
Nonlinear Dyn (2023) 111:15279–15291
https://doi.org/10.1007/s11071-023-08614-4

ORIGINAL PAPER

Boussinesq equation solved by the physics-informed neural
networks

Ruozhou Gao · Wei Hu · Jinxi Fei · Hongyu Wu

Received: 13 April 2023 / Accepted: 17 May 2023 / Published online: 8 June 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract Physics-informedneural networks (PINNs)
model is utilized to achieve the first- and second-order
rogue wave solvers of the Boussinesq equation with
different initial and boundary conditions. A new gener-
alized loss term handling the initial first-order derivate
is included in the simulations to guarantee the high pre-
diction accuracies in the adaptive PINNs (APINNs) and
the gradient-optimized PINNs (GPINNs) models, with
a new regularization parameter being considered in the
latter case. Learned results with high precision are ful-
filled in the large domain simulations by applyingmore
collocation points and more weight parameters in the
neural network architecture. The APINNs model cur-
rently can be made use of in more situations with high
prediction accuracies,while theGPINNsmodel ismore
robust in the current research where the initial condi-
tion is distributed in the localized sharp areas. Parallel
computing is carried out to get the mean relative L2-
norm errors efficiently in the GPINNs model due to the
random choosing of the simulation points during the
training iterations.

Keywords Modified physics-informed neural
networks · Boussinesq equation · Rogue wave ·
Parallel computing

R. Gao · W. Hu (B) · J. Fei · H. Wu
College of Engineering, Lishui University, Lishui 323000, China
e-mail: wickhu@lsu.edu.cn; wickhw@foxmail.com

1 Introduction

Deep learning [1] with the neural network model has
achieved great success in artificial intelligence includ-
ing image recognition [2], computer vision [3], and
natural language translation [4]. Scientific computation
also benefits due to the ability of deep learning on solv-
ing the high-dimensional nonlinear partial differen-
tial equations (NPDEs) [5–8]. Physics-informed neural
networks (PINNs) invented by Rassi et al. [9] stand out
to be a powerful deep learning tool for manipulating a
variety of NPDEs. Researchers from the same depart-
ment have made great improvements to the original
software such as the adaptive activation functionPINNs
method (APINNs) to enhance the robustness and con-
vergence speedup [10–12] and the domain decompo-
sition approaches (CPINNs and XPINNs) employing
the parallel GPU computing to reduce the training cost
more effectively [13–15]. By monitoring the distri-
bution of the back-propagated gradients of loss with
respect to the neural network parameters during train-
ing motivated by Glorot and Bengio [16], gradient-
optimized PINNs (GPINNs) model is put forward to
balance the interplay between different terms in com-
posite loss functions to increase the predictive accuracy
of at least one order [17,18]. A novel gradient descent
algorithm proposed to utilize the eigenvalues of the
neural tangent kernel to adaptively calibrate the conver-
gence rate of the total training error has been verified
with a series of numerical experiments [19]. Gradient-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08614-4&domain=pdf
http://orcid.org/0009-0001-7093-8999

15280 R. Gao et al.

enhanced PINNs algorithms leverage gradient infor-
mation of the partial differential equation residual and
embed the gradient into the loss function to improve the
accuracy and training efficiency [20]. A lot of works
have been carried out based on the above PINNs soft-
ware, such as the solver of the local wave solutions
of the second- and third-order NPDEs and the non-
linear Schrödinger equations [21–23]. Bilinear neural
network method (BNNM) [24] and bilinear residual
network method (BRNM) [25] introduced by Zhang
et al. are outstanding universal methods for seeking
the exact analytical solution of NPDEs based on the
deep neural network model, which is different from the
numerical solver by the PINNs model. BNNM model
has been carried out to solve the rogue waves of the
generalized breaking soliton equation [26], the lump
solutions, and rogue waves of the Caudrey–Dodd–
Gibbon–Kotera–Sawada-like equation [27], the inter-
ference wave and the bright and dark soliton of the
two integro-differential equation [28], the rogue wave
solutions and the bright and dark solitons of the Jimbo–
Miwa equation [29], and the bright–dark solitons and
interaction phenomenon for p-gBKP equation [30].

Roguewave [31–33], Painlevé integrability [34,35],
and solitary wave [36,37] solvers of the NPDEs have
been paid great attention to in the nonlinear scientific
fields. Here, we are concerned with the rogue wave
solutions of the Boussinesq equation, which was intro-
duced by Joseph Boussinesq in 1871 to describe the
propagation of long waves in shallow water [38–41].
TheBoussinesq equation is also a soliton equation solv-
able by inverse scattering [42–44] which arises in sev-
eral physical applications including one-dimensional
nonlinear lattice waves [45,46]; vibrations in a non-
linear string [47]; and ion sound waves in a plasma
[48,49]. Especially, the Boussinesq equations have
been applied to describe the nonlinear phenomena in
ocean, coastal, harbor, and water engineering [50–53].

In this paper, the modified APINNs and GPINNs
models are utilized to solve the first- and second-order
roguewave solvers of the Boussinesq equation with the
form of wt t +Nx [w] = 0, in whichNx [w] is a nonlin-
ear operator acting on w with respect to x . This is dif-
ferent from the common formwt +Nx [w] = 0 used in
many PINNs simulations as the second-order derivate
of w about t would require a new loss term to the total
loss function in the PINNs model. The Klein–Gordon
equation [10,17,54] and wave equation [54,55] in the
same form of wt t + Nx [w] = 0 as above have been

solved by the PINNs method, but the loss term in their
work can only handle the case that the initial one-order
derivate term wt [t = 0] is 0 at t = 0. We extend the
new loss term about the initial condition about the first-
order time derivate term to the generalized situations,
which is key to the final simulation results with high
precision. The large simulation domain researches on
the Boussinesq equations are also carried out in some
cases to describe the ability and robustness of the mod-
ified APINNs and GPINNs methods. Due to the larger
simulation domain and higher-order differential form,
much more weight parameters are utilized in the mod-
ified GPINNs model compared with the former work
[17,18]. The APINNs model can handle more simu-
lations with different initial and boundary (IB) condi-
tions in high accuracies than the GPINNs model on
solving the Boussinesq equations, while the GPINNs
model is more robust where the initial condition is dis-
tributed in the localized sharp areas. Parallel comput-
ing is fulfilled and optimized on the supercomputing
platform to accelerate the simulations for the GPINNs
model.

The rest of the paper is organized as follows. In
Sect. 2, we propose the total loss function with a new
loss term to beminimized in the current simulations for
the modified APINNs and GPINNs models. Each loss
term is specified by combining the IB conditions or the
simulation domains. In Sect. 3, the training data, the
optimization method, and the computing platform are
described in detail. The first- and second-order rogue
wave solvers of the Boussinesq equation are carried
out for the different IB conditions with the two mod-
els, and good agreement is achieved between the theo-
retical and numerical results. Finally, brief conclusions
and discussion are given in Sect. 4.

2 Model

Firstly, the Boussinesq equation with IB conditions is
introduced in the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wt t + Nx [w] = 0, x ∈ [−X, X], t ∈ [T1, T2],
w[T1, x] = I (x), x ∈ [−X, X],
wt [T1, x] = I p(x), x ∈ [−X, X],
w[t, x] = B(t, x), t ∈ [T1, T2], x = ±X,

(1)

123

Boussinesq equation solved by the physics-informed neural networks 15281

where x1, x2 and T1, T2 are spatial and temporal
domainboundaries, respectively. I (x), I p(x), B(t,−X),
and B(t, X) represent the IB conditions. Nx [w] is
a nonlinear operator acting on w with respect to x .
Now, the key to computing data-driven solutions to the
Boussinesq equation will focus on the neural network
setup based on the APINNs and GPINNs models. The
twomodels utilize the automatic differentiationmethod
and backpropagation algorithm to train the deep neural
network by calculating the derivative of the loss func-
tion with respect toΘ denoting the weights and biases.
For the current Boussinesq equation, the loss function
is defined as follows utilizing the mean squared error
method.

J (Θ) = Jw(Θ) + JI (Θ) + JI p(Θ) + JB(Θ)

= 1

Nw

Nw∑

i=1

| fΘ(t iw, xiw)|2

+ λI

NI

NI∑

i=1

|wΘ(t iI , x
i
I) − wi |2

+ λI p

NI p

NI p∑

i=1

|wΘ(t iI p, x
i
I p) − wi |2

+ λB

NB

NB∑

i=1

|wΘ(t iB, xiB) − wi |2.

(2)

Here, (t iI , x
i
I , w

i) and (t iI p, x
i
I p, w

i) represent the ini-

tial training data onw(t, x), with (t iB, xiB , wi) referring
to the boundary training data onw(t, x). (t iw, xiw) spec-
ify the collocations points for w(t, x) in the spatial and
temporal domain (x ∈ [x1, x2], t ∈ [T1, T2]). A new
generalized loss term JI p(Θ) added in the initial condi-
tion is due to the second-order derivate of w(t, x) with
respect to t compared with the first-order derivate in
the common PINNs model, i.e.,wt +Nx [w] = 0. This
loss term to be minimized plays an important role in
the following simulations, which is newly added in the
APINNs model and modified in the GPINNs model.
The loss term Jw(Θ) to be minimized can guarantee
that the equation wt t + Nx [w] = 0 will be learned
precisely at a finite set of collocation points. The other
three loss terms JI (Θ), JI p(Θ), and JB(Θ) are mini-
mized to fulfill the training of the IB points. Regulariza-
tion parametersλI , λI p, andλB are set as 1 forAPINNs
model but will be iterated for the GPINNs model based
on the adaptive learning rate annealing algorithm that
aims to balance the interplay between the different loss

terms [17]. A new parameter λI p is introduced with
respect to the new loss term, which is updated in the
iterations in GPINNs model.

3 Simulation of Boussinesq equation

The current nonlinear (1+1)-dimensional fourth-order
Boussinesq equation is carried out, which is in the fol-
lowing form:

wt t + wxx − 2w2
x − 2wwxx − 1

3
wxxxx = 0. (3)

The trained neural networks are initialized with Xavier
methods, and the hyperbolic tangent activation func-
tions are set in the forward propagation process.
Dirichlet boundary conditions are chosen in the spa-
tial domain. For the APINNs model, the Adam opti-
mizer method with the adaptive activation function
is employed first, which can enhance the robustness
and accuracy of the neural network approximation of
the nonlinear function as well as the solutions of the
equation. The L-BFGS algorithm is then utilized to
continue the iteration of the neural network parame-
ters. The default maximum optimizer iteration steps
for the Adam and L-BFGS algorithms are chosen to be
20, 000. For the GPINNs model, only the Adam opti-
mizer is made use of and the default number of itera-
tions is selected as 80,000. The number of collocation
points Nw is set as 10,000 by default which is gener-
ated by the Latin hypercube sampling method which
are randomly parsed from the full high-resolution data
set in the APINNs model. The default value of Nw is
256 in the GPINNs model which is much smaller than
that in the APINNs model due to the different learn-
ing algorithms. The positions of the Nw points will be
randomly changed in the iterations to cover all the sim-
ulation domains in the GPINNs model. The default IB
training data NI = 200, NIp = 200, and NB = 400
being equally shared by the lower and upper boundary
conditions. For some simulations, the default simula-
tion parameters are changed and will be specifically
described in the two models. The weights and biases
parameters in the neural network are finally learned
using the above two algorithms along with the IB train-
ing data and collocation points to minimize the total
loss function. The simulations are based on Python 3.7
and TensorFlow_GPU−1.14 with the computing plat-

123

15282 R. Gao et al.

forms containing the K80 GPU with Linux system and
the RTX 2070 GPU with Windows system. The ana-
lytical first- and second-order rogue wave solvers of
Eq. (3), which will be compared with the prediction
results by the modified APINNs and GPINNs models,
are given in Eqs. (4) and (5), respectively:

w(t, x) = 4(1 + t2 − x2)

(1 + t2 + x2)2
, (4)

w(t, x) = 4A(t, x)

B(t, x)
, (5)

where

A(t, x) = − 78125 − 2268t6x2 − 2430t4x4

+ 1620t2x6 + 138750t4 − 15750x6

+ 25470t6 + 109375t2 + 265625x2

+ 33750x2t4 + 47250x4t2 + 382500t2x2

+ 93750x4 + 3807t8 − 2025x8 + 243t10

− 243x10 + 729t8x2 + 486t6x4

− 486t4x6 − 729t2x8,

(6)

B(t, x) = (625 + 475t2 − 125x2 + 51t4 + 270t2x2

+ 75x4 + 9t6 + 27x2t4 + 27x4t2 + 9x6)2.

(7)

3.1 First-order rogue wave

The first-order rogue wave solver of the Boussinesq
equation is first selected to provide the IB training
data for the modified APINNs model. Three cases
are run with different simulation domains, which are
t ∈ [0, 5], x ∈ [−10, 10], t ∈ [0, 5], x ∈ [−40, 40],
and t ∈ [−3, 3], x ∈ [−10, 10]. Thus, three different
IB training data are imported in the modified APINNs
model. The IB conditions are given in Eqs. (8), (9), and
(10), respectively.
⎧
⎪⎪⎨

⎪⎪⎩

I (x)= 4(1−x2)
(1+x2)2

, x ∈ [−10, 10],
I p(x)=0, x ∈ [−10, 10],
w[t, −10]=w[t, 10]= 4(1+t2−100)

(1+t2+100)2
, t ∈ [0, 5].

(8)

⎧
⎪⎪⎨

⎪⎪⎩

I (x)= 4(1−x2)
(1+x2)2

, x ∈ [−40, 40],
I p(x)=0, x ∈ [−40, 40],
w[t, −10]=w[t, 10]= 4(1+t2−1600)

(1+t2+1600)2
, t ∈ [0, 5].

(9)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I (x)= 4(10−x2)
(10+x2)2

, x ∈ [−10, 10],
I p(x)= 24

(
10−3x2

)

(10+x2)
3 , x ∈ [−10, 10],

w[t,−10]=w[t, 10]= 4(1+t2−100)
(1+t2+100)2

, t ∈ [−3, 3].
(10)

For the first-order rogue wave, the xmax = 10 and
xmax = 40 cases are carried out first with the initial
conditions at t = 0. In the xmax = 10 case, the neu-
ral network contains 4 hidden layers and 40 neurons
are included in each layer. The simulation results are
verified to be convergent when adding more hidden
layers and more neurons in an appropriate way. For
the xmax = 40 case, a new setup of 6 hidden lay-
ers with 40 neurons in each layer is needed to fulfill
the numerical convergence. The number of the col-
location points is doubled as 20, 000, which is ran-
domly chosen from the original mesh setup of 600 and
100 in x = ±10 and t = 0 positions. From the left
and middle figures of the upper and middle Fig. 1, it
can be known that the numerical results are consistent
with the analytical results very well. The × symbols
in the left figures represent the IB training data in the
two simulations that will be imported to the modified
APINNs model. The relative L2-norm errors are about
0.63% and 0.74% in the upper and middle pointwise
error contour plots, which are achieved by the exact
values subtracting the learned ones. Convergence with
the number of collocation points is also validated, in
which a maximum xmax = 40 case with 80, 000 points
are loaded that consumes about 5.2GB VRAM. The
xmax = 10 simulation consumes about 2132 seconds
and the xmax = 40 case costs about 3548 seconds. The
sharp decrease in x-direction is more remarkable in the
xmax = 40 case, which can lead to two orders of more
simulation time in the usual finite difference method
due to the fourth-order differential difference method.
However, the modified APINNs model only consumes
about 1.7 timesmore time in the current research due to
the use of automatic differentiation. In the left andmid-
dle figures of Fig. 2, the comparisons of the theoretical
and predicted results are analyzed in the x-direction
with three diagnosis time points at t = 0.20, t = 1.5,
and t = 2.5. The first-order solver simulations with
the green dot lines are accordant with the theoretical
results with the red lines, even in the situation that the
values drop rapidly locally in the xmax = 40 case.

Similar results by the modified GPINNs model can
also be achieved, except that the regularization param-

123

Boussinesq equation solved by the physics-informed neural networks 15283

Fig. 1 The exact solutions, predicted results, and pointwise
errors are presented from left to right with t = 0 initial con-
ditions for xmax = 10 (upper) and xmax = 40 (middle) cases

and t = −3 initial conditions for xmax = 10 (below) case with
relative L2-norm errors of 0.63%, 0.74%, and 0.42%

eters λI , λI p, and λB will be changed by the adap-
tive learning rate annealing algorithm in the learning
process. The relative L2-norm errors are about 0.56%
and 0.87% for the xmax = 10 and xmax = 40 cases,
which are on a similar level as above. Figure3 exhibits
the evolutions of the three regularization parameters in
the training process and all three parameters are much
greater than the unchanged values that are set up as
1 in the APINNs model as shown in Fig. 3. The reg-
ularization parameters make difference to balance the
different loss terms by utilizing the back-propagated

gradient statistics duringmodel training. ParameterλI p

is larger than λI from Fig. 3, revealing the imbalance
of the initial first-order derivative loss term is more
pronounced than the initial loss term at t = 0. The
deep neural networks are configured as 5 hidden lay-
ers with 100 and 300 neurons per hidden layer for
the xmax = 10 and xmax = 40 cases, respectively.
In these two cases, the GPU-based TensorFlow deep
learning plus the CPU calculation constitute heteroge-
neous computing, which can give one-order speedup
compared with single CPU computing. The computing

123

15284 R. Gao et al.

Fig. 2 Comparisons of the theoretical and the predicted results
at t = 0.2, t = 1.5, and t = 2.5 diagnosis points for xmax = 10
(left) and xmax = 40 (middle) cases with t = 0 initial conditions

and at t = −1.5, t = 0.00, and t = 1.5 diagnosis points with
t = −3 initial condition (below)

time is about 4076 and 4861 seconds for the xmax = 10
and xmax = 40 cases with 80, 000 iterations. The val-
ues of NI , NIp, NB , and Nw are all increased to 512
in the xmax = 40 case. The largest neural network
architecture tested includes 7 hidden layers with 600
neurons per hidden layer containing about 2.16 mil-
lionweight parameters, which gives a relative L2-norm
error of 0.91%with Nw = 1024. It should be noted that
more neurons in the neural network architecture need
more collocation points in the simulation domain to
keep the similar relative L2-norm error in the GPINNs
model. The large simulative parameter range exhibits
the robustness of the GPINNs model.

For the t = −3 initial value simulation, the neural
network architecture includes 4 hidden layers with 40
neurons in each one in sequence. The APINNs model
gives correct prediction with relatively small L2-norm
error, while the GPINNs cannot work currently. The
left and middle figures in Fig. 1 give the exact and
learned results, which are in good agreement with the
two contour plots. The symmetries of the first-order
solver about x = 0.0 and t = 0.0 can also be clearly
shown from the predicted results. The L2-norm error is
about 0.42% calculated by the pointwise error values in
the below right one of Fig. 1. The results are obtained by
the learning iterations of the Adam optimizer followed
by the L-BFGS algorithm. Again the × symbols in the
left figure represent the IB training data to be used by
themodifiedAPINNmodel to constitute the loss terms.
The learned green dot results are consistent with the
theoretical red line results at t = −1.5, t = 0.00, and
t = 1.5 diagnosis time points in specific values from
the below right one of Fig. 2.

Then, we give a scan of the relative L2-norm errors
with respect to the number of hidden layers and the
neurons per hidden layer. The numerical comparisons
of APINNs and GPINNs models are carried out in the
domains of x ∈ [−5, 5] and t ∈ [0, 3] as the above first-
order case. The number of IB points is the same in the
twomodels, while the number of the collocation points
and the learning rates are different due to the different
learning algorithms. The number of iterations is also
different due to the aforementioned L-BFGS algorithm
being terminated by its tolerance setting. Table 1 gives
the comparisons of the relative L2-norm errors with
regard to the same neural network configurations in the
two models. The GPINNs model utilizes the non-fixed
random seed to select the IB and collocation points dur-
ing the learning process,while theAPINNsmodel takes
advantage of the fixed one. So, the mean relative L2-
norm errors and their standard deviations are calculated
for theGPINNsmodel by varying the number of hidden
layers and different numbers of neurons per layer over
8 independent trials. For the same computing platform,
the relative L2-norm errors are the same when all the
parameters in the APINNs model are chosen. For the
GPINNs model, the prediction accuracy improves as
the increase of neurons or the hidden layers. Increasing
the neurons of the hidden layer can enhance the accu-
racy of the predictions more effectively than increasing
the depth of the network. For the APINNs model, the
relation between the relative L2-norm errors and the
model parameters is not obvious. Generally speaking,
both models can obtain a high accuracy for the first
order of Boussinesq with the above simulation domain.
The GPINNs model is more robust than the APINNs
model in these simulations due to the large simulative

123

Boussinesq equation solved by the physics-informed neural networks 15285

Fig. 3 Evolution of three regularization parameters λI , λI p , and λB in the training process to balance the different loss terms for
xmax = 10 (left) and xmax = 40 (right) cases with t = 0 initial conditions

Table 1 The comparison of the relative L2-norm errors for the GPINNs and APINNs models for the first-order solver

Architecture GPINNs APINNs

30 units/3 hidden layers 2.03E−02 ± 3.51E−03 1.27E−02

50 units/3 hidden layers 8.80E−03 ± 6.99E−04 5.62E−03

100 units/3 hidden layers 4.42E−03 ± 6.37E−04 3.79E−03

30 units/5 hidden layers 1.43E−02 ± 2.18E−03 2.80E−03

50 units/5 hidden layers 6.01E−03 ± 8.49E−04 1.06E−02

100 units/5 hidden layers 2.56E−03 ± 4.43E−04 3.04E−03

30 units/7 hidden layers 1.36E−02 ± 2.23E−03 2.19E−03

50 units/7 hidden layers 3.81E−03 ± 8.77E−04 2.95E−03

100 units/7 hidden layers 2.45E−03 ± 4.49E−04 3.17E−03

parameter range capability similarly validated as the
above xmax = 40 case.

3.2 Second-order rogue wave

The research of the second-order rogue wave solver of
the Boussinesq equation is then carried out to verify the
versatile application of the modified APINNs model.
The first simulation is conducted with a spatial and
temporal domain of t ∈ [0, 5] and x ∈ [−5, 5]. The IB
conditions are given in Eq. (11), which provides the IB
training data.

⎧
⎪⎨

⎪⎩

I (x) = 4A(0,x)
B(0,x) , x ∈ [−5, 5],

I p(x) = 0, x ∈ [−5, 5],
w[t,−10] = w[t, 10] = 4A(t,10)

B(t,10) , t ∈ [0, 5].
(11)

For the second-order roguewave, the neural network
contains 5 hidden layers and 100 neurons are included
in each hidden layer. Amaximumneuron number setup
with 7 hidden layers with 100 neurons in each layer is
computed to check the simulation convergence. From
the left and middle figures of upper Fig. 4, it can be
known that the simulations are in consistency with the
analytical results very well. The × symbols in the left
figure represent the IB training data in the simulation
that will be imported to the modified APINNs model
to minimize the penalty loss function terms. The right
figure of upper Fig. 4 gives the contour plot of point-
wise error by the way of the exact function subtract-
ing the learned function, which gives an L2-norm error
of about 0.33%. Comparison of the exact and learned
results is exhibited in the x-direction with three diag-
nosis time points at t = 0.20, t = 1.5, and t = 2.5
in Fig. 5. The fitting of the second-order solver is also

123

15286 R. Gao et al.

Fig. 4 The exact solutions, predicted results, and pointwise
errors are presented from left to right with t = 0 initial con-
ditions (upper) and t = −1.7 initial conditions for xmax = 5

(middle) and xmax = 10 (below) cases with relative L2-norm
errors of 0.33%, 0.75%, and 3.14%

Fig. 5 Comparison of the theoretical and the predicted results at t = 0.2, t = 1.0, and t = 2.0 diagnosis points and at t = −1.5,
t = 0.00, and t = 1.5 diagnosis points for xmax = 5 (upper) and xmax = 10 (below) cases

123

Boussinesq equation solved by the physics-informed neural networks 15287

excellent from the exact red line result and the green dot
prediction result in specific values. The transition from
double crests to one crest is acquired by the simulation,
which is in agreement with the theory.

For themodifiedGPINNsmodel, reliable results can
also be implemented with the regularization parame-
ters λI , λI p, and λB varying during the training itera-
tions. The computing time is about 6135 seconds with
80, 000 iterations with the relative L2-norm error of
about 0.31% similar to the above APINNs result. From
Fig. 6, the three regularization parameters in the learn-
ing process are also much larger than 1 that is fixed
in the APINNs model. The fluctuations of the three
parameters in the training iterations are weaker than
those in the xmax = 40 case in Fig. 3 due to the smaller
simulation domains. Parameter λI p is larger than λI ,
revealing the imbalance of the loss term about the first-
order derivative about initial t is more pronounced than
the loss term about initial t as the above first-order
case. The deep neural network contains 7 hidden lay-
ers with 300 neurons per hidden layer. The deep learn-
ing by the GPU-based TensorFlow can give at least
one-order speedup compared with the CPU-based Ten-
sorFlow for the model with a large number of weight
parameters.

Initial training data with a minus time position are
also carried out for the second-order rogue wave solver
analysis with two different IB training data in the mod-
ified APINNs model. The selection of the initial time
position is key to the numerical convergence of the
total loss function due to the contribution of the IB
training data-related loss terms to the total loss terms.
The former research has shown that training data in
the localized sharp areas are easier to fulfill the pre-
diction accuracy [33]. The current studies find that
numerical solvers could be convergent by the Adam
optimizer plus L-BFGS algorithm method for the ini-
tial point in the section of −1.7 ≤ t < 0. The
t = −1.7 related initial value simulations are exe-
cutedwith the neural network including 4 hidden layers
and 70 neurons in each layer for both t ∈ [−2.5, 2.5],
x ∈ [−5, 5](2S) and t ∈ [−5, 5], x ∈ [−10, 10](2B)
cases. The IB conditions are given in Eqs. (12) and (13),
respectively.

⎧
⎪⎪⎨

⎪⎪⎩

I (x) = 4A(t0,x)
B(t0,x)

, x ∈ [−5, 5],
I p(x) = 4[A′(t0,x)B(t0,x)−A(t0,x)B′(t0,x)]

B2(t0,x)
, x ∈ [−5, 5],

w[t,−5] = w[t, 5] = 4A(t,5)
B(t,5) , t ∈ [−2.5, 2.5],

(12)

⎧
⎪⎪⎨

⎪⎪⎩

I (x) = 4A(t0,x)
B(t0,x)

, x ∈ [−10, 10],
I p(x) = 4[A′(t0,x)B(t0,x)−A(t0,x)B′(t0,x)]

B2(t0,x)
, x ∈ [−10, 10],

w[t,−10] = w[t, 10] = 4A(t,10)
B(t,10) , t ∈ [−5, 5],

(13)

where t0 = −1.7 and A′ and B ′ represent derivate with
respect to t which will be solved by the symbolic com-
putation method in the modified APINNs model. The
current 2S and 2B simulations take about 2335 and
2634 seconds, respectively. Comparing the two simu-
lations, only a littlemore time is requiredwhen the sim-
ulation areas enlarge both two times in space and time
domains. For the common finite difference method, it
would increase the computing time by an order of mag-
nitude at least as the aforementioned first-order solver
description. The learned results are also in agreement
with the exact values from the two contour plots inmid-
dle and below Fig. 4 in the two simulations. It should
be noted that the training process is bidirectional in the
time domain to show the symmetries. In the 2S simu-
lation, the symmetries are excellent in both space and
time domains. The symmetry is destroyed only a little
in the time domain in the 2L case due to the enlarged
simulation domains. Larger simulation areas may lead
to a litter greater L2-norm errors in the APINNs model
as shown in another paper [56]. The L2-norm errors are
about 0.75% and 3.14% in the right middle and below
pointwise error contour plots from Fig. 4. The largest
error comparisons of the learned red line results and the
theoretical green dot results at t = −1.5, t = 0.00, and
t = 1.5 diagnosis time points are shown in Fig. 5 in spe-
cific values for the second-order Boussinesq solver in
the two simulations. Both simulations give good con-
sistency, with the 2L case only showing a very little
discrepancy at t = 1.5.

A scan of the relative L2-norm errors is also car-
ried out with respect to the neural network architecture
in the APINNs and GPINNs models. The neural net-
works contain more neurons in the training process due
to the larger maximum results to be learned compared
with the first-order case, which can affect the learn-
ing values around 0. The simulations are conducted
in the domain of x ∈ [−5, 5] and t ∈ [0, 3] that the
nonzero information is mostly distributed. The number
of IB points is the same, while the number of collo-
cation points, iterations, and learning rates are differ-
ent which is the same principle as the aforementioned
first-order case. Table 2 gives the comparisons of the
relative L2-norm errors with regard to the same neu-

123

15288 R. Gao et al.

Fig. 6 Evolution of three regularization parameters λI , λI p , and
λB in the training process to balance the different loss terms for
xmax = 10 with t = 0 initial conditions

ral network configurations. Themean relative L2-norm
errors and their standard deviations are calculated for
the GPINNs model by varying the number of hidden
layers and neurons per layer over 8 independent tri-
als due to the non-fixed random seed. The relative L2-
norm errors are the same when all the parameters in
the APINNs model are chosen for the same computing
platform as the above first-order simulations. For the
GPINNs model, the prediction accuracy improves as
the increase in the number of weight parameters that is
decided by the neural network. For the APINNsmodel,
the relation between the relative L2-norm errors and the
prediction accuracy is not obvious. TheGPINNsmodel
is more robust than the APINNs algorithm in the sit-
uations where the IB conditions are distributed in the
localized sharp areas due to the large simulative param-
eter range capability, which is identically depicted as

the first-order xmax = 40 case. Heterogeneous parallel
computing is implemented for the 8 independent trials
in each neural network architecture to fullymake use of
the computing resources. The supercomputing system
contains 4 nodes, with each containing two K80 GPUs
and two Xeon CPUs. MPI-based distributed comput-
ing utilizing theMPI_Split method is made the best use
of to split the original communication domains con-
taining 8 ranks into two new communication domains
with each consisting of 4 ranks to utilize all the com-
puting resources. For the small-scale simulations with
weight parameters smaller than 300, 000 and colloca-
tion points smaller 512, two jobs can be simultaneously
assigned in each new rank to fully take advantage of
the GPU resources.

4 Conclusions and discussion

ThemodifiedAPINNs andGPINNsmodels with a new
generalized loss term are utilized to obtain the first-
and second-order solver of the Boussinesq equation
with different IB conditions. For the GPINNs model, a
new regularization parameter is taken into account to
specify the imbalance of the initial first-order derivate
loss term with the other terms. High prediction accura-
cies are accomplished in the large domain simulations
by applying more collocation points and more weight
parameters. The number of theweight parameters rang-
ing from about 160, 000 with 5 hidden layers and 200
neurons in each layer to about 2.16 million neurons
with 7 hidden layers and 600 neurons in each layer
is validated to realize the prediction with small rela-
tive L2-norm errors for the first-order xmax = 40 case.

Table 2 Comparison of the relative L2-norm errors for the GPINNs and APINNs models for the second-order solver

Architecture GPINNs APINNs

100 units/3 hidden layers 1.66E−02 ± 2.36E−03 3.82E−03

150 units/3 hidden layers 1.31E−02 ± 2.98E−03 4.38E−03

200 units/3 hidden layers 5.14E−03 ± 7.47E−04 1.72E−03

100 units/5 hidden layers 9.03E−03 ± 6.51E−04 4.73E−03

150 units/5 hidden layers 4.01E−03 ± 4.68E−04 3.84E−03

200 units/5 hidden layers 3.26E−03 ± 2.10E−04 2.04E−03

100 units/7 hidden layers 8.34E−03 ± 9.42E−04 8.69E−03

150 units/7 hidden layers 6.72E−03 ± 8.35E−04 3.59E−02

200 units/7 hidden layers 3.65E−03 ± 3.83E−04 4.20E−03

123

Boussinesq equation solved by the physics-informed neural networks 15289

More simulations in different IB conditions with high
prediction can be implemented by the APINNs model,
while the GPINNs model is more robust where the
initial conditions are distributed in the localized sharp
areas due to the capability of a large parameter range.
Larger simulation domain and higher-order differential
form lead to more weight parameters and more simu-
lation time compared with the former GPINNs models
[17,18]. GPU-based TensorFlow is utilized to speed up
the simulations, bringing 10− 20 times faster comput-
ing speed in the current platform compared with CPU-
based TensorFlow for the large model parameters. For
the GPINNs model, parallel computing is carried out
over 8 independent trials efficiently to obtain the mean
relative L2-norm errors and their standard deviations
due to the random choosing of the simulation points
during the iterations.MPI-based distributed computing
accompanying the MPI_Split method takes full advan-
tage of high-performance computing.

The understanding of the PINNs algorithm for solv-
ing the NPDEs still needs further studies despite the
great progress in recent years. The general way of
loss function construction with different IB conditions
should be paid attention to and understood with a solid
theoretical foundation. Domain decomposition tech-
niques [13–15] should be an alternativemethod to carry
out large domain simulations with the PINNs model.
The loss functions in these researches contain constant
regularization parameters in the loss terms, which may
better combine the back-propagated gradient statistics
method to optimize the parameters in the training pro-
cess. GPINNs model [17] plus the cPINNs model [14]
should constitute a newmodel to set up domain decom-
position training with balanced loss terms utilizing the
gradient statisticsmethod in future work. Painlevé inte-
grable fifth-order equation with third-order temporal
dispersion [34] in integrable systems could be studied
to extend the framework of the current PINNs work.
The comparison of the NPDEs solver between the
numerical simulation by the PINNsmodel and the sym-
bolic analytical computation by the BNNM or BRNM
models should be interesting to verify the advantages of
each other. An accelerated computing platform should
be incorporated with software development to improve
simulation efficiency. The current GPINNs model sim-
ulations have been upgraded and optimized to sup-
port the Python 3.9 and Tensorflow_GPU-2.x soft-
ware on the Linux and Windows systems. Different
software configurations with different computing plat-

forms bring about consistent results, which is in favor
of the new high-end GPU deployment to greatly accel-
erate deep learning computing. Heterogeneous parallel
computing would make difference in the further devel-
opment of PINNs model.

Funding This work was supported by the Scientific Research
Fund of Zhejiang Provincial Education Department under Grant
No. Y202148297 and the National Natural Science Foundation
of China under Grant No. 11975008.

Dataavailability Thedatasets generatedduring and/or analyzed
during the current study are available from the corresponding
author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Ethical approval This research does not involve human partic-
ipants and/or animals.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436–444 (2015)

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classi-
fication with deep convolutional neural networks. Commun.
ACM 60(6), 84–90 (2017)

3. Voulodimos, A., Doulamis, N., Doulamis, A., Eftychios, P.,
et al.: Deep learning for computer vision: a brief review.
Comput. Intel. Neurosci. (2018)

4. Hirschberg, J., Manning, C.D.: Advances in natural lan-
guage processing. Science 349(6245), 261–266 (2015)

5. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural net-
works for solving ordinary and partial differential equations.
IEEE Trans. Neur. Netw. 9(5), 987–1000 (1998)

6. Han, J., Jentzen, A., et al.: Deep learning-based numerical
methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations.
Commun. Math. Stat. 5(4), 349–380 (2017)

7. Rudy, S.H., Brunton, S.L., et al.: Data-driven discovery of
partial differential equations. Sci. Adv. 3, 4 (2017)

8. Sirignano, J., Spiliopoulos, K.: Dgm: a deep learning algo-
rithm for solving partial differential equations. J. Comput.
Phys. 375, 1339–1364 (2018)

9. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys. 378, 686–
707 (2019)

10. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks. J. Comput. Phys. 404,
109136 (2020)

123

15290 R. Gao et al.

11. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Locally
adaptive activation functions with slope recovery for deep
and physics-informed neural networks. Proc. R. Soc. A
476(2239), 20200334 (2020)

12. Jagtap, A.D., Shin, Y., Kawaguchi, K., Karniadakis, G.E.:
Deep kronecker neural networks: a general framework for
neural networks with adaptive activation functions. Neuro-
computing 468, 165–180 (2022)

13. Jagtap, A.D., Karniadakis, G.E.: Extended physics-
informed neural networks (xpinns): a generalized space-
time domain decomposition based deep learning framework
for nonlinear partial differential equations. In: AAAI Spring
Symposium: MLPS, pp. 2002–2041, (2021)

14. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conserva-
tive physics-informed neural networks on discrete domains
for conservation laws: applications to forward and inverse
problems. Comput. Method Appl. Mech. Eng. 365, 113028
(2020)

15. Shukla, K., Jagtap, A.D., Karniadakis, G.E.: Parallel
physics-informed neural networks via domain decomposi-
tion. J. Comput. Phys. 447, 110683 (2021)

16. Glorot, X., Bengio, Y.: Understanding the difficulty of train-
ing deep feedforward neural networks. In: Proceedings of
the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, pp. 249–256. JMLR Workshop and
Conference Proceedings, (2010)

17. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mit-
igating gradient flow pathologies in physics-informed neu-
ral networks. SIAM J. Sci. Comput. 43(5), A3055–A3081
(2021)

18. Li, J., Chen, J., Li, B.: Gradient-optimized physics-informed
neural networks (gopinns): a deep learning method for solv-
ing the complexmodified kdv equation.NonlinearDyn. 107,
781–792 (2022)

19. Wang, S., Xinling, Yu., Perdikaris, P.: When and why pinns
fail to train: a neural tangent kernel perspective. J. Comput.
Phys. 449, 110768 (2022)

20. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-
enhanced physics-informed neural networks for forward and
inverse pde problems. Comput. Methods Appl. Mech. Eng.
393, 114823 (2022)

21. Li, J., Chen, Y.: Solving second-order nonlinear evolution
partial differential equations using deep learning. Commun.
Theor. Phys. 72(10), 105005 (2020)

22. Li, J., Chen, Y.: A deep learning method for solving third-
order nonlinear evolution equations. Commun. Theor. Phys.
72(11), 115003 (2020)

23. Juncai, P., Li, J., Chen, Y.: Solving localized wave solu-
tions of the derivative nonlinear schrödinger equation using
an improved pinn method. Nonlinear Dyn. 105, 1723–1739
(2021)

24. Zhang, R.-F., Bilige, S.: Bilinear neural network method
to obtain the exact analytical solutions of nonlinear partial
differential equations and its application to p-gbkp equation.
Nonlinear Dyn. 95, 3041–3048 (2019)

25. Zhang, R.-F., Li, M.-C.: Bilinear residual network method
for solving the exactly explicit solutions of nonlinear evolu-
tion equations. Nonlinear Dyn. 108(1), 521–531 (2022)

26. Zhang, R.-F., Li, M.-C., Gan, J.-Y., Li, Q., Lan, Z.-Z.: Novel
trial functions and roguewaves of generalized breaking soli-

ton equation via bilinear neural network method. Chaos
Solit. Fract. 154, 111692 (2022)

27. Zhang, R.-F., Li, M.-C., Albishari, M., Zheng, F.-C., Lan,
Z.-Z.: Generalized lump solutions, classical lump solutions
and rogue waves of the (2+ 1)-dimensional caudrey-dodd-
gibbon-kotera-sawada-like equation. Appl. Math. Comput.
403, 126201 (2021)

28. Zhang, R.-F., Li, M.-C., Cherraf, A., Vadyala, S.R.: The
interference wave and the bright and dark soliton for two
integro-differential equation by using bnnm.NonlinearDyn.
111(9), 8637–8646 (2023)

29. Zhang, R.-F., Li, M.-C., Yin, H.-M.: Rogue wave solutions
and the bright and dark solitons of the (3+ 1)-dimensional
jimbo-miwa equation. Nonlinear Dyn. 103, 1071–1079
(2021)

30. Zhang, R.-F., Bilige, S., Liu, J.-G., Li, M.: Bright-dark soli-
tons and interaction phenomenon for p-gbkp equation by
using bilinear neural network method. Phys. Scrip. 96(2),
025224 (2020)

31. Ankiewicz, A., Akhmediev, N.: Rogue wave-type solutions
of the mkdv equation and their relation to known nlse rogue
wave solutions. Nonlinear Dyn. 91, 1931–1938 (2018)

32. El-Tantawy, S.A., Alharbey, R.A., Salas, A.H.: Novel
approximate analytical and numerical cylindrical rogue
wave and breathers solutions: an application to electroneg-
ative plasma. Chaos Solit. Fract. 155, 111776 (2022)

33. Li, J., Li, B.: Mix-training physics-informed neural net-
works for the rogue waves of nonlinear schrödinger equa-
tion. Chaos Solit. Fract. 164, 112712 (2022)

34. Wazwaz, A.-M.: New (3+ 1)-dimensional painlevé inte-
grable fifth-order equation with third-order temporal dis-
persion. Nonlinear Dyn. 106(1), 891–897 (2021)

35. Wazwaz, A.-M.: Painlevé integrability and lump solutions
for two extended (3+ 1)-and (2+ 1)-dimensional kadomtsev-
petviashvili equations. Nonlinear Dyn. 111(4), 3623–3632
(2023)

36. Wazwaz, A.-M., Albalawi, W., El-Tantawy, S.A.: Optical
envelope soliton solutions for coupled nonlinear schrödinger
equations applicable to high birefringence fibers. Optik 255,
168673 (2022)

37. Kaur, L., Wazwaz, A.-M.: Optical soliton solutions of vari-
able coefficient biswas-milovic (bm) model comprising kerr
law and damping effect. Optik 266, 169617 (2022)

38. Boussinesq, J.: Théorie de l’intumescence liquide appelée
onde solitaire ou de translation se propageant dans un
canal rectangulaire. CR Acad. Sci. Paris 72(755–759), 1871
(1871)

39. Boussinesq, J.: Théorie des ondes et des remousqui se propa-
gent le long d’un canal rectangulaire horizontal, en commu-
niquant au liquide contenu dans ce canal des vitesses sensi-
blement pareilles de la surface au fond. Journal de mathé-
matiques pures et appliquées 17, 55–108 (1872)

40. Ursell, F.: The long-wave paradox in the theory of gravity
waves. Math. Proc. Camb. Philos. Soc. 49, 685–694 (1953)

41. Whitham,G.B.: Linear andNonlinearWaves, p. 651.Wiley-
Interscience, New York (1974)

42. Ablowitz, M. J., Ablowitz, M.A., Clarkson, P.A.: Solitons,
Nonlinear Evolution Equations and Inverse Scattering, vol.
149. Cambridge University Press (1991)

123

Boussinesq equation solved by the physics-informed neural networks 15291

43. Ablowitz, M.J., Haberman, R.: Resonantly coupled nonlin-
ear evolution equations. J. Math. Phys. 16(11), 2301–2305
(1975)

44. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scatter-
ing Transform. SIAM, (1981)

45. Toda, M.: Studies of a non-linear lattice. Phys. Rep. 18(1),
1–123 (1975)

46. Zabusky, N.J.: A synergetic approach to problems of non-
linear dispersive wave propagation and interaction. In: Non-
linear Partial Differential Equations, pp. 223–258. Elsevier
(1967)

47. Zakharov, V.E.: On stochastization of one-dimensional
chains of nonlinear oscillations. Sov. Phys. JETP 38, 108–
110 (1974)

48. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and
Chaos. Cambridge University Press (2000)

49. Scott, A.C.: The application of bäcklund transforms to phys-
ical problems. In: Bäcklund Transformations, the Inverse
Scattering Method, Solitons, and Their Applications: NSF
Research Workshop on Contact Transformations, pp. 80–
105. Springer (2006)

50. Wazwaz, A.-M.: Solitons and singular solitons for a variety
of Boussinesq-like equations. Ocean Eng. 53, 1–5 (2012)

51. Wazwaz, A.-M.: Gaussian solitary waves for the logarith-
mic Boussinesq equation and the logarithmic regularized
Boussinesq equation. Ocean Eng. 94, 111–115 (2015)

52. Gao, J., Zhou, X., Zang, J., Chen, Q., Zhou, L.: Influence
of offshore fringing reefs on infragravity period oscillations
within a harbor. Ocean Eng. 158, 286–298 (2018)

53. Yan, S., Liu, Z.Y.: Numerical model of sloshing in rectan-
gular tank based on boussinesq-type equations. Ocean Eng.
121, 166–173 (2016)

54. Chen, M., Niu, R., Zheng, W.: Adaptive multi-scale neural
network with resnet blocks for solving partial differential
equations. Nonlinear Dyn. 111, 1–20 (2022)

55. Sana, D.: Approximating the Wave Equation Via Physics
Informed Neural Networks: Various Forward and Inverse
Problems (2022)

56. Fang, Y., Gang-Zhou, W., Wang, Y.-Y., Dai, C.-Q.: Data-
driven femtosecond optical soliton excitations and parame-
ters discovery of the high-order nlse using the pinn. Nonlin-
ear Dynamics 105(1), 603–616 (2021)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

	Boussinesq equation solved by the physics-informed neural networks
	Abstract
	1 Introduction
	2 Model
	3 Simulation of Boussinesq equation
	3.1 First-order rogue wave
	3.2 Second-order rogue wave

	4 Conclusions and discussion
	References

