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Abstract H∞ control is well-known for its robust-
ness performance, but the spacecraft attitude H∞ con-
troller design under actuator misalignments and distur-
bances remains unexplored. In addition, the heavy com-
putational demands prevent the implementation of an
H∞ controller for nonlinear systems in higher dimen-
sions. To address these challenges, a robust H∞ con-
troller is proposed for the rigid spacecraft attitude con-
trol problem in the presence of actuator misalignments
anddisturbances basedon the solutionof theHamilton–
Jacobi–Isaacs (HJI) partial differential equation (PDE).
The L2-gain of the closed-loop system is proved to be
bounded by a specified disturbance attenuation level.
An efficient sparse successive Chebyshev–Galerkin
method is also proposed to solve the nonlinear HJI
PDE, thus the implementation of the proposed con-
troller is facilitated. It is also proved that the compu-
tational cost grows only polynomially with the system
dimension. The effectiveness of the proposed robust
H∞ controller is validated through numerical simula-
tions.
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1 Introduction

The rigid spacecraft attitude control system should
attain its control objective under the ubiquitous distur-
bances and possible modeling uncertainties like actua-
tor misalignments [1–3]. Robust control methods have
been investigated for attitude control systems under
actuator misalignments and disturbances in the litera-
ture [4]. Besides concerning with closed-loop stability,
one may also want to specify and even optimize the
level of disturbance attenuation for the attitude con-
trol system. In this paper, a nonlinear robust H∞ atti-
tude controller is proposed, and the maximum level of
disturbance attenuation under actuator misalignments
is guaranteed. To implement the proposed controller,
an efficient sparse successive Chebyshev–Galerkin
method is also designed to solve the Hamilton–Jacobi–
Isaacs (HJI) equation.

External disturbances have been explicitly consid-
ered in the design procedure ofmost attitude controllers
[5–10]. In additional to disturbances, modeling uncer-
tainties also bring non-negligible influences on the per-
formance of the controller. Actuator uncertainties like
misalignments may be introduced in the attitude con-
trol system, which are often caused by manufactur-
ing tolerances and the deformation of the frame struc-
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ture in the launching process [11]. These misalignment
angles could lead to the performance degradation and
even system failures for the attitude control task [12].
To calibrate the actuator misalignments, an extended
Kalman filter is employed to estimate themisalignment
angles in [13]. In [12] and [14], adaptive controllers are
designed for attitude controller problems under mis-
alignments. Finite-time control methods and control
allocation schemes are combined in [15] to guaran-
tee the finite-time convergence of the state under mis-
alignments. While in [16] sliding model controller is
designed to handle the attitude control problem with
both actuator misalignments and faults.

Optimal control techniques have also been inves-
tigated for the attitude control problem under actua-
tor misalignments and disturbances. In [17], a guaran-
teed cost controller is designed, and it is also shown
that the controller converges to the optimal guaranteed
cost controller during the iterations. Note also that the
design of the optimal guaranteed cost controller relies
on some restricted assumptions on the disturbance. In
[18], an inverse optimal control-based robust controller
is designed for attitude control problems with actua-
tor misalignments. Whereas in [19] actuator misalign-
ments and pointing constraints are considered, and an
adaptive dynamic programming-based robust optimal
controller is designed.

The prescribed performance control is an approach
that can ensure both transient and steady-state perfor-
mance of the dynamic system [20,21]. In the context
of spacecraft attitude control, prescribed performance
controllers have been developed by integrating meth-
ods like backstepping and sliding mode control into
the architecture [22,23]. Furthermore, the application
of prescribed performance controllers has been further
extended to spacecraft with flexible appendages [24].
Compared with optimal controllers and prescribed per-
formance controllers, the H∞ controller has preferred
performance in robustness, and the L2-gain of the sys-
tem can also be specified [22,25].

Linear and nonlinear H∞ control techniques have
also been widely studied for spacecraft control prob-
lems. In [26], the robust attitude control problem is
formulated in terms of linear matrix inequalities. Non-
linear H∞ controller design procedures usually involve
solving the HJI equation, which is a nonlinear partial
differential equation and generally hard to deal with.
In [27], the robust H∞ controller is designed for posi-
tion and attitude tracking using the θ − D method,

which introduces an intermediate variable and approx-
imately converts the HJI equations into an algebraic
Riccati inequality and a sequence of Lyapunov equa-
tions. An H∞ inverse optimal controller is proposed
for spacecraft attitude control problems in [28] and the
solution function of the HJI equation is constructed
based on aLyapunov function, but the cost functional in
the dissipation inequality cannot be pre-defined. State-
dependent Riccati equation method is also employed
for the H∞ control of relative motion in [29], and the
spacecraft dynamics are linearized to reduce the HJI
equations into Riccati equations.

The successive Galerkin approximation method is
an alternative and accurate numerical scheme to solve
the HJI equation raised in nonlinear H∞ control prob-
lems [30,31]. In previous works, the multidimensional
basis function set in the successive Galerkin approxi-
mation method is manually chosen, which relies heav-
ily on design experiences and can hardly be extended to
high-dimensional problems. Besides, the multidimen-
sional integrals in the successive Galerkin approxima-
tion method are calculated using tensor-product rules
and its computational cost usually grows exponentially
with the dimension, which poses significant challenges
for nonlinear systems in higher dimensions. Although
the successive Galerkin approximation method has
been used in [30,31] to solve the HJI equation, it is
generally not easy for one to properly design the multi-
dimensional basis function set and quadrature rule,
especially for nonlinear systems in higher dimensions.

This paper investigates the robust H∞ attitude con-
trol problem under actuator misalignment and presents
the following two major contributions.

1.Development of a nonlinear robust H∞ controller:
The nonlinear robust H∞ control problem for space-
craft attitude control systems subject to actuator mis-
alignments and disturbances remains a challenging and
underexplored area of research. In this paper, a robust
H∞ attitude controller for attitude control systemswith
both actuator misalignments and disturbances is pro-
posed by solving an HJI equation. It is proved that the
closed-loop attitude control system is dissipative with
respect to the prescribed supply rate.

2. Design of a sparse successive Chebyshev–
Galerkinmethod:The conventional successiveGalerkin
approximationmethod suffers from the curse of dimen-
sionality in dealing with nonlinear HJI equations. In
this paper, a sparse successive Chebyshev-Galerkin
method is proposed to efficiently obtain the nonlinear
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robust H∞ controller. The proposed method involves
constructing amulti-dimensional basis function set and
quadrature rule using the Smolyak’s sparse grid formu-
lation. The computational cost of the sparse successive
Chebyshev–Galerkin method is shown to grow only
polynomiallywith the dimension,making it an efficient
and competitive candidate for awide range of nonlinear
H∞ control problems. The robust H∞ controller can be
analytically constructed using the obtained basis func-
tions and coefficients, which helps achieve high on-line
implementation efficiency.

The remainder of this paper is arranged as fol-
lows. The following section introduces the attitude con-
trol problem considered in this paper. The robust H∞
controller is designed and the dissipation analysis is
given in Sect. 3. Section4 presents a sparse successive
Chebyshev–Galerkin method to efficiently implement
the controller. Numerical simulations are conducted in
Sect. 5 and Section 6 summarizes the paper.

2 Problem statement

The nonlinear robust H∞ attitude controller design
problem under actuator misalignments and external
disturbances is considered in this paper. Let ρ =
[ρ1, ρ2, ρ3]�, ω = [ω1, ω2, ω3]�, and u =
[u1, u2, u3]� denote theCayley-Rodrigues parameters,
angle velocities along the principle axes, and the inputs,
respectively. The attitude control system of the rigid
spacecraft is described by [32]

ρ̇ = H(ρ)ω (1)

J ω̇ = S(ω)Jω + Λu + d (2)

where J is the inertia matrix and d ∈ L2(0,+∞) is
the disturbance. The matrix Λ describes the influence
of actuator misalignments. The misalignment angles
could be caused by imperfection of assembling or struc-
tural deformation. The matrix H(ρ) is defined by

H(ρ) = 1

2

(
I − S(ρ) + ρρ�) (3)

and the skew-symmetric matrix is given by [32]

S(ρ) =
⎡
⎣

0 ρ3 −ρ2
−ρ3 0 ρ1
ρ2 −ρ1 0

⎤
⎦ . (4)

As illustrated in Fig. 1 [12], it is assumed that the
three momentumwheels are orthogonally installed and

aligned with the principle axes. The weighted matrix
Λ is given by [12]

Λ =
⎡
⎣

cos�α1 sin�α2 sin�β2 sin�α3 cos�β3

sin�α1 cos�β1 cos�α2 sin�α3 sin�β3

sin�α1 sin�β1 sin�α2 cos�β2 cos�α3

⎤
⎦

(5)

where�αi and�βi (i = 1, 2, 3) are the angles of devi-
ation from the nominal axes (see Fig. 1). Usually �αi

is a small angle and �βi ∈ (−π, π ]. Specifically, the
range |�αi | ≤ π/10 is considered in this paper since the
misalignment angles of previously launched spacecraft
never exceed 7◦ [12].

To simplify the notation, the attitude control system
of the rigid spacecraft can be rewritten into

ẋ = f (x) + g(x)Λu + k(x)d (6)

where

f (x) =
[
H(ρ)ω

J−1S(ω)Jω

]
, g(x) = k(x) =

[
03×3

J−1

]
.

(7)

The objective of this paper is to design a robust atti-
tude controller such that the nonlinear system (6) is
dissipative with respect to the supply rate

s(x, u, d) = −‖h(x)‖2 − ‖u‖2Rr
+ γ 2 ‖d‖2 (8)

for the properly chosen positive constant γ . Here Rr is
a user-defined positive definite matrix. The nonlinear
system (6) is said to be dissipative with respective to
(8) if there exists a storage function S ≥ 0 such that
the dissipation inequality

S(xT ) +
∫ T

0
(‖h(x)‖2 + ‖u(t)‖2Rr

)dt ≤ γ 2S(x0)

+
∫ T

0
‖d(t)‖2 dt, x0 = x(t = 0)

(9)

holds for all time T ≥ 0 and all d(t) ∈ L2[0, T ] [25,
33,34], and h(x) is the defined cost for the states. If the
storage function is continuously differentiable, take the
time derivative of both side of (9), and it follows that

Ṡ ≤ s(x, u, d). (10)

Thedissipative property also implies that the L2-gain of
the rigid spacecraft attitude control system is less than
or equal to γ [25]. This finite-gain L2 stability further
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Fig. 1 Misalignment
angles of the attitude control
system

suggests that ratio of energy transmission from the dis-
turbance signal to the output signal is upper bounded by
the pre-defined disturbance attenuation level. Thus, the
L2-gain is regarded as a measure of the robustness of
a control system to various kinds of disturbances. Note
that the initial state x0 in the dissipation inequality is
not necessarily at the equilibrium point.

Consider an attitude control systemwithout actuator
misalignments

ẋ = f (x) + g(x)u + k(x)d. (11)

The HJI equation for the above nonlinear system is
given by

1

4
V�
x

[
1

γ 2 k(x)k�(x) − g(x)R−1g�(x)

]
Vx

+V�
x f (x) + ‖h(x)‖2 = 0, V (x = 0) = 0 (12)

where V (x) is the value function of the HJI equation
and Vx = ∂V

∂x is the partial derivative with respect to
the state. In the remainder of this paper, V is also used
as the abbreviation of V (x) for convenience.

In this paper, we set R = λI and I is an iden-
tity matrix and λ is a positive number. Assume that a
continuously differentiable solution exists for the HJI
equation. Based on the solution V (x), the H∞ optimal
controller for the nonlinear system (11) is given by

u∗ = −1

2
R−1g�(x)Vx . (13)

The worst disturbance w∗ that the controller u∗ is able
to handle is described by

w∗ = 1

2γ 2 k
�(x)Vx . (14)

The existence condition of a continuously differ-
entiable solution V (x) to (12) is discussed in terms
of the invariant-manifold of the Hamiltonian system
in [35]. Note that the solution function V (x) is also

a storage function for the nonlinear system (11) with
supply rate s(x, u, d) = −‖h(x)‖2−‖u‖2R +γ 2 ‖d‖2
[33]. However, due to the uncertainty caused by actu-
ator misalignments, the solution function of the HJI
equation (with Rr = R) cannot directly solves the dis-
sipation inequality for the nonlinear system (6). In the
following sections, a nonlinear robust H∞ controller is
designed such that the dissipation inequality holds for
the attitude control system (6) undermisalignments and
disturbances.

3 Nonlinear robust H∞ attitude control method

3.1 Robust controller design

Based on the solution function V (x) of the HJI Eq.
(12), the nonlinear robust H∞ controller for the attitude
control system (6) is designed as

ur = −R−1g�(x)Vx . (15)

Let Rr = R/4, the dissipation property of the closed-
loop attitude control system with actuator misalign-
ments and disturbances is stated as follows.

Theorem 1 Assume that a continuously differentiable
solution V (x) exists for the HJI Eq. (12), then the
closed-loop attitude control system (6) under the con-
troller ur is dissipative with respect to the supply rate
s(x, ur, d) = −‖h(x)‖2 − ‖ur‖2Rr

+ γ 2 ‖d‖2.
Proof Along the trajectory of the nonlinear system (6),
the time derivative of the continuously differentiable
solution V is given by

V̇ = V�
x [ f (x) + g(x)Λur + k(x)d]

= V�
x
[
f (x) + 2g(x)Λu∗ + k(x)d

]

= V�
x
[
f (x) + g(x)u∗ + k(x)d

]+ V�
x g(x)(2Λ − I )u∗
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= V�
x
[
f (x) + g(x)u∗]+ V�

x g(x)(2Λ − I )u∗

+V�
x k(x)d

= V�
x f (x) − 1

2
V�
x g(x)R−1g�(x)Vx + V�

x k(x)d

+V�
x g(x)(2Λ − I )u∗

= − ‖h(x)‖2 − 1

4
V�
x g(x)R−1g�(x)Vx + V�

x k(x)d

− 1

4γ 2 V
�
x k(x)k�(x)Vx + V�

x g(x)(2Λ − I )u∗

= − ‖h(x)‖2 − 1

4
V�
x g(x)R−1g�(x)Vx + γ 2 ‖d‖2

−γ 2
(

1

4γ 4 V
�
x k(x)k�(x)Vx − 1

γ 2 V
�
x k(x)d + ‖d‖2

)

+V�
x g(x)(2Λ − I )u∗

= − ‖h(x)‖2 − 1

4
V�
x g(x)R−1g�(x)Vx + γ 2 ‖d‖2

−γ 2
∥∥∥∥

1

2γ 2 k
�(x)Vx − d

∥∥∥∥
2

+ V�
x g(x)(2Λ − I )u∗

= − ‖h(x)‖2 − ∥∥u∗∥∥2
R − γ 2

∥∥∥∥
1

2γ 2 k
�(x)Vx − d

∥∥∥∥
2

+γ 2 ‖d‖2 + V�
x g(x)(2Λ − I )u∗

≤ − ‖h(x)‖2 − ∥∥u∗∥∥2
R + γ 2 ‖d‖2 + V�

x g(x)(2Λ − I )u∗

We firstly consider the positive definiteness of the
symmetric matrix W = Λ + Λ� − I . The matrix is
given by (20).

The sequential principal minors of the matrixW are
given as follows.

W1 =2 cos�α1 − 1 (15)

W2 = − (sin�α1 cos�β1 + sin�α2 sin�β2)
2

+ (2 cos�α1 − 1)(2 cos�α2 − 1)

≥(2 cos�α1 − 1)(2 cos�α2 − 1) − (|sin�α1|
+|sin�α2|)2 (16)

W3 =(2 cos�α1 − 1)(2 cos�α2 − 1)(2 cos�α3 − 1)

+ 2 (sin�α1 cos�β1 + sin�α2 sin�β2)

× (sin�α2 sin�β2 + sin�α3 sin�β3)

× (sin�α1 sin�β1 + sin�α3 cos�β3)

− (2 cos�α2 − 1) (sin�α1 sin�β1

+ sin�α3 cos�β3)
2 − (2 cos�α1 − 1)

× (sin�α2 cos�β2 + sin�α3 sin�β3)
2

− (2 cos�α3 − 1) (sin�α1 cos�β1

+ sin�α2 sin�β2)
2

≥(2 cos�α1 − 1)(2 cos�α2 − 1)(2 cos�α3 − 1)

− 2 (|sin�α1| + |sin�α2|) (|sin�α2|

+|sin�α3|) (|sin�α1| + |sin�α3|)
− (2 cos�α1 − 1) (|sin�α2| + |sin�α3|)2
− (2 cos�α2 − 1) (|sin�α1| + |sin�α3|)2
− (2 cos�α3 − 1) (|sin�α1| + |sin�α2|)2

(17)

Based on the condition |�αi | ≤ π/10, it is straightfor-
ward to verify that

W1 > 0, W2 > 0, W3 > 0. (18)

As shown above, the sequential principal minors of the
symmetric matrix W are all positive, so W is positive
definite. Note that

W = 1

2

(
2Λ − I + (2Λ − I )�

)
. (19)

By the positive definiteness ofW , for any vector v ∈ R
3

and v 
= 0, it is straightforward to verify that v�(2Λ−
I )v > 0, then 2Λ− I and (2Λ− I )R−1 are also positive
definite. It then follows that

V̇ = − ‖h(x)‖2 − ∥∥u∗∥∥2
R + γ 2 ‖d‖2 + V�

x g(x)(2Λ − I )u∗

= − ‖h(x)‖2 − ∥∥u∗∥∥2
R + γ 2 ‖d‖2

− 1

2
V�
x g(x)(2Λ − I )R−1g�(x)Vx

≤ − ‖h(x)‖2 − ∥∥u∗∥∥2
R + γ 2 ‖d‖2

= − ‖h(x)‖2 − ‖ur‖2Rr
+ γ 2 ‖d‖2

The above inequality means that the nonlinear sys-
tem is dissipative with respective to the defined sup-
ply function s(x, ur, d) [33,35,36]. The inequality also
implies the finite-gain L2 stability and internal stability
of the closed-loop system [35]. ��

Note that the nonlinear robust H∞ controller for
the attitude control system is designed based on the
solution of the HJI Eq. (12). But the HJI equation is
a nonlinear partial differential equation for which an
analytical solution seldom exists. Numerical methods
for the HJI equation also frequently suffer from heavy
computational burden and even the so-called curse of
dimensionality.
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W =
⎡
⎣

2 cos�α1 − 1 sin�α2 sin�β2 + sin�α1 cos�β1 sin�α3 cos�β3 + sin�α1 sin�β1

sin�α2 sin�β2 + sin�α1 cos�β1 2 cos�α2 − 1 sin�α3 sin�β3 + sin�α2 cos�β2

sin�α3 cos�β3 + sin�α1 sin�β1 sin�α3 sin�β3 + sin�α2 cos�β2 2 cos�α3 − 1
.

⎤
⎦ (20)

3.2 Successive approximation for the nonlinear HJI
equation

Compared with nonlinear PDEs, linear PDEs are more
comprehensively investigated and understood. Many
numerical methods have also been proposed to solve
linear PDEs. Fortunately, the nonlinear HJI equation
can be converted to a sequence of linear PDEs based
on the successive approximation technique [30,31,37].
The successive approximation process is given inAlgo-
rithm 1.

Algorithm 1 Successive Approximation for the HJI
Equation
Input: Initial stabilizing controller us
Output: Solution function V

1 u[1] = us
2 for i = 1 → ∞ do
3 Initialize the disturbance w[i, j=1] = 0
4 for j = 1 → ∞ do
5 Solve the linear PDE:(

V [i, j]
x

)�[
f (x) + g(x)u[i] + k(x)w[i, j]]+ ‖h‖2

+ ∥∥u[i]∥∥2
R − γ 2

∥∥w[i, j]∥∥2 = 0, V [i, j+1](0) = 0
6 Update the disturbance:

w[i, j+1](x) = 1
2γ 2 k

�(x)V [i, j]
x

7 Update the control strategy:

u[i+1](x) = − 1
2 R

−1g�(x)V [i,∞]
x

8 return V = V [∞,∞]

The successive approximation process has a double-
loop structure, namely the inner loop and the outer loop.
As shown in Algorithm 1, the linear PDE

(
V [i, j+1]
x

)� [
f (x) + g(x)u[i] + k(x)w[i, j]]

+‖h(x)‖2 +
∥∥∥u[i]

∥∥∥
2

R
− γ 2

∥∥∥w[i, j]
∥∥∥
2 = 0 (21)

is recursively solved to update the control and distur-
bance strategies. These two loops of the successive

approximation process can also be regarded as the strat-
egy improvement iterations of a two-player zero-sum
game [31]. In the inner loop, one player attempts to
find the worst disturbance that the current controller
is able to handle. Whereas in the outer loop the other
player tries to optimize the performance index under
the updated disturbance. The solving process contin-
ues until both strategies do not change anymore. The
convergence of the successive approximation method
has been investigated and proved in [30,31,37].

Specifically, to implement the iteration process, an
initial stabilizing controller us for the nominal space-
craft attitude control system ẋ = f (x) + g(x)u is
needed. Methods like backstepping can be employed
to generate a feasible controller us for the considered
nominal attitude control system.

3.3 Successive galerkin approximation for nonlinear
HJI equation

The Galerkin method is an accurate approach to solve
linear PDEs. It belongs to theweighted residualmethod
and the resultant equation is in the form of∫

D
r(x)
k(x)dx = 0, k = 1, 2, . . . , N . (22)

where D is the solution domain; 
k(x) is the multivari-
ate test function; r(x) is the residual of the linear PDE
which is given by

r(x) =
(
V [i, j](x)

)� [
f (x) + g(x)u[i] + k(x)w[i, j]]

+ ‖h(x)‖2 + ‖u[i]‖2R − γ 2‖w[i, j]‖2.
In theGalerkinmethod, the basis functions are identical
to the test functions [38]. The solution function of the
linear PDE (21) is approximated by

V [i, j](x) ≈
N∑

k=1

c[i, j]
k 
k(x). (23)

Then the residual in the Galerkinmethod can be explic-
itly given by

r(x) =
[
f (x) + g(x)u[i] + k(x)ω[i, j]]� J�(x)c[i, j+1]

+ ‖h(x)‖2 + ‖u[i]‖2R − γ 2‖ω[i, j]‖2.
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where J (x) is the Jacobian matrix of the vector �(x),
and c[i, j] and �(x) are vectors consist of c[i, j]

k and

k(x), respectively. Substitute the residual r(x) into
the weighted residual Eq. (22), then it follows that
∫

D

k(x)

{[
f (x) + g(x)u[i] + k(x)w[i, j]]� J �(x)

×c[i, j] + ‖h(x)‖2 + ‖u[i]‖2R − γ 2‖w[i, j]‖2
}
dx = 0.

Rearrange the equation and we arrive at

∫

D

k(x)

[
f (x) + g(x)u[i] + k(x)w[i, j]]� J�(x)dx · c[i, j]

=
∫

D

(
−‖h(x)‖2 − ‖u[i]‖2R + γ 2‖w[i, j]‖2

)

k(x)dx.

The Galerkin method transforms the linearized HJI
PDE into a system of linear equations, in which the
unknown variable vector is c[i, j]. As shown above, to
implement the Galerkin method, one should choose
a suitable multivariate basis function set {
k(x)} and
design a multi-dimensional quadrature rule to calcu-
late the integration on D for both sides of the resul-
tant equation. A successive Galerkin approximation
method is designed in [30,31], and theGalerkinmethod
is employed to solve the linear PDE. But the multidi-
mensional basis function set is manually chosen and
the accuracy of the solution relies heavily on design
experiences. Besides, multidimensional integrals in the
Galerkin method are computed using tensor-product
rules, which results in an exponentially growth of the
computational complexity. So the successive Galerkin
approximation method still suffers from heavy compu-
tational burden and even the curse of dimensionality.

3.4 Nested sparse Chebyshev basis function and
Kronrod–Patterson quadrature rule

To reduce the computational cost in solving nonlin-
ear HJI equations, nested sparse grid-based multivari-
ate Chebyshev basis functions and Kronrod–Patterson
quadrature rules are employed. The sparse grid method
dates back to the Smolyak’s rule proposed in 1960s
[39], which provides a general framework for both
interpolation and integration problems [40–42]. Given
the univariate interpolation or quadrature rule Ui , a
multidimensional rule can be constructed using [43]

M =
∑

q+1≤|i |≤q+d

(−1)q+d−|i |

Cd−1
q+d−|i |Ui1 ⊗Ui2 ⊗ · · · ⊗Uid . (24)

where q and d are the maximum level of accuracy
and the number of variables, respectively. Besides,
i = [i1, i2, . . . , id ]� and |·| represents the l1 norm.
The sparse grid method is able to achieve a high com-
putational accuracy level. Instead of employing a com-
pletely tensor-product formula, the Smolyak’s rule in
(24) only uses a selected and small subset of possible
combinations, thus the computational cost is signifi-
cantly reduced.

In this paper, the Chebyshev polynomials are chosen
as the basis functions, and they are given by [44]


0(x) = 1


1(x) = x

(n + 1)
n+1(x) = (2n + 1)x
n(x)

− n
n−1(x), n ≥ 2.

Specifically, nested sparse basis functions are used
to further improve the computational efficiency. The
sequence of nested univariate basis function sets are
given by

Li = {
0(x), 
1(x), 
2(x), . . . , 
2i (x)
}
, i > 1 (25)

where i ∈ Z
+ represents the level of accuracy, and

L1 = {
0(x)}. The nested property means that the
set with lower accuracy levels are included in sets
with a higher level. The nested sparse Chebyshev basis
function-based approximation for a multivariate func-
tion f (x) is given by

f (x) ≈
∑

q+1≤|i |≤q+d

(−1)q+d−|i |Cd−1
q+d−|i |Li1(x1)

⊗ Li2(x2) ⊗ · · · ⊗ Lid (xd). (26)

The combinations of the basis functions are calculated
using

Li1(x1) ⊗ Li2(x2) ⊗ · · · ⊗ Lid (xd)

=
NL1∑
i1=1

NL2∑
i2=1

· · ·
NLd∑
id=1

ci1i2...id · 
i1(x1)
i2(x2) . . . 
id (xd)

(27)

where ci1i2...id is the coefficient to be determined. Since
the basis function sets are nested, a sequence of dis-
jointed basis function sets can be defined as

L̂i = Li − Li−1, i > 1 (28)
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and L̂1 = L1. Themultivariate sparse Chebyshev basis
function set can also be given by [43]

L =
⋃

d≤|i |≤q+d

L̂i1(x1) ⊗ L̂i2(x2) ⊗ · · · ⊗ L̂id (xd).(29)

Similarly, Smolyak’s quadrature rule is used in
this paper to calculate the multidimensional integrals.
Specifically, amultidimensional quadrature rule is con-
structed using weighted combinations of the univariate
rules, namely

I ( f (x)) =
∑

q+1≤|i |≤q+d

(−1)q+d−|i |Cd−1
q+d−|i |

[
Ii1 ⊗ Ii2 ⊗ · · · ⊗ Iid

]
( f ). (30)

The combinations are further calculated using

[
Ii1 ⊗ Ii2 ⊗ · · · ⊗ Iid

]
( f )

=
∑

x1∈Pi1

∑
x2∈Pi2

· · ·
∑

xd∈Pid

c1c2 . . . cd

· f (x1, x2, . . . , xd) (31)

where ci is the corresponding weight for the quadrature
point xi .

In the construction of the multidimensional rules,
the Kronrod–Patterson quadrature formula is chosen as
the univariate rule. TheGauss–Kronrod quadrature for-
mula is designed by inserting Kronrod points into the
Gauss quadrature nodes [45,46]. In univariate cases,
an n-point Gauss quadrature rule can reach an accuracy
level of 2n−1. It means that the n-point rule is exact for
any polynomial with degree less than or equal to 2n−1
but cannot guarantee the exactness for polynomials
with degree larger than 2n − 1. Whereas in the Gauss–
Kronrod quadrature formula, n + 1 Kronrod points are
generated by solving for the zeros of the Stieltjes poly-
nomials, and then they are inserted into the n-point
Gauss quadrature rule. The combination of the 2n + 1
quadrature points leads to a quadrature formula with
an accuracy level of 3n + 1 [46]. The computational
cost is further reduced by using a nested construction
strategy, since the quadrature points at different accu-
racy levels are reused and less function evaluations are
needed [47]. Interested readers are referred to [47] for
more details of the sparse Kronrod–Patterson quadra-
ture formula. Figure2 illustrates 2d and 3d examples
for the sparse Kronrod–Patterson quadrature points.

3.5 Sparse successive Chebyshev–Galerkin method

The approximate solution to (21) is a weighted sum of
the multivariate nested sparse Chebyshev basis func-
tions. Thus the solution function of the linear PDE (21)
is approximated by

V [i, j](x) ≈
(
c[i, j]

)�
�(x) (32)

where c[i, j+1] is the weight vector to be determined
and �(x) is the vector consists of the sparse Chebyshev
basis functions. To simplify the notation, the weighted
residual equation for the linearized PDE can be repre-
sented as

A[i, j]c[i, j] = b[i, j] (33)

where A[i, j] and b[i, j] are defined by

A[k] =

⎡
⎢⎢⎢⎢⎢⎣

∫
D 
1(x)

[
f (x) + g(x)u[i] + k(x)ω[i, j]]� J�(x)dx∫

D 
2(x)
[
f (x) + g(x)u[i] + k(x)ω[i, j]]� J�(x)dx

.

.

.∫
D 
N (x)

[
f (x) + g(x)u[i] + k(x)ω[i, j]]� J�(x)dx

⎤
⎥⎥⎥⎥⎥⎦

(34)

b[k] =

⎡
⎢⎢⎢⎢⎢⎢⎣

∫
D

(
− ‖h(x)‖2 − ∥∥u[i]∥∥2

R + γ 2
∥∥ω[i, j]∥∥2) 
1(x)dx

∫
D

(
− ‖h(x)‖2 − ∥∥u[i]∥∥2

R + γ 2
∥∥ω[i, j]∥∥2) 
2(x)dx

.

.

.∫
D

(
− ‖h(x)‖2 − ∥∥u[i]∥∥2

R + γ 2
∥∥ω[i, j]∥∥2) 
N (x)dx

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(35)

For the linearized PDE (21), the boundary condition at
the state x = 0 is

V [i, j](x = 0) = 0. (36)

By virtue of (32), it can also be expressed as
(
c[i, j]

)�
�(0) = 0. (37)

Taking advantage of the designed sparse successive
Chebyshev–Galerkin method, the linearized HJI PDE
is now transformed into a sequence of systems of linear
Eqs. (33) under the constraint (37). To efficientlyfind an
approximated solution, the system of linear equations
is converted to the constrained quadratic programming
problem

minc[i, j]
∥∥A[i, j]c[i, j+1] − b[i, j]∥∥2

subject to
(
c[i, j]

)�
�(0) = 0.

(38)

This resultant quadratic programming problem can be
efficiently solved, and many off-the-shelf numerical
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Fig. 2 2d and 3d examples
of sparse Kronrod–Patterson
quadrature points

solvers are available, such asCVX[48].During the suc-
cessive approximation process, given the coefficients
the strategies in Algorithm 1 are analytically updated
according to

w[i, j+1](x) = 1

2γ 2 k
�(x)J (x)c[i, j], (39)

u[i+1](x) = −1

2
R−1g�(x)J (x)c[i,∞]. (40)

The solving process can be terminatedwhen the relative
error between two consecutive iterations is less than a
specified criterion.One can also set themaximumnum-
bers of iterations for both the inner and outer loops. The
computational time complexity of the designed sparse
successive Chebyshev–Galerkin method is also ana-
lyzed.

Proposition 1 Given the maximum level of approxi-
mation q, the computational time complexity of the pro-
posed sparse successive Chebyshev–Galerkin method
grows polynomially with the dimension.

Proof Given the maximum level of approximation q,
the number of nested sparse Chebyshev basis functions
is given by

Nbasis =Card

⎧⎨
⎩

⋃

d≤|i |≤q+d

L̂i1 (x1) ⊗ L̂i2 (x2) ⊗ · · · ⊗ L̂id (xd )

⎫⎬
⎭

≤ max
d≤|i |≤q+d

(
Card

{
L̂i1 (x1) ⊗ L̂i2 (x2) ⊗ · · · ⊗ L̂id (xd )

})

· Card {d ≤ |i | ≤ q + d}

= max
d≤|i |≤q+d

⎛
⎝

d∏
τ=1

2iτ −1

⎞
⎠ · Card {d ≤ |i | ≤ q + d}

= max
d≤|i |≤q+d

(
2|i |−d

)
· Card {d ≤ |i | ≤ q + d}

≤2q · Card {d ≤ |i | ≤ q + d}

Here the operator Card{·} returns the number of ele-
ments in the sets. Note that for any iτ , we have

Card
{
L̂iτ

}
≤ 2iτ −1. Based on the property of com-

bination number Cm
n = Cm−1

n−1 + Cm
n−1, the cardinality

of the index set is given by

Nindex =Card {d ≤ |i | ≤ q + d}
=Cd−1

d−1 + Cd−1
d + Cd−1

d+1 + · · ·
+ Cd−1

q+d−2 + Cd−1
q+d−1

=Cd
d + Cd−1

d + Cd−1
d+1 + · · ·

+ Cd−1
q+d−2 + Cd−1

q+d−1

=Cd
d+1 + Cd−1

d+1 + · · · + Cd−1
q+d−2 + Cd−1

q+d−1

=Cd
d+2 + · · · + Cd−1

q+d−2 + Cd−1
q+d−1

=Cd
q+d−1 + Cd−1

q+d−1

=Cd
q+d

Then it follows that

Nbasis ≤ 2qCd
q+d . (41)

Given the maximum level of approximation, the
sparse grid Kronrod–Patterson quadrature formula also
has a polynomially growing number of quadrature
points [47]. Then it is straightforward to verify that the

123



15046 Z. Wang, Y. Li

computational cost in the deduction of the quadratic
programming problem grows polynomially with the
dimension. In fact, the resultant quadratic program-
ming problem can also be solved in polynomial time
based onnumerical schemes like the interior point algo-
rithm [49]. Then it can be summarized that the compu-
tational time complexity of the designed sparse succes-
sive Chebyshev–Galerkin method grows polynomially
with the system dimension. ��

4 Numerical simulations

Simulations are implemented on a laptop with 4.2
GHz CPU and 16 GB RAM to verify the effec-
tiveness of the designed computational method and
the proposed robust H∞ attitude controller. The iner-
tia matrix of the rigid spacecraft is given by J =
diag

([2 kg/m2, 4 kg/m2, 2.5 kg/m2]), and the prod-
ucts of inertia are very small so that they can be
neglected. Three different cases are considered, and
the angles of deviation due to actuator misalignments
are given by

case1 : �α1 = π
10 , �α2 = −π

10 , �α3 = π
10 ,

�β1 = −π
2 , �β2 = π

2 , �β3 = −π
2 .

(42)

case2 : �α1 = −π
10 , �α2 = 0, �α3 = −π

10 ,

�β1 = 0, �β2 = −π
2 , �β3 = 0.

(43)

case3 : �α1 = 0, �α2 = π
10 , �α3 = 0,

�β1 = π
2 , �β2 = 0, �β3 = π

2 .
(44)

4.1 Sparse successive Chebyshev–Galerkin
approximation of the HJI equation

The designed sparse successive Chebyshev–Galerkin
method is firstly implemented to solve nonlinear HJI
Eq. (12), and the conventional successive Galerkin
approximation method in [30,31] is also incorporated
for comparison. In theHJI equation, ‖h(x)‖2 = x�Qx
with Q = I and R = 0.5I . The expected disturbance
attenuation level is set to γ = 3. The accuracy level of
the sparse basis function is chosen as q = 3, and the
accuracy level of the nested sparse Kronrod–Patterson
quadrature rule is chosen as q = 7. An initial stabi-
lizing controller should also be chosen to initialize the
solving process, and it is described by

us =
⎡
⎣

−2 0 0 −1 0 0
0 −2 0 0 −1 0
0 0 −2 0 0 −1

⎤
⎦
[

ρ

ω

]
. (45)

It should be noted that, as shown in Algorithm 1, this
initial controller is designed for the nominal space-
craft attitude control system. The considered solution
domain is x ∈ [−0.5, 0.5]6. In the solving process, 7
outer loop iterations are conducted, and 7 inner loop
iterations are implemented in each outer loop. After
the solving process is finished, 100 points are sampled
from the solution domain to evaluate the relative errors
between the iterations. Specifically, the relative error
between two consecutive iterations is calculated using

δerr =

√∑Ns
i=1

(
V̂c(si ) − V̂p(si )

)2
√∑Ns

i=1

(
V̂p(si )

)2 (46)

where V̂c and V̂p are the solution functions in current
and previous iterations, respectively. Besides, si is the
sampling points and Ns is the total number of sampling
points.

For a general nonlinear system, the conventional
successive Galerkin approximation method is plagued
by a significant computational burden associated with
the selection of basis functions and calculation of
multidimensional integrals. The manual selection of
basis functions, which is commonly used, is a time-
consuming process that greatly depends on design
experience and can significantly impact computational
results. To allow for a fair comparison, the basis func-
tions for the conventional successive Galerkin approxi-
mation method are chosen to be the same as those used
in the proposed sparse successive Chebyshev–Galerkin
method.

In the simulations, 85 basis functions are employed
by both methods. The same iteration process is car-
ried out for the proposed sparse successiveChebyshev–
Galerkin method and the conventional successive
Galerkin approximation method, and denote the resul-
tant solution functions for them as V̂ [i, j] and Ṽ [i, j],
respectively. The proposed sparse successive
Chebyshev–Galerkinmethodutilizes 4, 161 sparse grid
quadrature points for multidimensional integration,
whereas the conventional successive Galerkin approxi-
mationmethod requires 117, 649 tensor productGauss-
Legendre quadrature points for the same level of accu-
racy.
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Fig. 3 Convergence rate, slice of the solution function, and slice of the error function

In each outer loop iteration, a sequence of distur-
bance update operations are implemented. The solution
functions after the sequences of disturbance updates,
i.e., V̂ [i,7] and Ṽ [i,7] (i = 1, 2, . . . , 7), are recorded.
The relative errors between the outer loop iterations
are given in Fig. 3a. It can be seen that the solution
functions converge during the iterations, which is in
good agreementwith the theoretical analysis in [30,37].
As illustrated in Fig. 3a, both methods exhibit a fast
convergence rate and relative error levels of 10−8 are
achieved after the iterations. To visualize the itera-
tions, the x1 − x4 slices of the solution functions V̂ [1,7]
and V̂ [7,7] are shown in Fig. 3b. It can be observed
from the figure that the solution function decreases
significantly, which also demonstrates the effective-
ness of the designed sparse successive Chebyshev–
Galerkin method. The maximum error between the
value function surfaces of V̂ [7,7] and Ṽ [7,7], as shown in
Fig. 3c, is less than 7.0×10−4, indicating that the pro-
posed sparse successive Chebyshev–Galerkin method
achieves a performance that is very close to that of
the conventional successive Galerkin approximation
method.

The computational performance of the sparse suc-
cessive Chebyshev–Galerkin method and the conven-
tional successive Galerkin approximation method is
also evaluated, yielding computational time durations
of 50.89 seconds and 910.06 seconds, respectively.
These results demonstrate the computational efficiency
of the proposed numerical approach for solving the
HJI equation. The superiority of the sparse succes-
sive Chebyshev–Galerkin method over the conven-

tional successive Galerkin approximation method can
be attributed to the reduced number of quadrature
points utilized in the proposed method, since the pro-
posed method employs only 3.54% of the quadra-
ture points required by the conventional successive
Galerkin approximation method (4,161 vs. 117,649).

To assess the viability of the proposed approach in
real-world applications, the proposed robust H∞ con-
troller is calculated on 1,000 randomly sampled states
from the solution domain and the computational time
is recorded. The results indicate that, given the solu-
tion function V̂ [7,7], the calculation of the robust H∞
controller requires an average computational time of
3.78×10−5 second. These results suggest that the pro-
posed robust H∞ controller may have potential appli-
cations in resource-constrained systems, such as nano-
satellites.

4.2 Comparisons with the initial stabilizing controller

To further verify the effectiveness of the designed
sparse successive Chebyshev–Galerkinmethod and the
proposed robust H∞ controller, attitude control sim-
ulations are conducted under actuator misalignments
and disturbances. Note that the solution function of the
HJI Eq. (12) is solved offline, then the coefficients in
(38) is obtained. The solution function and the robust
controller can both analytically constructed based on
the coefficients and corresponding basis functions. In
the numerical experiments, the initial state is x(t =
0) = [0.10,−0.10,−0.05, 0.05,−0.05, 0.05]�, and
the simulation time horizon is t ∈ [0 sec, 50 sec]. The
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Fig. 4 Cayley-Rodrigues parameters of the robust H∞ controller and the initial controller

Fig. 5 Angular velocities of the robust H∞ controller and the initial controller

considered disturbance is given by

d(x) =

⎡
⎢⎢⎣

0.5
√

ρ2
1 + ρ2

2√
6
2 cos(ρ3) sin(ω2)√

ω2
1 + ω2

2 + ω2
3

⎤
⎥⎥⎦ . (47)

The performance of the initial stabilizing controller
(45) is also evaluated and compared with the proposed
controller under the 3 different configurations of mis-
alignment angles (42,43,44), and numerical results are
illustrated in Figs. 4, 5, 6.

It is clear from the figures that the proposed robust
H∞ controller successfully stabilizes the attitude con-
trol system under different settings of actuator mis-
alignments. Whereas the states of the attitude con-
trol system diverge under the initial controller us. The
robust H∞ controller is calculated based on the ini-
tial controller, but different performance is observed in
the simulation, which demonstrates the effectiveness of
the proposed control scheme. For the trajectories under
the proposed robust H∞ controller, it is calculated that
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Fig. 6 Control torques of the robust H∞ controller and the initial controller

Fig. 7 Cayley-Rodrigues parameters of the robust H∞ controller and prescribed performance controller

the values of
∫ T
0 (‖h(t)‖2 + ‖u(t)‖2R)dt + V̂ (xT ) in

all 3 simulation cases are 0.097454, 0.100909, and
0.108900. Whereas the values of γ 2

∫ T
0 ‖w(t)‖2 dt +

V̂ (x0) are 0.392765, 0.393416, and 0.402752. So the
dissipation inequality (9) is satisfied with the pre-
defined L2-gain γ = 3 for all 3 different settings.
These results also verify the correctness of the obtained
solution function V̂ (x). Besides, different from the
initial stabilizing controller of which the trajectories
differ from one another, it is observed from the fig-
ures that the robust H∞ controller achieves similar

performance under different misalignment configura-
tions, which further demonstrate the robustness of the
designed controller.

4.3 Comparisons with the prescribed performance
controller

The prescribed performance control (PPC) approach
is widely recognized for its ability to attain superior
transient performance, and thus it is also compara-
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Fig. 8 Angular velocities of the robust H∞ controller and the prescribed performance controller

Fig. 9 Control torques of the robust H∞ controller and the prescribed performance controller

tively analyzedwith the proposed robust H∞ controller.
The prescribed performance controller is structured to
ensure the transient performance of the kinematic sub-
system using the backstepping technique. Numerical
simulations are carried out for the attitude control sys-
tems, both with and without actuator misalignments
and disturbances, the results of which are presented in
Figs. 7, 8 and 9. The misalignment angles in (42) are
used in the simulations.

It is observed that the attitude control system is sta-
bilized in all simulations. For the simulations without
actuator misalignments and disturbances, both the pre-
scribed performance controller and the robust H∞ con-
troller produce comparable performance. However, in
experiments with actuator misalignments and distur-
bance, the state trajectories under the prescribed perfor-
mance controller show increased overshot and an obvi-
ously slower convergence rate compared to the simula-
tion without misalignments and disturbances, whereas
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Fig. 10 States and controls of the robust H∞ controller under mixed disturbance

the robust H∞ attitude controller maintains its good
performance. These simulation results demonstrate the
superior performance of the designed robust H∞ atti-
tude controller.

The performance of the proposed controller is
also evaluated under stochastic disturbances. The con-
sidered stochastic disturbance is a random process
sampled from the multivariate uniform distribution
ds ∼ U (−0.1, 0.1)3. The components of the stochas-
tic disturbance are independent random variables with
marginal distribution U (−0.1, 0.1). They are added
to the disturbance (47) during the time period t ∈
[0 sec, 30 sec]. The rest of the settings are the same
as the simulations with disturbance (47). Numerical
results are given in Fig. 10. It is clear to see that the
attitude control system is again successively stabilized,
which shows the robustness of the proposed controller
under complex disturbances. Besides, it is calculated
that

∫ T
0 (‖h(t)‖2 + ‖u(t)‖2Rr

)dt + V̂ (xT ) = 0.099275

and γ 2
∫ T
0 ‖w(t)‖2 dt + V̂ (x0) = 0.414893. Then it is

straightforward to verify that the disturbance attenua-
tion level is also guaranteed to be less than the prede-
fined value.

4.4 Comparisons of the robust H∞ attitude controller
and IOC-based robust controller

An inverse optimal control (IOC)-based robust con-
troller is designed in [18] for attitude control problems
under actuator misalignments and disturbances. To

further evaluate the performance of the proposed robust
H∞ controller, the IOC-based robust controller in [18]
is also incorporated in the numerical comparison. In
this simulation, the initial state is chosen as the equi-
librium point in order to compare the disturbance atten-
uation levels of the two controllers. The misalignment
angles are also described by (42), whereas the time-
varying disturbance is considered and it is given by

d(x, t) = e−
t
10

5

⎡
⎢⎣

−3
√

ρ21 + ρ22 − 2 sin(ρ1)√
2 cos(ρ3) cos(ω2) + 2 sin(ρ3)

−√
2 cos(ω1) cos(ω3) + 5 sin(ρ3)

⎤
⎥⎦ .

(48)

The state trajectories and controls of the two con-
trollers are presented in Figs. 11, 12 and 13. It is
observed in the figures that the attitude control system
is able to reach the equilibrium point under either the
proposed robust H∞ controller or the IOC-based robust
controller. Based on the state trajectories and controls,
it can be calculated that for the proposed robust H∞
controller

∫∞
0 (‖h(t)‖2+‖u(t)‖2Rr

)dt = 0.203085 and∫∞
0 ‖w(t)‖2 dt = 0.886121. Whereas for the IOC-
based robust controller

∫∞
0 (‖h(t)‖2 + ‖u(t)‖2Rr

)dt =
0.667586 and

∫∞
0 ‖w(t)‖2 dt = 0.903624. The levels

of disturbance attenuation for the robust H∞ controller
and the IOC-based robust controller are 0.478732 and
0.859527, respectively. Though it is shown in Fig. 10
that the control torques of the robust H∞ controller
are close to those of the IOC-based robust controller,
the numerical results imply that the proposed method
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Fig. 11 Cayley-Rodrigues parameters of the robust H∞ controller and IOC-based robust controller

Fig. 12 Angular velocities of the robust H∞ controller and IOC-based robust controller

achieves better performance in dealing with the mis-
alignment uncertainties and disturbances.

5 Conclusions

In this paper, a nonlinear robust H∞ controller is
designed for rigid spacecraft attitude control systems
under actuator misalignments and disturbances. The
nonlinear robust H∞ controller is constructed based

on the Hamilton–Jacobi–Isaacs (HJI) equation, and it
is also proved that the closed-loop attitude control sys-
tem can achieve the pre-defined level of disturbance
attenuation. A sparse successive Chebyshev–Galerkin
method is also designed to efficiently solve the HJI
equation, of which the computational time complex-
ity only grows polynomially with the dimension. Sim-
ulation results demonstrate the effectiveness of the
designed numerical method and the superior perfor-
mance of the proposed robust H∞ controller.
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Fig. 13 Control torques of the robust H∞ controller and IOC-based robust controller
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