gap

of the AMB, and the parameter that affects the air gap

is the rotor center position. In addition, the axial length

of the foil is the same as the width of the stator.

As shown in Fig. 1, the vertical down direction is

defined as the positive direction of the X axis, and the

horizontal right direction is defined as the positive

direction of the Y axis. The upper and lower opposite

poles are used to control the movement of the rotor in

the X direction, and the remaining opposite poles

control the movement of the rotor in the Y direction

accordingly. Heshmat et al. [3] were the first to

propose the operation of HFMBs. At operating speed,

the AMB is fully loaded and the actual magnitude and

direction of the load is calculated from the coil

currents. The equilibrium position is determined based

on the predetermined load sharing ratio and stored

data, and then the AMB adjusts the rotor center to the

new equilibrium position [4]. However, the paper does

not explain what value of load sharing ratio is

appropriate, i.e. how to select the load sharing ratio

under steady-state operating conditions.

2.2 Theoretical model of HFMBs

The GFB in operation consists of a gas film, a top foil

and a bump foil, as shown in Fig. 2. The gas is

extruded from the wedge-shaped space between the

rotor and the top foil to form a gas film. As the rotor

moves, the circumferential pressure distribution of the

gas film varies considerably, causing the GFB support

to exhibit strong nonlinearity. In addition to the

nonlinear characteristics of the fluid film itself, the

support structure is also the main cause of the

nonlinearity of the GFB support force [39–42].

Hydrodynamic pressure is generated in the wedge-

shaped space between the top foil and the rotor, as

shown in Fig. 2. The dimensionless unsteady Rey-

nolds equation is given by

o

oh
ph

3 op

oh

� �
þ o

oz
ph

3 op

oz

� �
¼ K

oðphÞ
oh

þ2Kc
oðphÞ
ot

:

ð1Þ

The following dimensionless parameters are taken

into account

p ¼ p

pa
; h ¼ h

C
; z ¼ z

R
; K ¼ 6lx

pa

R

C

� �2

; t ¼ tt; c ¼ t
x
:

ð2Þ

The gas film thickness can be determined from the

initial position of the rotor and the deflection of the foil

structure as shown in Fig. 2. The expression for the gas

film thickness is

Fig. 1 Schematic

description and photograph

of a hybrid foil magnetic

bearing

Fig. 2 Calculation mode of the gas foil bearings
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h ¼ C þ e � cosðh� h0Þ þ ½e�: ð3Þ

At high speeds, film pressure is created between the

rotor and the top foil, causing the flexible surface to

expand radially outwards. ½e� is the deflection of the

flexible surface, which consists of two parts in series,

the deflection of the top foil and the deflection of the

bump foil, as shown in Fig. 2. In the calculations, the

top foil is modeled as a one-dimensional beam and the

deflection of the foil at the bump foil is considered to

be equal to the deflection of the bump foil. The foil

deflection at the middle of two adjacent bump foils is

considered to be the deflection of the top foil plus the

deflection of the bump foil [43].

The deflection of the top foil should be [44, 45]

e2i�1;j ¼
2s

E

l0
tb

� �3

ð1 � v2Þðp� PaÞ

e2i;j ¼
2s

E

l0
tb

� �3

ð1 � v2Þðp� PaÞ þ s4Dz
1920EI

ð3p2iþ1;j þ 3p2i�1;j � p2i;jÞ:

8>>>>>><
>>>>>>:

ð4Þ

The boundary conditions are

p ¼ Pa; z ¼ �L=2

p ¼ Pa; h ¼ 0; 2p:

(
ð5Þ

The boundary conditions in Eq. (5) take into

account the fact that the top foil does not form a

complete shell and that gas flows into the lubricated

film at the free end and out at the fixed end, as shown in

Fig. 2. At the axial ends, the lubrication film is in

direct contact with the gas [46].

Figure 3 shows the operating principle of an active

electromagnetic bearing system. A closed-loop con-

trolled electromagnetic force keeps the rotor in the

specified position. The non-contact position sensors

(eddy current sensors are used for the experiments)

continuously measure the error between the desired

position and the actual position of the rotor and feed

this information to the controller. The error signal is

calculated by the controller to produce a control signal

that increases the coil current of one set of poles while

decreasing the coil current of the opposite poles, a

control method known as differential control. The

electromagnetic forces in the X and Y directions under

differential control can be expressed as follows.

Fmx ¼ F1ði0x1; x0x1Þ � F2ði0x2; x0x2Þ
þ ½kix1ðix1 � i0x1Þ � kix2ðix2 � i0x2Þ�
� ½kxx1ðxx1 � x0x1Þ � kxx2ðxx2 � x0x2Þ�:

ð6Þ

Fmy¼½kiy1ðiy1�i0y1Þ�kiy2ðiy2�i0y2Þ��½kxy1ðxy1�x0y1Þ
�kxy2ðxy2�x0y2Þ�:

ð7Þ

Fmx and Fmy are the electromagnetic forces in the X

and Y directions, respectively. F1 and F2 denote the

electromagnetic forces generated by the bias currents

of the upper and lower magnetic poles, which are used

to balance the load. kix1, kix2, kiy1 and kiy2 represent the

current stiffness, and kxx1, kxx2, kxy1, kxy2 represent the

displacement stiffness. The current stiffness and

displacement stiffness are expressed as follows:

kx ¼
l0A0N

2i20
x3

0

ki ¼
l0A0N

2i0
x2

0

:

8>><
>>:

ð8Þ

Figure 4 shows the principle of the PID closed-loop

control of the HFMB. It can be seen that the error e is

calculated by the PID controller to produce the control

signal, which is then amplified by the power amplifier

to produce the coil currents. The electromagnetic force

is influenced by both current and displacement varia-

tions. The current stiffness is positively related to the

electromagnetic force, while the displacement stiffness

is negatively related to the electromagnetic force, as

described in Eqs. (6) and (7). The electromagnetic

Fig. 3 Calculation mode of the active magnetic bearing

123

14884 H Zhang



force will then act on the rotor, producing acceleration,

velocity and displacement, and the displacement will

be fed directly to the electromagnetic force. In

addition, an eddy current displacement sensor mea-

sures the actual position of the rotor and compares it

with a desired position, generating an error signal. It

should be emphasized that the desired position varies

according to the calculated eccentricity of the GFB and

the bias current varies accordingly to balance the load.

2.3 Theoretical model of a rigid rotor

The schematic diagram of the rigid rotor supported by

HFMB is shown in Fig. 5. The rotor can move freely in

the spatial coordinate system, which can be decom-

posed into translational motion and rotational motion

of the center of mass in the X/Y/Z directions. ô l̂ m̂ x̂ is

the translational coordinate system of oxyz, and ô x̂ ŷ ẑ

is the coordinate system that ô l̂ m̂ x̂ rotates arbitrarily

around the X/Y/Z axes. Since the operating speed is

lower than in the first bending mode, to simplify the

calculation, the rotor can be modeled as four degrees

of freedom (4DOF) consisting only of translations of

the center of mass along the X/Y directions and

rotations of the rotor around the X/Y axes [25, 47, 48].

The rotor’s free motion equation can be expressed as

m€x ¼ Fbx þ Fux þ mg

m€y ¼ Fby þ Fuy

IT €hx þ IPx _hy ¼ Mxb þMxu

IT €hy � IPx _hx ¼ Myb þMyu

8>>>><
>>>>:

9>>>>=
>>>>;
: ð9Þ

where m is the mass of the rotor, Fbx and Fby are the

forces generated by the HFMBs at both ends. Fux and

Fuy are the forces generated by the unbalanced masses.

IT is the translational moment of inertia and IP is the

polar moment of inertia. hx and hy are the angles of

rotation about the X and Y axes. Mxb and Myb are the

moments of rotation generated by the bearing forces.

Mxu and Myu are the moments of rotation generated by

the unbalanced masses.

The dynamic force of the HFMB is the sum of the

hydrodynamic force of the GFB and the electromag-

netic force of the AMB.

Fbx¼PaR2

Z2p

0

ZL=R

0

ðplðhl;zlÞ�1Þcoshldhldzl

þPaR2

Z2p

0

ZL=R

0

ðprðhr;zrÞ�1Þcoshrdhrdzr

þFAMBlx1þFAMBrx1�FAMBrlx2�FAMBrx2

Fby¼PaR2

Z2p

0

ZL=R

0

ðplðhl;zlÞ�1Þsinhldhldzl

þPaR2

Z2p

0

ZL=R

0

ðprðhr;zrÞ�1Þsinhrdhrdzr

þFAMBly1þFAMBry1�FAMBrly2�FAMBry2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð10Þ

Fig. 4 Schematic diagram

of PID control loop of the

HFMB system

Fig. 5 Coordinate system and rotor configuration with HFMBs
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The unbalance forces at the left and right ends are as

follows:

Fux ¼ mululx
2 cosðxt þ /Þ þ mururx

2 cosðxt þ /Þ
Fuy ¼ mululx

2 sinðxt þ /Þ þ mururx
2 sinðxt þ /Þ

( )
: ð11Þ

where mul and mur are the unbalanced mass, ul and ur
are the radius of the unbalanced mass. The torques

generated by the bearing and the unbalanced mass are

expressed as follows:

Mxb ¼ ðFGFBly þ FAMBly1 � FAMBly2ÞZbl
þðFGFBry þ FAMBry1 � FAMBry2ÞZbr

Myb ¼ ðFGFBlx þ FAMBlx1 � FAMBlx2ÞZbl
þðFGFBrx þ FAMBrx1 � FAMBrx2ÞZbr:

8>><
>>:

ð12Þ

Mxu ¼ mululx
2 sinðxt þ /ÞZul

þmururx
2 sinðxt þ /ÞZur

Myu ¼ mululx2 cosðxt þ /ÞZul
þmururx2 cosðxt þ /ÞZur:

8>>><
>>>:

ð13Þ

In theformula,Zbl and Zbr represent the axial distance

from the bearing to the center of gravity of the rotor,

and Zul and Zur represent the axial distance from the

unbalanced mass to the center of gravity of the rotor.

2.4 Orbit simulation

The effect of nonlinear hydrodynamic pressure cou-

pled with electromagnetic forces on the rotordynamics

is analyzed by orbital simulations. The locus of the

rotor center is traced by simultaneously solving the

rotor motion equations, the electromagnetic force

equations and the Reynolds equation in the time

domain during the simulation. This method can

incorporate the given external forces and disturbances

into the analysis, and predict the fully nonlinear

behavior of the HFMBs-rotor system.

The rotor is assumed to be rigid and the dynamic

parameters of the two supporting HFMBs are assumed

to be different along the X/Y directions. The Wilson-h
method is introduced to calculate the equations of

motion of the rotor.

M€dðtÞ þ D _dðtÞ ¼ FðtÞ: ð14Þ

M is the mass matrix, D is the damping matrix, and

F is the vector force, which can be expressed as

follows.

M ¼

m 0 0 0

0 m 0 0

0 0 IT 0

0 0 0 IT

2
664

3
775: ð15Þ

D ¼

0 0 0 0

0 0 0 0

0 0 0 IPx
0 0 �IPx 0

2
664

3
775: ð16Þ

F ¼

FuxðtÞ þ FbxðtÞ � mg

FuyðtÞ þ FbyðtÞ
Mxb þMxu

Myb þMyu

2
6664

3
7775: ð17Þ

Suppose the acceleration changes linearly between

two time nodes. The acceleration at ti þ s is

€dðti þ sÞ ¼ €di þ
s

1:37Dt
ð€diþ1:37 � €diÞ: ð18Þ

The following formula can be obtained by inte-

grating Eq. (18).

€diþ1:37 ¼ 6

1:372ðDtÞ2
ðdiþ1:37 � diÞ �

6

1:37Dt
_di � 2€di

_diþ1:37 ¼ 3

1:37Dt
ðdiþ1:37 � diÞ � 2 _di �

1:37Dt
2

€di

8>><
>>:

9>>=
>>;
:

ð19Þ

The force balance equation at node iþ 1:37 is

M€diþ1:37 þ D _diþ1:37 ¼ Fiþ1:37: ð20Þ

The linearized form of the vector force Fiþ1:37 is

Fiþ1:37 ¼ Fi þ 1:37ðFiþ1 � FiÞ: ð21Þ

Substituting €diþ1:37, _diþ1:37 and Fiþ1:37 into Eq. (20)

gives the iterative formula for calculating the orbit.

6

1:372ðDtÞ2
M þ 3

1:37Dt
D

" #
diþ1 ¼ Fi þ 1:37ðFiþ1 � FiÞ

þ 6

1:372ðDtÞ2
M þ 3

1:37Dt
D

" #
di þ ð 6

1:37Dt
þ 2DÞ _di

þ ð2M þ 1:37Dt
2

Þ€di

ð22Þ
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3 Test rig construction and test results

3.1 Description of the test rig and hardware

components

A photograph and a sectional view of the test rig are

shown in Fig. 6. A rotor with a diameter of 30 mm and

a length of 306.7 mm is supported by two HFMBs

with an outer diameter of 100 mm and an axial length

of 40 mm. A pulse turbine drives the rotor on the left

and can counterbalance the weight of the thrust disc on

the right. The thrust bearing at the right end is used to

reduce rotor vibration in the axial direction. A series of

standardized holes evenly distributed over the impulse

turbine and thrust disc are used to add unbalanced

mass to the rotor. The main parameters of the test rotor

are given in Table 1. Since the deformation of the rotor

is much smaller than the deformation of the HFMB,

the rotor can be treated as rigid. Vertical and

horizontal eddy current sensors are used to detect the

rotor vibration at the turbine and thrust ends. Another

AMB can be mounted in the middle of the rotordy-

namic test rig to adjust the system load. It can be

mounted on the test rig through the mounting holes as

it does not require a high degree of concentricity with

other bearings.

Figure 7 shows the control hardware of the

rotordynamic test rig of Fig. 6, which consists mainly

of a controller and a power amplifier. The control flow

is shown in Fig. 4. Fig. 7a shows the controller, whose

chip model is TMS320FSP28377. Its main function is

to collect the current position signal and compare it

with the reference position, perform PID operation and

output the control signal. Figure 7b shows the printed

circuit board (PCB) of the switching power amplifier.

A PCB controls the current to two sets of coils in a

bearing for differential control. Hall current sensors

are arranged in a current closed loop system to ensure

accurate output current.

3.2 Model verification

Two sets of rotordynamic tests were used to validate

the mathematical model. When there is no current in

the coils, this is a GFBs-supported rotor system. And

when there is current in the coils and the rotor position

is adjusted by control, this is a HFMBs-supported rotor

system.

Figure 8 compares the tested and predicted water-

fall plots of the rotordynamics supported by the GFBs.

It can be seen that the predicted results are in good

agreement with the experimental results. Their vibra-

tions contain three main components, 1X synchronous

vibration, 1/2X subsynchronous vibration and whip.

The predicted and experimental results show that the

1/2X subsynchronous vibration appears at 11 krpm

Fig. 6 Photograph and

cutaway view of the

HFMBs-rotor test rig

Table 1 Main parameters of the rotor

Parameter Value

Rotor diameter 30 mm

Rotor mass 1.905 kg

Bearing clearance 0.05 mm

Ambient pressure 1.013 9 105 Pa

Gas viscosity 1.73 9 10–5 Pa•s

Coordinates of the turbine -126.75 mm

Coordinates of thrust bearing 128.5 mm

Coordinates of radial bearing (left) -84.5 mm

Coordinates of radial bearing (right) 86.5 mm

Polar moment of inertia 373 kg�mm2

Translational moment of inertia 17,591 kg�mm2
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and then disappears at about 15 krpm. At around 60

krpm, the whip starts to appear at a frequency of

78 Hz.

In fluid-lubricated bearings, self-excited, large-

amplitude, sub-synchronous vibration at 1/2 the har-

monic frequency can occur when partial radial friction

occurs once per rotor revolution [49]. On the other

hand, whip is a fluid-induced instability caused by the

interaction of the rotor with the surrounding fluid [41].

Figure 9 compares the tested and predicted water-

fall plots of the rotordynamics supported by the

HFMBs. The vibration of the HFMB supported rotor

has only two components, 1/2X subsynchronous

vibration and 1X synchronous vibration. It can be

seen that the 1/2X subsynchronous vibration occurs at

a speed of 11 krpm. The predicted rotordynamics with

the support of HFMBs agrees well with the test results.

In addition, the test results show a small value of

vibration around 1130 Hz at all speeds, which is

considered to be caused by electromagnetic

interference.

Compared to the GFBs, the whip of the HFMBs

disappears at high speeds. The reason for this is that

the inclusion of AMBs improves the stiffness of the

rotor bearing system, increases the instability thresh-

old of the system and eliminates whip [50]. However,

the 1/2X subsynchronous vibration is not significantly

suppressed.

As the most important function of the operating

conditions, it is necessary to discuss in detail whether

Fig. 7 Photography of the controller and the current amplifier of HFMBs

Fig. 8 Waterfall plots of rotordynamics supported by GFBs (test results and predicted results)
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it is possible to suppress the 1/2X subsynchronous

vibration or whip by adjusting the working mode and

the load sharing ratio. Two other important parame-

ters, namely the load and the equilibrium position, can

also have a significant influence on the subsyn-

chronous vibrations.

4 Rotordynamic analysis: predictions results

In applications, HFMBs can adopt different working

modes and load sharing ratios to achieve good

dynamic performance, which may further affect the

rotordynamics of the system. The working modes of

HFMBs include GFB mode, AMB mode and hybrid

mode. The GFB mode means that the control system is

closed when the HFMB operates on the same principle

as the GFB. The AMB mode can be thought of as the

AMB working alone while the GFB is used as a back-

up bearing. Hybrid mode is a control strategy that

allows the GFB and AMB to each take a share of the

load. When using the hybrid mode, the rotor dynamics

can be further optimized by changing the load sharing

ratio. The parameters of the HFMB are given in

Table 2.

4.1 Effect of working modes on rotordynamics

Figure 10 shows the dynamic orbits and FFT plots of

the rotor center using different working modes at a

speed of 60 krpm. It can be seen that when the GFB

mode is used, the orbit of the rotor center is mainly a

lot of circular rings accompanied by a slow movement

of the keyphase point. The 1X synchronous vibration

is 15.6 lm, while the whip vibration is 14.2 lm with a

frequency of 78 Hz. The GFB model is inevitably

affected by fluid swirling, which is the main cause of

fluid-induced instability [49].

Fig. 9 Waterfall plots of rotordynamics supported by HFMBs (test results and predicted results)

Table 2 Properties and parameters of HFMBs

Active magnetic bearings (AMBs)

Inner diameter 31.6 mm

Width 40 mm

Bias current 1.5 A

Area of gap 200.8 mm2

Coil turns 165

Air gap thickness 0.8 mm

Resistance of coil 2.4 X

Proportional gain 1800

Differential Gain 200

Integral gain 0.3

Gas foil bearings (GFBs)

Width 40 mm

Bearing housing radius 18 mm

Top foil thickness 0.124 mm

Bump foil thickness 0.118 mm

Bump half length 1.9 mm

Bump height 0.5 mm
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When using the AMB mode, the rotor center orbit is

a series of circular rings accompanied by a slow

movement of the keyphase points. Since the GFB is

nested within the inner diameter of the magnetic pole,

even if the AMB alone is used to support the rotor, it

will inevitably be affected by the fluid film. And, of

course, the smaller the average eccentricity of the

rotor, the smaller the effect of the fluid film. The

X-direction FFT plot shows that the vibration compo-

nent is mainly 16.5 lm synchronous vibration. There

are very small 1/3X and 2/3X subsynchronous vibra-

tions which result in shifts of keyphases in the rotor

center orbit.

The orbit of the rotor center is a circular ring when

using the hybrid mode (AMB load ratio is 0.5). The

FFT plot shows a synchronous vibration of 13.4 lm,

which is the best stability. The coupling of electro-

magnetic forces with hydrodynamic pressure gives the

HFMB greater system stiffness, which increases the

instability threshold for the whip and makes the rotor

center orbit a circle.

Figure 11 shows the rotor center orbit and FFT

plots of the HFMB using different working modes at a

speed of 12 krpm. It can be seen that when the GFB

mode is used, the rotor center orbit is a ‘‘rabbit ear’’,

i.e. it contains 1X synchronous vibration and subsyn-

chronous vibration. The keyphase points are precisely

locked, indicating 1/2X subsynchronous vibration.

The FFT plot shows that the GFB mode has a 1X

synchronous vibration of 8.9 lm and a 1/2X subsyn-

chronous vibration of 10 lm in the X direction.

When using the AMB mode, the rotor center orbit is

a circular ring with a synchronous vibration of 7.1 lm

and optimum system stability. When using the hybrid

mode (AMB load ratio is 0.5), the rotor center orbit is a

‘‘rabbit ear’’ with a synchronous vibration of 8.2 lm

and a 1/2X subsynchronous vibration of 7 lm. Com-

pared to the AMB mode, the hybrid mode produces

1/2X subsynchronous vibrations and the synchronous

vibrations are larger. The reason is that at low speeds,

the fluid radial and tangential forces are small, and the

AMB mode is subjected to little fluid tangential force,

so there is no subsynchronous vibration. And when the

hybrid mode is used, half the load is carried by the

GFB and the dynamic eccentricity increases, which

increases both the fluid radial and tangential forces.

The tangential forces transfer the rotational energy to

the radial vibrations and 1/2X subsynchronous vibra-

tions are generated.

The working mode is the one of the most important

function of the operating conditions that allow the

optimum operation of the HFMBs. The analysis shows

that the hybrid mode has the best stability against high

speed whip, while the AMB mode has the best stability

against low speed subsynchronous vibration. The

interaction of a rotor moving at high speed with the

Fig. 10 Predicted dynamic orbits, FFT plots of the rotor center adopting different working modes at 60 krpm
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surrounding fluid causes fluid-induced instability,

which is a self-excited vibration (known as whip) that

causes the rotor to operate in a stable limit ring of large

vibrations. The instability threshold represents the

speed at which fluid-induced instability occurs and is

positively related to the stiffness and natural frequency

of the rotor system. As a result, when operating in GFB

mode, the rotor is in a state of fluid-induced instability,

whereas operating in hybrid mode increases the

stiffness and natural frequency of the system, thereby

increasing the instability threshold and suppressing the

whip. The mechanism of low speed 1/2X subsyn-

chronous vibration is the transfer of rotational energy

from tangential friction to radial vibration. AMB mode

operation avoids the generation of large tangential

friction and therefore suppresses the generation of

1/2X subsynchronous vibration. Thus, a rational

choice of working mode can mechanically suppress

or attenuate unstable vibrations.

4.2 Effect of load sharing ratio on rotordynamics

Figure 12 shows the effect of the load sharing ratio on

the static performance of HFMBs at a speed of 12

krpm. Figure 12a briefly shows the operation of an

HFMB where the rotor is supported by a combination

of air film pressure and electromagnetic force. The air

film pressure distribution is passively formed to

support the load, which is the main reason for the

nonlinearity of the support force. The bias current in

the X-direction is used to balance the load and

therefore varies with the load ratio. The bias current

and the equilibrium position together form the refer-

ence point for the linear closed-loop control of the

AMB.

Figure 12b shows the equilibrium position and

rotor center orbit for different AMB load ratios. The

equilibrium position is the predicted eccentricity of the

GFB, which gradually moves from a larger eccentric-

ity towards the center of the bearing as the AMB load

ratio increases. The AMB load ratios for the three

different rotor center orbit from the eccentricity to the

bearing center are 0, 0.5 and 1, respectively. When the

AMB load ratio is 0.5, the rotor center orbit is shown

as ‘‘rabbit ears’’. And when the AMB load ratio is 0

and 1, the rotor center orbit is a circular ring and has

better stability.

Figure 12c and d shows the predicted bias currents

and gas film pressure of HFMBs. The bias current of

the upper poles gradually decreases as the AMB load

ratio increases, and the bias current trajectory of the

lower poles is symmetrical to that of the upper poles.

As the AMB load ratio increases, the bias current of

the upper poles should increase and the bias current of

Fig. 11 Predicted dynamic orbits, FFT plots of the rotor center adopting different working modes at 12 krpm
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the lower poles should decrease to balance the load.

However, due to the lighter weight of the rotor (19N),

the influence of the displacement stiffness is greater

than the current stiffness, which determines the current

downward trend of the upper poles as the AMB load

ratio increases. The bias current curve of the left poles

is symmetrical to that of the right poles. When the

AMB load ratio is 1, the bias current of both the left

and right poles reaches 0.5 A because the AMB does

not carry the load in the horizontal direction.

Figure 13 shows the bifurcation diagrams of the

rotor center in the vertical and horizontal directions at

different AMB load ratios. Compared to Fig. 12, the

bifurcation diagram shows the dynamic stability of the

HFMB as the load ratio increases. It can be seen that as

the AMB load ratio increases from 0 to 1, the rotor

gradually moves away from the eccentricity towards

to the bearing center. As the AMB load ratio changes

from 0.3 to 0.8, double-dots appear and the orbit is

precisely locked at 1/2X. As the AMB load ratio

changes from 0.4 to 0.6, the distance between the

double dots is the greatest, indicating the greatest 1/2X

subsynchronous vibration and the worst stability. The

bifurcation diagrams show that there is a single dot

when the AMB load ratio is from 0 to 0.15 and from

0.8 to 1. This indicates that the system has good

stability and that the vibration components are mainly

1X synchronous vibration. Compared with the X-di-

rection bifurcation diagram, the Y-direction bifurca-

tion diagram shows less 1/2X subsynchronous

vibration.

At high speeds, the dynamic performance of the

system varies less with the AMB load ratio and is

therefore not shown graphically. The system has good

Fig. 12 Variation of key parameters with AMB load ratio, a schematic description of the HFMB, b predicted rotor center orbit of

HFMBs, c bias-currents versus AMB load ratio, d gas film pressure versus AMB load ratio

123

14892 H Zhang



stability with only synchronous vibrations at any load

ratio condition. This is due to the fact that in GFB

mode the HFMB encounters whips, whereas in hybrid

mode the AMB joins the operation and the natural

frequency and instability threshold of the system

increases, so that the whips disappear. Adjusting the

load ratio will not reduce the instability threshold to

the current operating speed, so adjusting the load ratio

will not change the stability of the system.

Another important function of the operating condi-

tions is the load sharing ratio. The load sharing ratio

affects the eccentricity and fluid pressure distribution

of the GFB, and therefore the bias current and

equilibrium position of the AMB, and therefore the

dynamic performance of the HFMB. An AMB load

ratio of less than 0.25 or greater than 0.85 is beneficial

to suppress 1/2X subsynchronous vibration. As the

rotor approaches the edge of the bearing during a small

fraction of the vibration cycle, a large tangential

frictional force is generated. The tangential friction is

impacting and has an effect similar to striking the rotor

with a hammer, exciting the multi-order free vibration

mode of the rotor (including 1/2X subsynchronous

vibration). When the AMB load ratio is greater than

0.85, the dynamic eccentricity is smaller, thus avoid-

ing greater tangential friction and 1/2X subsyn-

chronous vibration. As the AMB load ratio

decreases, the load on the GFB increases, the dynamic

eccentricity increases and the rotor experiences sig-

nificant tangential friction, resulting in 1/2X subsyn-

chronous vibration. However, while subsynchronous

vibration occurs, the friction itself causes an increase

in the spring stiffness and natural frequency of the

rotor. Therefore, as the AMB load ratio continues to

decrease to 0.25, the dynamic eccentricity will

increase, the natural frequency will increase and the

speed of 1/2X subsynchronous vibration will increase.

Increasing the AMB load ratio mechanically elimi-

nates the 1/2X subsynchronous vibration, while

decreasing the AMB load ratio increases the speed at

which the 1/2X subsynchronous vibration occurs.

In fact, reducing the AMB load ratio leads to an

increase in dynamic eccentricity and system stiffness,

which not only increases the speed of 1/2X subsyn-

chronous vibrations, but also increases the instability

threshold of the whips. Adjusting the load sharing ratio

is therefore an effective way of optimizing the stability

of the system.

4.3 Effect of load on rotordynamics

The predicted dynamic orbit, FFT plots, and Poincaré

maps of the rotor center at different loads are shown in

Fig. 14. The loads in Fig. 14a, b and c are 9.5 N, 19 N

and 38 N, respectively. The dynamic orbit plots show

that the 9.5 N rotor center orbit is a circular ring with a

large enclosed area. The rotor center orbit of the 19 N

is a ‘‘rabbit ear’’. Compared to the 9.5 N, the 19 N has

slightly less movement in the X-direction, but signif-

icantly less movement in the Y-direction. At 38 N, the

rotor center orbit becomes a circular ring again, and

the movement in both X and Y directions is

Fig. 13 Bifurcation diagrams of the rotor center in the vertical and horizontal direction with different AMB load ratios at speed of 12

krpm
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minimized. The reduction in load significantly reduces

the average stiffness of the system, resulting in a large

radial movement of 9.5 N.

FFT plots in the X-direction show that the syn-

chronous vibrations corresponding to 9.5 N, 19 N and

38 N are 23.4, 8.2 and 7.4 lm, respectively, and the

synchronous vibrations decrease rapidly. At a load of

19 N, there is a large 1/2X subsynchronous vibration

of 7 lm. FFT plots in the Y-direction show that the

synchronous vibrations corresponding to the three

loads are 29.1, 8.8 and 7.5 lm, respectively, with the

same rapid decrease. Increasing the load leads to an

increase in the cross-coupled stiffness and tangential

force with 1/2X subsynchronous vibration at 19 N.

However, after further increasing the load, the system

stiffness and natural frequency increased and the

speed at which 1/2X subsynchronous vibration

occurred increased, so that the 1/2X subsynchronous

vibration disappeared at 38 N.

The Poincaré maps show a double-dots at loads of

9.5 N and 19 N, while a single-dot is shown at 38 N.

The double-dots at 9.5 N is very close, indicating the

dominance of synchronous vibration with a small

amount of vibration at other frequencies. And the clear

double-dots at 19 N clearly show that the motion of the

rotor center is a double loop.

Therefore, increasing the load at low speeds

increases the stiffness and natural frequency of the

system, which in turn increases the speed of 1/2X

subsynchronous vibrations and suppresses the syn-

chronous vibrations.

Figure 15 shows the dynamic orbit, the FFT plot

and the Poincaré maps for a rotational speed of 60

krpm. It can be seen that the rotor center orbits of both

19 N and 38 N are circular rings, but the average

dynamic eccentricity of 19 N is closer to the bearing

center and the motion is greater. The FFT plots show

that the synchronous vibration of 19 N is 13.4 lm in

the X-direction and 13.5 lm in the Y-direction. The

synchronous vibration of 38 N is 11.3 lm in the

X-direction and 11 lm in the Y-direction. The Poin-

caré maps show single-dot with fully overlapping rotor

center orbits, indicating the presence of only 1X

synchronous vibration. Therefore, increasing the load

at high speeds also improves the stability of the

system.

The load is an important parameter affecting the

stability of the rotor system. The analysis shows that

Fig. 14 Predicted dynamic orbit, FFT plots, and Poincaré maps of the rotor center for different load (rotational speed: 12 krpm, AMB

load ratio: 0.5)
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increasing the load can effectively improve the

stability of the system. The stiffness of the GFB is

very sensitive to changes in load and increasing the

load will greatly increase the dynamic eccentricity of

the system and therefore the stiffness. Compared to the

GFB, the AMB has very little change in stiffness.

Increasing the load therefore increases the stiffness

and natural frequency of the system, which in turn

increases the speed of the 1/2X subsynchronous

vibrations and the instability threshold of the whips,

and to some extent weakens the amplitude of the

synchronous vibrations. The additional load can

therefore also be an effective means of improving

system stability.

4.4 Effect of equilibrium position

on rotordynamics of HFMBs

Figure 16 shows the bifurcation diagrams of the rotor

center with different equilibrium positions in the

vertical and horizontal directions. As shown in

Fig. 16a, in the Cartesian coordinate system, the

equilibrium position of the HFMB moves from (-50,

0 lm) to (50 lm, 0 lm) along the X axis. In Fig. 16b

and c, the bifurcation diagram of the rotor center is

divided into three parts. When the equilibrium position

along the X axis changes between -20 and 15 lm

(this situation is defined as A in Fig. 16), the rotor

center exhibits a periodic response. As the equilibrium

Fig. 15 Predicted dynamic orbit, FFT plots, and Poincaré maps of the rotor center for different load (rotational speed: 60 krpm, AMB

load ratio: 0.5)

Fig. 16 Bifurcation diagrams of the rotor center in the vertical and horizontal directions adopting different equilibrium position in the

X-direction
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position increases or decreases along the X axis, i.e.

the equilibrium position changes from -20 to

-40 lm or from 15 to 40 lm (defined as B), the rotor

motion changes from a single point to a double point.

As the equilibrium position continues to increase or

decrease, i.e. the equilibrium position is greater than

40 lm or less than -40 lm (defined as C), the rotor

center gradually becomes unstable. The results show

that equilibrium positions close to the edge of the

bearing in the vertical direction lead to instability of

the system.

Figure 17 shows the FFT plots of the rotor center

corresponding to the three situations in Fig. 16. When

the equilibrium position of the AMB is 0 lm (situation

A) along the X axis, the 1X synchronous vibration is

7.71 lm. In contrast, when the equilibrium position is

-30 lm (situation B), the 1X synchronous vibration is

8.03 lm and the 1/2X subsynchronous vibration is

3.96 lm. The 1X synchronous vibration of situation B

is larger than that of situation A, and the 1/2X

subsynchronous vibration appears. In addition, when

the equilibrium position is -50 lm (situation C), the

1X synchronous vibration increases further and the

frequency components of the subsynchronous vibra-

tion become chaotic.

Figure 18 shows the bifurcation diagrams of the

rotor center in the vertical and horizontal directions as

the equilibrium position moves along the Y direction.

The bifurcation diagram of the rotor motion can also

be divided into three parts. In situation A, where the

equilibrium position is between -25 and 25 lm, the

movement of the rotor shows a periodic response.

When the equilibrium position is in situation B (the

equilibrium is between -40 and -25 lm or between

25 and 40 lm), the movement of the rotor shows

quasi-periodic response. When the equilibrium posi-

tion is further increased or decreased, the movement of

the rotor is unexpectedly stabilizes again, which is

clearly different from the change of the equilibrium

position in the X-direction.

Figure 19 shows the FFT plots of the rotor center

corresponding to the three situations in Fig. 18. The

synchronous vibration is 8.9, 9 and 9 lm when the

equilibrium position in the Y-direction is 0, -35 and

-50 lm, respectively. The synchronous vibration of

the rotor is almost independent of the shift of the

equilibrium position in the Y direction. When the

equilibrium position is -35 lm, the subsynchronous

vibration is 2.2 lm with a very low frequency

component. A shift in the equilibrium position in the

Fig. 17 FFT plots of the rotor center for different equilibrium position along the X direction: a 0 lm, b -30 lm, c -50 lm

Fig. 18 Bifurcation diagrams of the rotor center in the vertical and horizontal directions adopting different equilibrium position in the

Y direction
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horizontal direction therefore has little effect on the

stability of the system, with larger shifts actually

restoring the stability of the system.

The equilibrium position is a unique and important

parameter for HFMBs. Normally, the equilibrium

position of the AMB must to follow the eccentricity of

the GFB to ensure good system operation [3]. How-

ever, the eccentricity of the GFB is difficult to predict

accurately, so the equilibrium position often does not

follow this eccentricity exactly [1]. The analysis

shows that the stability of the rotor gradually decreases

when the equilibrium position is in the vertical

direction close to the bearing edge, producing a very

chaotic low frequency vibration signal, while the

stability of the rotor first decreases and then increases

when the equilibrium position is in the horizontal

direction close to the bearing edge. There are two

reasons for this. Firstly, in order to achieve the

adjustment of the equilibrium position, the closed-

loop control system has to overcome the additional

gravity in the vertical direction, which causes the

AMB to have a greater nonlinear stiffness in the

vertical direction than in the horizontal direction.

Secondly, the dynamic behavior of the GFB is

anisotropic in the X and Y directions. The predicted

results show that the growth rate of damping is greater

with displacement in the Y-direction than in the

X-direction, resulting in greater damping in the

Y-direction than in the X-direction for the same

displacement. In addition, the cross-coupled stiffness

is less in the Y direction than in the X direction for the

same displacement. The increase in energy dissipation

is accompanied by a reduction in tangential friction,

which leads to an equilibrium position in the Y-direc-

tion near the edge of the bearing and can stabilize the

system again.

In summary, the equilibrium position of the HFMB

must be maintained within a certain range to keep the

system stable. The anisotropy of the AMB and GFB

means that changes in the equilibrium position in the

vertical direction have a significantly greater effect on

the stability of the system than in the horizontal

direction.

5 Conclusion

HFMBs, which combine GFBs and AMBs, offer a

number of potential performance advantages through

special features that define the operating conditions. In

this paper the locus of the rotor center is tracked by

simultaneously solving the equations of motion for the

rigid rotor, the deformation equations for the top and

bump foil, the unsteady Reynolds equation and the

PID-controlled electromagnetic force equation in the

time domain. The accuracy of the numerical predic-

tions is verified by comparison with the experimental

results.

The working mode and load sharing ratio are two

important functions of the operating conditions used to

improve system stability. The AMB mode or AMB

load ratio of 1 (hybrid mode) facilitates the suppres-

sion of 1/2X subsynchronous vibration at low speeds.

The hybrid mode increases the instability threshold for

the whip, making it easier to keep the system stable at

high speeds.

Increasing the load will improve the stability of the

system by increasing its stiffness and natural fre-

quency, thereby increasing the speed of 1/2X sub

synchronous vibration and the instability threshold for

the whip. And the equilibrium position of HFMBs

should be kept within a certain range, because the

Fig. 19 FFT plots of the rotor center for different equilibrium position in the Y direction: a 0 lm, b -35 lm, c -50 lm
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anisotropy of the dynamic characteristics of AMBs

and GFBs may lead to the instability of the system.

In the future, a PID-controlled HFMBs-rotor test rig

will be used to achieve optimum stability under

different operating conditions by adjusting the work-

ing mode and load sharing ratio. The question of

whether the equilibrium position of the AMB must

accurately track the eccentricity of the GFB will be

investigated more thoroughly and systematically.

Author’s contribution All authors contributed to the study

conception and design. Material preparation, data collection and

analysis were performed by HZ, MC, XZ, LF and KF. The first

draft of the manuscript was written by HZ, and all authors

commented on previous versions of the manuscript. All authors

read and approved the final manuscript.

Funding This work was supported by the National Natural

Science Foundation of China (U22A20214), National Key

Research and Development Program of China

(2021YFF0600208), and the Science and Technology

Innovation Program of Hunan Province (2020RC4018,

2020GK2069).

Data availability The datasets generated during and/or

analyzed during the current study are available from the

corresponding author upon reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or

nonfinancial interests to disclose.

References

1. Pham, M.N., Ahn, H.J.: Experimental optimization of a

hybrid foil-magnetic bearing to support a flexible rotor.

Mech. Syst. Signal Proc. 46(2), 361–372 (2014)

2. Jeong, S., Jeon, D., Lee, Y.B.: Rigid mode vibration control

and dynamic behavior of hybrid foil-magnetic bearing turbo

blower. J. Eng. Gas. Turbines Power-Trans. ASME. 139(5),

052501 (2017)

3. Heshmat, H., Chen, H.M., Walton, J.F.: On the performance

of hybrid foil-magnetic bearings. J. Eng. Gas. Turbines

Power Trans. ASME. 122(1), 73–81 (2000)

4. Swanson, E.E., Heshmat, H., Walton, J.: Performance of a

foil-magnetic hybrid bearing. J. Eng. Gas. Turbines Power-

Trans. ASME. 124(2), 375–382 (2002)

5. Jeong, S., Lee, Y.B.: Effects of eccentricity and vibration

response on high-speed rigid rotor supported by hybrid foil-

magnetic bearing. Proc. Inst. Mech. Eng. Part C J. Eng.

Mech. Eng. Sci. 230(6), 994–1006 (2016)

6. Jeong, S., Lee, Y.B.: Vibration control of high-speed rotor

supported by hybrid foil-magnetic bearing with sudden

imbalance. J. Vib. Control. 23(8), 1296–1308 (2017)

7. Swanson, E.E.: Bump foil damping using a simplified

model. J. Tribol.-Trans. ASME. 128(3), 542–550 (2006)

8. Lee, Y.B., Park, D.J., Kim, C.H., Kim, S.J.: Operating

characteristics of the bump foil journal bearings with top

foil bending phenomenon and correlation among bump

foils. Tribol. Int. 41(4), 221–233 (2008)

9. Le Lez, S., Arghir, M., Frene, J.: A new bump-type foil

bearing structure analytical model. J. Eng. Gas. Turbines

Power-Trans. ASME. 129(4), 1047–1057 (2007)

10. Feng, K., Kaneko, S.: Analytical model of bump-type foil

bearings using a link-spring structure and a finite-element

shell model. J. Tribol.-Trans. ASME. 132(2), 021706 (2010)

11. Larsen, J.S., Varela, A.C., Santos, I.F.: Numerical and

experimental investigation of bump foil mechanical beha-

viour. Tribol. Int. 74, 46–56 (2014)

12. Arakere, N.K., Nelson, H.D.: An analysis of gas-lubricated

foil-journal bearings. Tribol. Trans. 35(1), 1–10 (1992)

13. Faria , M.T.C., San Andrés, L.: On the Numerical Modeling

of High-Speed Hydrodynamic Gas Bearings. J. Tribol.

Trans. ASME. 122(1), 124–130 (1999)

14. Ullah, H., Shoaib, M., Akbar, A., Raja, M.A.Z., Islam, S.,

Nisar, K.S.: Neuro-computing for hall current and MHD

effects on the flow of micro-polar nano-fluid between two

parallel rotating plates. Arab. J. Sci. Eng. 47(12),

16371–16391 (2022)

15. Ullah, H., Khan, I., Fiza, M., Hamadneh, N.N., Fayz-Al-

Asad, M., Islam, S., Khan, I., Raja, M.A.Z., Shoaib, M.:

MHD boundary layer flow over a stretching sheet: a new

stochastic method. Math. Probl. Eng. 2021, 9924593 (2021)

16. Ullah, H., Fiza, M., Zahoor Raja, M.A., Khan, I., Shoaib,

M., Al-Mekhlafi, S.M.: Intelligent computing of levenberg-

marquard technique backpropagation neural networks for

numerical treatment of squeezing nanofluid flow between

two circular plates. Math. Probl. Eng. 2022, 9451091 (2022)

17. Bilal, H., Ullah, H., Fiza, M., Islam, S., Raja, M.A.Z.,

Shoaib, M., Khan, I.: A Levenberg-Marquardt backpropa-

gation method for unsteady squeezing flow of heat and mass

transfer behaviour between parallel plates. Adv. Mech. Eng.

13(10), 16878140211040896 (2021)

18. Bhore, S.P., Darpe, A.K.: Nonlinear dynamics of flexible

rotor supported on the gas foil journal bearings. J. Sound

Vibr. 332(20), 5135–5150 (2013)

19. Bonello, P., Pham, H.M.: The efficient computation of the

nonlinear dynamic response of a foil–air bearing rotor sys-

tem. J. Sound Vibr. 333(15), 3459–3478 (2014)

20. Bonello, P., Pham, H.M.: Nonlinear dynamic analysis of

high speed oil-free turbomachinery with focus on stability

and self-excited vibration. J. Tribol.-Trans. ASME. 136(4),

041705 (2014)

21. Larsen, J.S., Santos, I.F.: On the nonlinear steady-state

response of rigid rotors supported by air foil bearings—

theory and experiments. J. Sound Vibr. 346, 284–297 (2015)

22. Larsen, J.S., Santos, I.F., von Osmanski, S.: Stability of rigid

rotors supported by air foil bearings: comparison of two

fundamental approaches. J. Sound Vibr. 381, 179–191 (2016)

23. Xu, F.C., Kim, D.: Dynamic performance of foil bearings

with a quadratic stiffness model. Neurocomputing 216,

666–671 (2016)

24. Von Osmanski, S., Larsen, J.S., Santos, I.F.: A fully coupled

air foil bearing model considering friction—theory and

experiment. J. Sound Vibr. 400, 660–679 (2017)

123

14898 H Zhang



25. Guan, H.-Q., Feng, K., Yu, K., Cao, Y.-L., Wu, Y.-H.:

Nonlinear dynamic responses of a rigid rotor supported by

active bump-type foil bearings. Nonlinear Dyn. 100(3),

2241–2264 (2020)

26. Jiang, K., Zhu, C.: Multi-frequency periodic vibration

suppressing in active magnetic bearing-rotor systems via

response matching in frequency domain. Mech. Syst. Signal

Proc. 25(4), 1417–1429 (2011)

27. Kozanecka, D., Kozanecki, Z., Łagodziński, J.: Active
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