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Abstract The solution of the integrable Hirota

equation has attracted considerable attention in the

applications of nonlinear optics, electromagnetics, and

many other natural sciences. In this paper, we propose

an improved physics-informed neural network

(IPINN) method to study numerical solutions of the

Hirota equation, which embeds energy conservation

laws into a traditional neural network through the Lax

pair formulation. Our simulation results show that the

proposed method can predict the solutions and

parameters of the Hirota equation more accurately

than the traditional physics-informed neural network

method. In addition, the influence on the rogue wave

solution for the Hirota equation of the three factors of

the IPINN method that are, number of network layers

and hidden layer neurons, sampling points, and noises,

is also analyzed in detail. In our study, it is worth

noting that the presented method can achieve good

prediction with fewer training data and iterations.

Keywords Hirota equation � Lax pair � Neural
network � Conservation law � Data-driven solution �
Data-driven parameter discovery

1 Introduction

The nonlinear Schrödinger equation (NLSE) is

iQt þ Qxx þ 2jQj2Q ¼ 0; ðx; tÞ 2 R2; ð1Þ

where Q(x, t) are complex-valued solutions. Equa-

tion (1) describes the optical pulse propagation when

the pulse width is greater than 100 femtosecond, such

as in nonlinear optics [1], plasmas [2], fluid mechanics

[3], and ocean [4]. The NLSE was first introduced by

Hull et al. [5] as a model for superfluid helium

behavior, but its importance was not fully realized

until the development of optical fiber communication

technology in the 1970 s. With some further research

undergoing, the NLSE can only describe the nonlinear

behavior in continuous media and cannot handle the

discrete nonlinear phenomena in discrete systems.

Therefore, Mio et al. [6] introduced the discrete time

derivative term in NLSE and then put forward the

derivative nonlinear Schrödinger equation (DNLS).

Kaup and Newell [7] solved the appropriate inverse

scattering problem and obtained the single soliton

solution of DNLS. Xiang et al. and Jia et al. [8, 9]

obtained the breather, soliton, and rogue wave solu-

tions of coupled DNLS using the Darboux transfor-

mation. However, with the deep study of physical

phenomena, researchers began to realize that the low-

order nonlinear Schrödinger equation could not com-

pletely describe all phenomena. For ultrashort pulse

systems (e.g., electron dynamics of graphene nanoring
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[10], ranging systems [11]), high-order dispersion and

nonlinear effects are the key influential factors in the

propagation of sub-picosecond or femtosecond pulses

[12, 13]. The dynamics of such systems are described

by the high-order nonlinear Schrödinger equation

(HNLSE). The third-order NLS equation (alias the

Hirota equation [14]) is a basic HNLSE physical

model, and it is completely integrable. In recent

decades, many scholars have spent a great deal of time

and done a lot of work studying the Hirota equation.

Zhang and Yuan [15] studied the defocusing Hirota

equation, constructed the Nth-iterated binary Darboux

transformation by the limit technique, derived multi-

dark soliton solutions from the nonzero background,

and discussed the properties of dark solitons. By using

the Hirota bilinear method, Zuo et al. [16] obtained the

higher-order solutions of the generalized Hirota

equation and the exact solutions of the S-symmetric,

T-symmetric, and ST-symmetric nonlocal Hirota

equations. Hao and Zhang [17] studied the interaction

of different types of solitons and gave the correspond-

ing approximate eigenvalue and interaction period

formula. Recently, richer solutions and new physical

phenomena of the Hirota equation and its variants

have been revealed by various methods [18–22].

In recent years, with the explosion of data volume

and the rapid development of computer hardware,

deep learning algorithms represented by neural net-

works have achieved brilliant results in computer

vision [23], natural language processing [24], rein-

forcement learning [25], and so on. Thus, some

scholars use neural networks to solve partial differen-

tial equations (PDEs) [26–28]. Compared with tradi-

tional numerical methods, neural networks do not need

to grid generation the solution region, and more

importantly, they can handle high-dimensional PDEs

[29, 30]. However, pure data-driven algorithms often

have poor robustness, cannot guarantee the conver-

gence of the algorithm, and lack physical interpretabil-

ity. For this reason, some researchers utilize the

Gaussian process regression method to solve PDE

[31]. But the Gaussian process itself has some

limitations [32]. Therefore, Raissi et al. [33–35]

proposed a physics-informed neural network method

(PINN), which embeds known physical prior knowl-

edge into the network for learning. Specifically, the

control equation is used as part of the loss function,

and then, the network is trained using the general

approximation ability of the neural network [36] and

automatic differentiation (AD) techniques [37]. PINN

has been successfully applied to complex problems in

computational science and engineering, such as car-

diovascular systems [38], finance [39], and turbulence

[40]. Particularly, for integrable equations, Fang et al.

[41] designed a conservation law constrained PINN

method. They used the law of conservation of energy

and the law of conservation of momentum to constrain

the loss function of PINN and studied the soliton

solutions and rogue wave solutions of the NLSE,

Korteweg–de Vries, and modified Korteweg–de Vries

equations. However, for HNLSE with higher-order

dispersion and nonlinear effects, there are not given

the corresponding conservation laws combined with

neural networks for solving. Zhou and Yan [42] used

the original PINN to solve the forward and inverse

problems of the Hirota equation, but it requires a large

number of collocation points. Bai [43] utilized the

PINN with a local adaptive activation function to

obtain the bright soliton solution and rogue wave

solution of the Hirota equation, yet it needs more

iterations. Inspired by these works, to predict data-

driven of the Hirota equation with less data, we

propose an improved PINN (IPINN) method embed-

ded with energy conservation laws, which is con-

structed by utilizing the Lax pair formulation. We will

mainly focus on the bright soliton solution and the

rogue wave solution, and parameter inversion of the

Hirota equation simulated by using the IPINNmethod.

In short, the main contributions of this paper are as

follows:

(1) The energy conservation law of the Hirota

equation is derived using Lax pairs and embed-

ding into the traditional neural network to

impose stricter constraints on the loss function

of the network, which improves the perfor-

mance of the traditional PINN with less training

data;

(2) Compared with the traditional PINN method,

the new IPINN method can more accurately

predict the bright soliton solution, the rogue

wave solution, the second-order term, the third-

order term coefficients, and the parameters

contained in the third-order term;

(3) For the rogue wave solution, the influences of

noise and network structure on the IPINN

method are also investigated, and the results

show that IPINN can also predict the behavioral
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changes of the rogue wave solution under noisy

data well.

This paper is organized as follows. In Sect. 2, the

energy conservation law for the Hirota equation is

constructed through Lax pair and embed into the

IPINN method. In Sect. 3, the bright soliton solution

and the rogue wave solution of the Hirota equation are

obtained by the IPINN method and compared with the

traditional PINN method’s, and the robustness of the

IPINN method is discussed under different number of

network layers, each hidden layer neurons, sampling

points, and noises. In Sect. 4, the unknown parameters

in Hirota equation are identified by the proposed

method. Finally, the conclusion is given in Sect. 5.

2 Methodology

In this section, we consider the Hirota equation along

with Dirichlet boundary conditions given by

iQtþaðQxxþ2jQj2QÞþ ibðQxxxþ6jQj2QxÞ¼0;

x2ð�L;LÞ;t2ðt0;t1Þ;
Qðx;t0Þ¼Q0ðxÞ;x2½�L;L�;
Qð�L;tÞ¼QðL;tÞ;t2½t0;t1�;

8
>>><

>>>:

ð2Þ

where i¼
ffiffiffiffiffiffiffi
�1

p
. �L and L represent the upper and

lower boundaries of the spatial domain x, respectively.

t0 and t1 denote the start time and end time of the time

domain t, respectively. Q(x, t) is a complex envelope

field. Assume Qðx;tÞ¼uðx;tÞþ ivðx;tÞ, where u(x, t)

and v(x, t) are the real and imaginary parts of Q(x, t),

respectively. a represents the group velocity disper-

sion coefficient, and b denotes the third-order disper-

sion coefficient. We solve Eq. (2) in terms of the real

and imaginary parts and define

� vt þ aðuxx þ 2ðu2 þ v2ÞuÞ
� bðvxxx þ 6ðu2 þ v2ÞvxÞ ¼ 0;

ð3Þ

ut þ aðvxx þ 2ðu2 þ v2ÞvÞ
þ bðuxxx þ 6ðu2 þ v2ÞuxÞ ¼ 0:

ð4Þ

Next, the deepneural network is used to approximate the

solutions of Eqs. (3) and (4), and then, the governing

equation is embedded into the network. The derivative

of the solution to time and space is obtained byusingAD

technique. Specifically, we define the residual networks

fuðx; tÞ and fvðx; tÞ, which are given by the left-hand

side of Eqs. (3) and (4), respectively

fû :¼� v̂t þ aðûxx þ 2ðû2 þ v̂2ÞûÞ
� bðv̂xxx þ 6ðû2 þ v̂2Þv̂xÞ;

ð5Þ

fv̂ :¼ût þ aðv̂xx þ 2ðû2 þ v̂2Þv̂Þ
þ bðûxxx þ 6ðû2 þ v̂2ÞûxÞ:

ð6Þ

where Nu and Nv are nonlinear operators consisting of

functions of real-valued solutions and functions of

spatial derivatives, respectively.

Next, we will adopt the Lax pair [44] to construct

the infinitely many conservation laws for Eq. (2) as the

following forms:

Ux ¼ UU;Ut ¼ VU; ð7Þ

whereU ¼ ðU1;U2ÞT is the eigenfunction (the symbol

‘‘T’’ represents the transpose of the vector), U1 and U2

are the functions of x and t, and U and V are

specifically in the form of

U ¼
k Q�

Q � k

� �

; ð8Þ

V ¼
A B�

B � A

� �

; ð9Þ

with

A ¼ �ijQj2 þ bQ�Qx � bQQ�
x � 2ikbjQj2 þ 2ik2 þ 4ik3b;

B ¼ �Qx � ibQxx � 2ibjQj2Qþ k½�2bQx þ 2iQ� þ 4ik2bQ;

(

ð10Þ

where k is a complex eigenvalue parameter, and the

symbol ‘‘*’’ denotes to the complex conjugation.

Further, based on Eq. (7), introduce the fractional

function C ¼ U2=U1. We can obtain the following

Riccati equation:

Cx ¼ iQ� 2ikC� iQ�C2: ð11Þ

Then, setting [45]

C ¼
X1

m¼1

cmk
�m; ð12Þ

substituting Eq. (12) into Eq. (11), and letting the

coefficients of the same power of k equal zero, we can
get
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c1 ¼
1

2
Q

c2 ¼
1

4
iQt;

c3 ¼
1

8
ð�jQj2Q� QxxÞ

..

.

cnþ1 ¼
i

2
ðcn;t þ iQ

Xn�1

k¼0

ckcn�kÞ; ðn ¼ 2; 3; . . .Þ;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð13Þ

where cm
0sðm ¼ 1; 2; 3; . . .Þ are the functions of x and t

to be determined. Using, compatibility conditions

ðlnU1Þxt ¼ ðlnU1Þtx, we can obtain

ðikþ iQ�CÞt ¼ ðAþ BCÞx: ð14Þ

Similarly, substituting Eqs. (10), (12), and (13) into

Eq. (14) and collecting the coefficients of the same

power of k, we can yield the infinitely many conser-

vation laws for Eq. (2) as follows:

o

ot
Cm þ o

ox
Hm ¼ 0; ð15Þ

with

C1 ¼
1

2
ijQj2;

H1 ¼
1

2
½aðQQx � QQ�

xÞ � ibðQxQ
�
x � Q�Qxx � QQ�

xx � 3jQj4Þ�;

C2 ¼ � 1

4
Q�Qx;

H2 ¼
1

4
½iaðjQj4 � QxQ

�
x þ Q�QxxÞ � bð6Q�QxjQj2

�Q�
xQxx þ QxQ

�
xx þ Q�QxxxÞ�

..

.

Cl ¼ iQ�cx; l ¼ 3; 4; . . .;

Hl ¼ ½ibQ�
xx � aQ�

x þ 2ibQ�jQj2�cl � 2½iaQ� þ bQ�
x �clþ1

�4ibQ�clþ2;

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

where Cm
0s and Hm

0s are the conserved densities and

conserved fluxes, respectively. Substituting C1 andH1

into Eq. (15), we can obtain the energy conservation

law of Eq. (2), which can be described as

i½uut þ vvt þ aðuvxx � vuxxÞ þ bðuuxxx þ vvxxx

þ 6ðu2 þ v2Þðuux þ vvxÞÞ� ¼ 0:
ð17Þ

In the following, the real and imaginary parts of

Eq. (17) are separated and defined as

fEC�û :¼0; ð18Þ

fEC� v̂ :¼ûût þ v̂v̂t þ aðûv̂xx � v̂ûxxÞ þ bðûûxxx þ v̂v̂xxx

þ 6ðû2 þ v̂2Þðûûx þ v̂v̂xÞÞ:
ð19Þ

Now, we can give the loss function for solving Eq. (2)

using IPINN specifically as follows:

Loss ¼ Lossî þ Lossb̂ þ Lossf̂ þ Lossĉ; ð20Þ

where

Lossî ¼
1

N0

XN0

i¼1

ðj ûðxiu; tiuÞ � ui j2 þ j v̂ðxiv; tivÞ � vi j2Þ;

Lossb̂ ¼
1

Nb

XNb

j¼1

ðj ûð�L; t juÞ � ûðL; t juÞ j2 þ j v̂ð�L; t jvÞ � v̂ðL; t jvÞ j2Þ;

Lossf̂ ¼
1

Nf

XNf

k¼1

ðj fûðxkfu ; t
k
fu
Þ j2 þ j fv̂ðxkfv ; t

k
fv
Þ j2Þ;

Lossĉ ¼
1

Nf

XNf

k¼1

½ðj fEC� ûðxkfu ; t
k
fu
Þ j2 þ j fEC� v̂ðxkfv ; t

k
fv
Þ j2Þ;

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð21Þ

Here, fxiu; tiu; uig
N0

i¼1 and fxiv; tiv; vig
N0

i¼1 represent the

training points sampled from the initial conditions of

Eq. (2). f�L; t ju; u
jgNb

j¼1, fL; t ju; u jgNb

j¼1, f�L; t jv; v
jgNb

j¼1

and fL; t jv; v jgNb

j¼1 are boundary data points of Eq. (2).

fxkfu ; t
k
fu
gNf

k¼1 and fxkfv ; t
k
fv
gNf

k¼1 denote configuration

points specified by fû, fv̂, fEC�û, and fEC� v̂. The loss

function (20) consists of three parts. Specifically,

Lossî and Lossb̂ are the error generated by the initial

and boundary data, respectively. Lossf̂ and Lossĉ are

the errors caused by imposing Eq. (2) and its conser-

vation law at a finite set of configuration points,

respectively.

Finally, we give the network structure figure for

solving the Hirota equation using the IPINN method,

as shown in Fig. 1. Specifically, the solution process

can be divided into three parts: (I) Input x and t, and

use the deep neural network to solve û and v̂; (II) take

the training data points, Eqs. (5) and (6), and conser-

vation laws (18) and (19) as the loss functions of the

network; and (III) optimize the network parameters by

employing Adam [46] and L-BFGS [47] techniques.

3 Data-driven solution for Hirota equation

In this section, we will use two different types of

methods, including PINN and IPINN, to calculate the

bright soliton solution and rogue wave solution of
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Eq. (2), and compare them with the known Hirota

equation exact solution.

In addition, in all numerical simulations, we choose

a neural network with four hidden layers, and each

layer has 50 neurons. Network weights are initialized

using the Xavier algorithm. The activation function is

hyperbolic tangent. Loss function is simply optimized

by using Adam and L-BFGS algorithms. All the code

in this paper is based on Python 3.7 and Tensorflow

1.15, and all numerical experiments are run on a

computer with Intel(R) Core(TM) i7-4790 @ 3.60GHz

processor and 16 GB memory.

3.1 Bright soliton solution

Firstly, we use the PINN method and the IPINN

method to simulate the bright soliton solution of

Eq. (2). Now, we give the bright soliton solution [14]

of Eq. (2) as follows:

Qðx; tÞ ¼ sechðx� btÞeit; ð22Þ

where b is the wave velocity. When b[ 0, the wave

propagates to the right; conversely, it propagates to the

left. We can set a ¼ 1, b ¼ 0:01 and take x and t in

Eq. (2) as ½�10; 10� and [0, 5], respectively. There-

fore, we can get the initial value of Eq. (2), which is as

follows:

Qðx; 0Þ ¼ sechðxÞ: ð23Þ

We obtain the training data from Eq. (2) by

MATLAB. Specifically, dividing space ½�10; 10� into

501 points and time [0, 5] into 256 points, bright

soliton solution Q(x, t) is discretized into 256 snap-

shots accordingly. We try to use a small amount of

data for simulation experiments. First, we randomly

sample 50 points from the initial and boundary

conditions, that is,N0 ¼ 50 andNb ¼ 50, respectively.

Then, the Latin hypercube sampling (LHS) [48]

strategy is used to select Nf ¼ 1000 points from the

spatio-temporal region. We minimize the loss func-

tion (20) by using 5000 steps Adam and 10,000 steps

L-BFGS. After giving the training dataset, the bright

soliton solution Q(x, t) is successfully learned by

optimizing the parameters of the neural network. The

PINN method achieves a final mean squared error loss

L2 of 2.7122055e�06 at 8637 iterations. However, the

IPINN model reaches a final mean squared error loss

L2 of 1.8600642e�06 at 8786 iterations.

In Fig. 2, the three-dimensional motion and density

diagrams of the bright soliton solution Q(x, t) with the

exact, PINN, and IPINN methods are plotted, respec-

tively, as well as the iteration number curves of the two

data-driven methods. We find that the IPINN method

can accurately predict the bright soliton solution. It is

not difficult to see that the training loss curve in

Fig. 2d shows the relationship between the number of

iterations and the loss function. Obviously, the opti-

mization effect of IPINN method is better than that of

PINN method. In Fig. 3, we give the error results

between the predicted solution and exact solution

of PINN and IPINN methods. Moreover, the relative

L2 errors of Q(x, t), u(x, t), and v(x, t), respectively,

Fig. 1 Schematic of IPINN for the Hirota equation
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are 1.273869e�02, 7.944935e�02, 6.070850e�02 in

PINN method, and 6.496740e�03, 3.690088e�02,

2.759208e�02 in IPINN method. In Fig. 4, we show

the comparison between the exact solution and the

predicted solution obtained by using PINN and IPINN

methods at different times t ¼ 3:50; 3:92; 4:50; 4:90.

The results show that the predictions of IPINNmethod

match well with the evolution described by the exact

solution.

3.2 Rogue wave solution

In this section, we consider using two types of methods

(PINN and IPINN methods) to solve the rogue wave

Fig. 2 Prediction of bright soliton solution (22) using PINN and IPINN. a Exact solution; b prediction solution of PINN method;

c prediction solution of IPINN method; d loss curve function curves for the optimization iterations of PINN and IPINN methods
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solution of Eq. (2). The rogue wave solution [49] of

Eq. (2) can be expressed as follows:

Qðx; tÞ ¼ 1� 4ð1þ 4itÞ
4ðx� 6btÞ2 þ 16t2 þ 1

" #

e2it: ð24Þ

Here, we still assume a ¼ 1, b ¼ 0:01 and choose the

spatio-temporal region of Eq. (2) as ðx; tÞ 2 ½�2:5;

2:5� � ½�0:5; 0:5�. Thus, the initial solution of Eq. (2)

can be obtained as

Qðx;�0:5Þ ¼ 1� 4ð1� 2iÞ
4ðxþ 0:03Þ2 þ 5

" #

e�i: ð25Þ

Next, we divide time ½�0:5; 0:5� into 201 points and

space ½�2:5; 2:5� into 256 points. The rogue wave

solution Q(x, t) is discretized into 201 snapshots

accordingly by MATLAB. It is worth noting that we

do not select boundary data. The sampling number of

initial condition and solution region, and the training

number, is the same as in Sect. 3.1. Based on the above

selection, we use PINN and IPINN methods to

numerically simulate the rogue wave solution of

Eq. (2). This is the case for the PINN method, which

achieves a final mean squared error loss L2 of

1.0907666e�04 and a number of iterations of 10358.

Nevertheless, by using the IPINN method, it reaches a

final mean squared error loss L2 of 1.7176968e�05

and a number of iterations of 10390.

Figure 5a–c shows the comparison between the

predicted solution and the exact solution of the rogue

wave with the help of PINN and IPINN methods, and

we find that IPINN method can simulate the evolution

of the rogue wave, while PINN method cannot. In

Fig. 5d, we can clearly see that the loss function curve

of IPINN method decreases faster and smoother at

5001 iterations compared to PINN method. Figure 6

shows the comparison of the error between the two

methods when simulating the rogue wave solution and

the exact solution, and it can be obviously found that

the error of IPINN method is significantly lower

than PINN method, and meanwhile, the relative L2
errors of Q(x, t), u(x, t), and v(x, t), respectively,

are 4.192447e�02, 1.414866e?00, 1.676037e?00

in PINN method, and 8.522858e�03, 1.436250e

?00,1.666065e?00 in IPINN method. In Fig. 7, we

show the comparison between the exact and pre-

dicted solutions of the rogue wave solution at different

times t ¼ �0:355;�0:105; 0:045; 0:095. Obviously,

the predicted solution of the IPINN method is very

close to the exact solution, while the PINN method is

very poor.

In practical engineering applications, the data

obtained by sampling are inevitably noisy, so we add

Fig. 3 The error comparison of bright soliton solution (22) is solved by PINN and IPINN methods. a Error of solution using PINN

method; b error of solution using IPINN method
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various degree of noises (1%, 2% Gaussian noise, as

shown in Fig. 8) to the training data to verify the

robustness of the IPINN method. Based on the

different noisy data, we simulate the rogue wave

solution (24) using the PINN and IPINNmethods. The

results show that for the noise as 1%, 2%, the relative

L2 errors of Q(x, t) are 4.311988e�02, 4.891149e�02

in the PINN method and 1.344709e�02,

1.040529e�02 in the IPINN method, respectively.

In Figs. 8, 9, and 10, we show a series of

experimental results for solving the rogue wave

solution (24) using the PINN method and the IPINN

method under various noises. We find that the IPINN

method can predict the rogue wave solution

accurately, whereas the PINN method cannot. There-

fore, the IPINN method has better robustness for noisy

data.

Furthermore, in the case of a four-layer neural

network and 50 neurons, we discuss the effect of the

number of initial condition sampling points N0 and

space-time domain sampling points Nf on solving the

rogue wave of the Hirota equation by the IPINN

algorithm, as shown in Table 1. The results show that,

overall, when Nf is fixed, the larger the number of N0,

the smaller the relative L2 error. When N0 is fixed, the

error does not decrease with the increase ofNf . To sum

up, we can conclude that the relative L2 error is mainly

determined by the initial condition sampling points

Fig. 4 Comparison of exact, PINN, and IPINN methods of the bright soliton solution (22) at different times
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N0. Similarly, assume that N0 ¼ 50 and Nf ¼ 1000

remain constant. Table 2 shows the effect of the

number of network layers and neurons on the perfor-

mance of the IPINN method. The results show that

when the number of network layers is fixed, the

relative L2 error generally decreases with the increase

of the number of neurons. When the number of

neurons is fixed, the influence of the number of

network layers on the relativeL2 error is not obvious.

Fig. 5 Prediction of rogue wave solution (24) using PINN and IPINN. a Exact solution; b prediction solution of PINN method;

c prediction solution of IPINN method; d loss curve function curves for the optimization iterations of PINN and IPINN

123

Solution of the Hirota equation using a physics-informed neural network method 13407



4 Data-driven parameter discovery for Hirota

equation

Next, we will consider the using of the IPINN method

to simulate the parameter discovery of Eq. (2). The

IPINNmethod is first used to identify the parameters a
and b in Eq. (2). In addition, we use this method to

predict the parameters of the higher-order terms of

Eq. (2).

4.1 Parameter discovery for a and b

In this section, we use two different methods to

identify the coefficients a and b of the second-order

and third-order terms in the Hirota equation as

follows:

iQt þ aðQxx þ 2jQj2QÞ þ ibðQxxx þ 6jQj2QxÞ ¼ 0;

ð26Þ

where a, b are unknown real constants. We consider

the bright soliton solution of Eq. (26) and set a ¼ 1,

b ¼ 0:1, L ¼ 10, t0 ¼ 0, t1 ¼ 5. We will divide the

space ½�10; 10� into 501 points, time [0, 5] into 256

points, and discrete the bright soliton solution Q(x, t)

into 256 snapshots. The LHS strategy is used to select

ðx; tÞ 2 ½�10; 10� � ½0; 5� data points from the spatio-

temporal domain for parameter discovery. The rest of

the settings are the same as in Sect. 3.1.

The results show that the final mean squared error

loss L2 of IPINN is 1.485e�04, and the relative L2
errors ofQ(x, t), u(x, t), and v(x, t) are 1.928966e�04,

2.932726e�04, and 2.912337e�04, respectively.

However, the final mean squared error loss L2 of

PINN is 1.763e�04, and the relative L2 errors of

Q(x, t), u(x, t), and v(x, t) are 2.137185e�04,

3.144962e�04, and 3.041743e�04, respectively.

Table 3 exhibits the learning parameters a, b in

Eq. (26) under the cases of PINN and IPINN, and their

errors of a, b are 3.600e�05, 2.932e�04 and

9.800e�06, 1.756e�04, respectively.

4.2 Parameter discovery for l and m

In this section, we will use the PINN and IPINN

methods to predict the parameters of the higher-order

terms in the Hirota equation, and we consider the

Hirota equation of the form with two parameters, as

following

iQt þ Qxx þ 2jQj2Qþ i

2
ðlQxxx þ mjQj2QxÞ ¼ 0;

ð27Þ

Fig. 6 The error comparison of rogue wave solution (24) is solved by PINN and IPINN. a Error of solution using PINNmethod; b error
of solution using IPINN method
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where l is the third-order dispersion coefficient. m is

related to the time-delay correction for the cubic

nonlinearity term jQj2Q. We assume l ¼ 1, m ¼ 6. At

the same time, we still consider the bright soliton

solution of Eq. (27), and all the experimental settings

are the same as Sect. 4.1.

This is the case for the PINN method, which

achieves a final mean squared error loss L2 of

2.563e�04. Nevertheless, by using the IPINNmethod,

it reaches a final mean squared error loss L2 of

2.177e�04. The relative L2 errors of Q(x, t), u(x, t)

and v(x, t), respectively, are 2.846415e�04,

3.969635e�04, 3.787746e�04 in PINN method, and

2.594493e�04, 3.892033e�04, 3.499485e�04 in

IPINN method. Table 4 illustrates the learning param-

eters l, m in Eq. (27) under the cases of PINN and

IPINN, and their errors of l, m are 6.248e�04,

5.342e�04 and 3.704e�04, 3.297e�04, respectively.

5 Conclusion

In this paper, we proposed a new PINN method

embedded with the conservation law, called IPINN, to

solve the classical integrable Hirota equation. This

algorithm improves the performance of the traditional

PINN with less training data by adding the conserva-

tion laws of the equations to the neural network and

Fig. 7 Comparison of exact, PINN, and IPINN of the rogue wave solution (24) at different times
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Fig. 8 Training data with different noises. a The noise is 1%; b the noise is 2%

Fig. 9 Density and error diagrams of the PINN and IPINN

methods for predicting rogue wave solution (24) when the noise

is 1%. a Exact solution; b prediction solution of PINN method;

c prediction solution of IPINNmethod; d error of PINNmethod;

e error of IPINN method
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imposing stricter constraints on the loss function of the

network.

In our numerical experiments, the bright soliton

solution and the rogue wave solution of the Hirota

equation are simulated by using IPINN method, and

we compared the present algorithm with traditional

PINN. We found that, noticeably, for the rogue wave

solution, the effects of different noisy data and

network structures on the IPINN method are studied,

and the results show that IPINN can also predict the

evolution process of the rogue wave solution well

under noisy data. Furthermore, in the inverse problem,

the second-order term, the third-order term coefficient,

and the parameters contained in the third-order term of

the Hirota equation are identified through IPINN.

In general, numerical results show that our pre-

sented IPINN method is more effective than the PINN

method in accurately recovering the different evolu-

tionary processes and parameter discovery of the

Hirota equation. The IPINN method is a promising

Fig. 10 Density and error diagrams of the PINN and IPINN

methods for predicting rogue wave solution (24) when the noise

is 2%. a Exact solution; b prediction solution of PINN method;

c prediction solution of IPINNmethod; d error of PINNmethod;

e error of IPINN method

Table 1 The rogue wave solution (24) of the Hirota equation by using the IPINN: Relative L2 error of Q(x, t) for different number of

N0 and Nf

N0 Nf

500 1000 1500 2000 2500 3000

50 8.805079e�03 8.522858e�03 1.304595e�02 1.331060e�02 1.053535e�02 1.434573e�02

100 8.541044e�03 8.462943e�03 7.578718e�03 1.151007e�02 1.610343e�02 8.572823e�03

150 1.027909e�02 6.457162e�03 1.097187e�02 9.039189e�03 7.767210e�03 6.797012e�03

200 6.780804e�03 4.538972e�03 3.897096e�03 6.797249e�03 4.938941e�03 1.056135e�02
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method to improve the solution of integrable equa-

tions. Since IPINN can use less data to simulate the

evolution process of integrable equations, in future

research, we consider combining deep learning with

integrable system theory to solve more complex

integrable equations.
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dinger equation. Nonlinear Dyn. 89(1), 509–529 (2017)

2. Lovász, B., Sándor, P., Kiss, G.Z., Bánhegyi, B., Rácz, P.,
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