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Abstract The paper proposed an effective semi-

analytical approach to study tsunami wave propaga-

tion along a coast line of an ocean represented by

system of nonlinear partial differential equation based

on shallow water assumption. An analytical solution is

obtained for system of partial differential equation

describing tsunami wave propagation for different

ocean depth and coastal slopes. The proposed method

does not require linearization, perturbation or calcu-

lation of unneeded terms; on other hand, its transforms

give system of differential equation to recursive

formula and provide the series solution which con-

verges rapidly. The obtained analytical solution

closely matches with the real physical phenomena of

tsunami for height and velocity of tsunami wave. To

show the effectiveness and reliability of the proposed

method, we have compared the obtained results with

exact and analytical solution available in the literature

which shows excellent agreement. The impact of

ocean depth and coastal slopes on tsunami run-up and

wave velocity is also discussed.

Keywords Nonlinear partial differential equation �
Tsunami wave propagation � Shallow water equation �
Reduced differential transformation method
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1 Introduction

Tsunamis occur when an impulsive disturbance dis-

lodges the water column vertically, resulting in a chain

of waves in a body of water. As a result of explosions,

landslides, earthquakes, volcanic eruptions, and even

the effect of cosmic bodies, such as meteorites, the

explosion of nuclear devices close to sea can give rise

to vicious sea waves, called tsunamis [1–3]. There is

no doubt that tsunamis generated by large shallow-

focus earthquakes occurring near or in the ocean are

among the most destructive. An earthquake’s vertical

displacement can cause tsunami waves to propagate

across an ocean, spreading devastation along their path

as presented in Fig. 1.

Although tsunamis originate from point sources,

waves generated can cause extensive damage locally.

As they travel across the ocean, their energy rapidly

dissipates, which can cause property damage and

death along the coastline. It is the depth of water that

determines the tsunami’s speed. On approach to shore,

the wave speed decreases and the wave height
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increases. As a tsunami develops, it goes through three

stages: formation, propagation in the middle of the

ocean, and breaking and running up the coastline. This

paper will focus on the last two stages. There is a great

deal of interest in tsunami modeling regarding the

heights of tsunami run-ups at different points along a

coastline. Studies have been conducted both theoret-

ically and experimentally previously to determine how

long waves run up. Some of them are referenced in this

section.

Based on numerical model, Kobayashi et al. [4]

predict the flow characteristics of wave trains running

along a rough slope. Finite difference methods using

explicit dissipative Lax–Wendroff are used to solve

the finite-amplitude shallow water equations in the

time domain in reference [5]. Due to the assumption

that permeability is negligible, flow computations may

be limited for areas on rough slopes. For irregular

waves on a rough, impermeable slope of 1:3, the

author in reference [6] assessed reflection and wave

run-up. In order to better understand certain coastal

effects of tidal waves, Kânoğlu and Synolakis [6]

analyzed and experimented on piecewise linear and

2-dimensional bathymetries. In addition to comparing

analytical predictions with numerical results, the

authors examined data on waves run-up around an

idealized conical island as well as results from Revere

Beach data. A mixed Eulerian–Lagrangian optimiza-

tion algorithm was presented by Maiti and Sen [7] for

analyzing highly nonlinear solitary waves interacting

with plane, gentle and steep slopes. In addition to wave

steepness, slope of the plane is also important in

finding the run-up height. The author further investi-

gates the force and pressure exerted on impermeable

walls by shallow-water solitary waves. Li and

Raichlen [8] observe solitary waves running up on a

uniform plane beach connected to a continuous depth

ocean. In the run-up phase, wave does not break. The

hodograph transformation is used to solve an analyt-

ically nonlinear shallow-water equation (NSWE)

describing wave features on the beach. In a laboratory

experiment, Gedik et al. [9] investigated erosion and

tsunami run-up on permeable slope beaches. Using

run-up height and erosion area as parameters, they

developed a relationship between the two. A finite-

element simulation of tsunami waves was carried out

by Cai [10] using the potential flow theory, which

involves solid–water interaction. In order to study the

effects of different beach slopes on tsunami run-up,

these researchers used a finite-element method. Based

on their findings, the tsunami wave originating from a

thrust fault earthquake is located above the hanging

wall, and then, it splits into two waves—one above the

hanging wall and the other above the foot wall-with

differing amplitudes, wave forms, and velocities. Liu

[11] applies the linear potential theory to analyze

tsunamis prompted by underwater earthquakes, and he

emphasizes on the tsunami’s initial state. Karunakar

and Chakraverty [12] study the tsunami wave propa-

gation in a crisp and interval environment using

classical NSWEs. Using the line method, Mousa [13]

studies how increasing sea depth and coast slope

affects the height and velocity of tsunami waves.

Varsoliwala and Singh [14] studies the tsunami model

using the hybrid approach, namely Elzaki adomain

decomposition method. For society to be protected

from catastrophic destruction with minimal comput-

ing time, a model study in determining the tsunami’s

travel time, amplitude, and inundation distance was

proposed by Regina and Mohamed [15]. A fractional

approach was used by Tandel et al. [16] to study the

tsunami wave propagation model, and Liu [11]

investigates tsunami waves propagation using the

recently introduced notion of product-like fractal

measure. Magdalena et al. [17] utilize a mathematical

model to examine how submarine landslides can

produce tsunami waves that are extremely damaging.

Numerical solution of the NSWEs is carried out using

a staggered grid finite volume method. Several

attempts to obtain the exact or analytical and numer-

ical solution of the wave equation have been made

through research [18–24].

In this paper, an analysis of tsunami run-up is

conducted by solving the classical NSWEs using

Fig. 1 Tsunami wave formation
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reduced differential transform method. The classic

NSWEs are presented as a model of tsunami run-up in

this paper. Two cases are considered. The first case is

the classical problem for which an analytical solution

is known for a uniform sea depth and a zero beach

slope. At a variable beach slope, the second case is

considered. An outline of the paper is as follows:

Sect. 2 describes the mathematical model of the

shallow water tsunami model. The proposed semi-

analytical approach is discussed in Sect. 3 with error

and convergence analysis. Section 4 deals with the

implementation of RDTM to the model. Section 5

deals with result and discussion followed by conclu-

sion in Sect. 6.

2 Shallow-water tsunami model

In the same way as other waves, tsunamis have

amplitudes, wavelengths, and speeds. The wavelength

in waves is defined as the distance between two

troughs or crests. A wave’s amplitude is determined by

the height above the static water line. Tsunami waves

are made up of shallow water waves, and velocity is

defined as the speed of the wave. When the depth of

water is smaller than the wavelength of a wave, it is

considered shallow. The cross section of coast during

the tsunami is shown in Fig. 2.

The classical NSWE are given by [10, 16]:

ot
o‘

þ t
ot
o}

þ g
ox
o}

¼ 0; ð1Þ

ox
o‘

þ o

o}
t uþ xð Þð Þ ¼ 0; ð2Þ

where t }; ‘ð Þ,x }; ‘ð Þ,u }ð Þ represent the tsunami

velocity, wave amplification, varying ocean depth

close to shore. Initial conditions are

t }; 0ð Þ ¼/

ffiffiffiffi

g

D

r

sec2h

ffiffiffiffiffiffiffiffi

3/
4D3

r

}

 !

; ð3Þ

x }; 0ð Þ ¼/sec2h

ffiffiffiffiffiffiffiffi

3/
4D3

r

}

 !

; ð4Þ

where /;D; g; } represent wave amplification, ocean

depth, gravitational acceleration and distance, respec-

tively. The exact soliton solution in this stage is

defined in [16] as

t }; ‘ð Þ ¼ /sec2h

ffiffiffiffiffiffiffiffi

3/
4D3

r

 

}�
ffiffiffiffi

g

D

r

1 þ h

2d

� �

‘

� ��

;

ð5Þ

x }; ‘ð Þ ¼ t }; ‘ð Þ
ffiffiffiffi

g

D

r

: ð6Þ

When u }ð Þ is variable, there is no exact solution to the

system described by Eqs. (1)–(4). Therefore, three

linear functions will be solved in the form

u }ð Þ ¼ m}þ 300, where m ¼ 0:2; 0:4; 0:6, respec-

tively. To illustrate how the slope of the coast m affects

run-up heights and tsunami wave velocity at the beach,

we solve this system for breaking and run-up on the

beach.

3 Reduced differential transform method

Definitions and mathematical preliminaries of the

proposed method for better understanding are dis-

cussed in this section. The proposed method concept

has been derived from the 2-dimensional Taylor’s

series expansion w.r.t to specific variable } or ‘.

Consider a function n }; ‘ð Þ and assume that

Fig. 2 Coast during the

tsunami
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n }; ‘ð Þ ¼ h1ð}Þ h2ð‘Þ. Using the definition of the one-

dimensional differential transform method (ODDTM),

the function n }; ‘ð Þ can be expressed as:

n }; ‘ð Þ ¼
X

1

j¼0

H1;j}
j
X

1

g¼0

H2;g‘
k

¼
X

1

j¼0

X

1

g¼0

Wj;g j; gð Þ}j‘g;

ð7Þ

where Wj;g ¼ H1;jH2;g is called the spectrum of

original function. The basic concept of RDTM is as

follows [24]:

Definition 1 Let n }; ‘ð Þ be a continuously differen-

tiable function, then the spectrum or transform of the

form of n }; ‘ð Þ w.r.t ‘ at is defined as:

nj }ð Þ ¼ 1

j!
oj

osj
n }; ‘ð Þ

� �

‘¼‘0

; ð8Þ

where nj }ð Þ is the reduced differential transform of

original function n }; ‘ð Þ. The inverse reduced differ-

ential transform of nj }ð Þ is defined as:

n }; ‘ð Þ ¼
X

1

j¼0

nj }ð Þ ‘� ‘0ð Þj: ð8Þ

From Eqs. (8) and (9), we get

n }; ‘ð Þ ¼
X

1

j¼0

1

j!
oj

osj
n }; ‘ð Þ

� �

s¼s0

" #

‘� ‘0ð Þj: ð9Þ

Equation (6) can be used to derive the fundamental

properties of RDTM as shown in Table 1.

3.1 Implementation of RDTM

The convergence of solution obtained by RDTM is

discussed in this section. For this, consider the

following nonlinear PDE:

ts ¼ t }; s; l; l}; l}}; . . .
� �

; ð9Þ

with initial condition

t }; 0ð Þ ¼ t0 }ð Þ: ð10Þ

The fundamental operation of RDTM from Table 1

converts Eqs. (11)–(12) to recursive formula given by:

#þ 1ð ÞV
#þ1

}ð Þ

¼ V n; v#;
dV# }ð Þ
d}

;
d2V# }ð Þ
d}2

; . . .

� �

;
ð10Þ

and the transformed initial condition is

v xð Þ ¼ v0 xð Þ; ð11Þ

where V#þ1 }ð Þ and V n; v#;
dV# }ð Þ
d} ; d

2V# }ð Þ
d}2 ; . . .

	 


are

transformed form of the original function t }; ‘ð Þ and

t }; s; l; l}; l}}; . . .
� �

obtained by applying RDTM in

the #th iteration. Substituting the value of V# }ð Þ for

# ¼ 0; 1; 2; 3; 4; . . .n in definition of inverse reduced

differential transform, the approximate analytical

series solution of Eq. (9) with initial condition

Eq. (12) is given by

t }; ‘ð Þ ¼
X

1

j¼0

Vj }ð Þ ‘� ‘0ð Þj ð12Þ

3.2 Convergence and error analysis of RDTM

The convergence of the series solution obtained by

RDTM is discussed in reference [25]. We recall the

theorems from reference [25] that assure the conver-

gence of the series solution Eq. (15).

Theorem 1 If fk }; ‘ð Þ ¼ Vk }ð Þ ‘� ‘0ð Þk, then the

series solution ¼
P

n

j¼0

fj }; ‘ð Þ for Eq. (12), 8j 2 N [

Table 1 Fundamental operation of RDTM w.r.t to variable ‘
[10]

Original function Transformed function

n1ð}; ‘Þ � n2ð}; ‘Þ E1 }ð Þ � E2 }ð Þ
kn1ð}; ‘Þ kE1 }ð Þ
on };‘ð Þ
o}

on# }ð Þ
o}

on };‘ð Þ
o‘

#þ 1ð ÞE#þ1 }ð Þ
on };‘ð Þ
o} o‘ #þ 1ð Þ on#þ1 xð Þ

ox

n1 }; ‘ð Þn2 }; ‘ð Þ
P

‘

g¼0

E1;g }ð ÞE2;‘�g }ð Þ

}A‘B }Ad h� Bð Þ
where

d h� Bð Þ ¼ 1 ; h ¼ B

0 ; h 6¼ B

�
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0f g (I) is convergent if there exist 0\g\1 such that

fjþ1k k� g fjk k; (ii) is divergent if there exist g[ 1

such that fjþ1k k� g fjk k; The truncation error of the

series Eq. (12), which is a specific case of Banach’s

fixed point theorem, is investigated in Theorem 1.

Theorem 2 Suppose
P

n

j¼0

fk }; ‘ð Þ is required series

solution, where fj }; ‘ð Þ ¼ Vj }ð Þ ‘� ‘0ð Þj, converges

to e }; ‘ð Þ. If
P

n

j¼0

fk }; ‘ð Þ is the truncated series used

to approximate the solution and then estimated

maximum absolute truncated error is as

e x; tð Þ �
P

n

j¼0

fj x; sð Þ
�

�

�

�

�

�

�

�

� 1
1�g g

nþ1 f0k k. Theorems 1

& 2 can be verified in [25]. From Theorem 1 and 2, it

is concluded that series solution obtained using

RDTM for non-linear Eq. (12) converges to an

exact solution when there exists 0\g\1 such

that fjþ1k k� g fjk k; for 8j 2 N [ 0f g. In addition,

e x; tð Þ �
P

n

j¼0

fi x; sð Þ
�

�

�

�

�

�

�

�

� 1
1�g g

nþ1 f0k k represents the

maximum estimated absolute truncated error.

4 Implementation of RDTM to tsunami wave

propagation model

This section discusses the implementation of the

proposed method to obtained the series solution to

Eqs. (1) and (2) with initial condition Eqs. (3) and (4)

with parameter value g ¼ 9:8 m=s2;/ ¼ 2.

Case 1: Propagation of tsunami in mid-sea when-

u }ð Þ ¼ D ¼ 20

Applying RDTM to Eqs. (1) and (2), we get the

following system of recursive formula:

jþ1ð Þ#jþ1 }ð Þþ
X

j

i¼0

#i }ð Þ#j�i }ð Þþg
oxj }ð Þ
o}

¼0;

ð13Þ

jþ 1ð Þ-jþ1 }ð Þ þ u
o#j }ð Þ
o}

þ
X

j

i¼0

#i }ð Þðj� iþ 1Þ

-j�iþ1 }ð Þ þ
X

j

i¼0

-i }ð Þ j� iþ 1ð Þ#j�iþ1 }ð Þ ¼ 0;

ð14Þ

with initial transform condition

#0 }ð Þ ¼ /

ffiffiffiffi

g

D

r

sec2h

ffiffiffiffiffiffiffiffi

3/
4D3

r

}

 !

; ð15Þ

-0 }ð Þ ¼ /sec2h

ffiffiffiffiffiffiffiffi

3/
4D3

r

}

 !

: ð16Þ

The coefficient of series solution is obtained by

substituting j ¼ 0; 1; 2; . . .; n in Eqs. (13) and (14).

Some of the coefficients of the series solution are

mention below:

#0 }ð Þ ¼ 7

5 cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 
2
: ð17Þ

#1 ¼
49

ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


500 r1
3

þ
49

ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


5000 r1
5

;

ð18Þ

where r1 ¼ cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


#2 ¼ 3087 sinh ðr4Þ2

r2

þ 1029 sinh ðr4Þ2

20000 cosh ðr4Þ6
� 1029

r3

� 1029

100000 cosh ðr4Þ4

þ
7

441 sinh ðr4Þ2

r2

þ 147 sinh ðr4Þ2

40000 cosh ðr4Þ6
� 147

r3

� 147

200000 cosh ðr4Þ4

 !

10 cosh ðr4Þ2

þ
7
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinhðr4Þ
r1

500 cosh ðr4Þ3
þ r1

5000 cosh ðr4Þ5

 !

2000 cosh ðr4Þ3
;

ð19Þ

where r1 ¼ 49
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinhðr4Þ, r2 ¼ 20000 cosh

r4Þ4
, r3 ¼ 20000 cosh ðr4Þ2

, r4 ¼
ffiffi

3
p ffiffiffiffi

10
p

}
400

:

-0 ¼ 2

cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 
2
: ð20Þ

-1 xð Þ ¼
7
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


50 r1
3

þ
7
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


250 r1
5

;

ð21Þ

where r1 ¼ cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


:
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-2 ¼ r3

r6

þ r4

4000 coshðr8Þ6
� 147

r7

� 147

r5

þ
7

63 sinhðr8Þ2

r6

þ 21 sinhðr8Þ2

2000 coshðr8Þ6
� 21

r7

� 21

10000 coshðr8Þ4

 !

10 coshðr8Þ2

þ

r3

r5

þ r4

40000 coshðr8Þ6
� 147

20000 coshðr8Þ2
� 147

200000 coshðr8Þ4

coshðr8Þ2

þ
7
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinhðr8Þ
r2

50 coshðr8Þ3
þ r2

250 coshðr8Þ5

 !

2000 coshðr8Þ3

þ

ffiffiffi

3
p ffiffiffiffiffi

10
p

sinhðr8Þ
r1

500 coshðr8Þ3
þ r1

5000 coshðr8Þ5

 !

200 coshðr8Þ3
;

ð22Þ

where r1 ¼ 49
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinhðr8Þ; r2 ¼ 7
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinhðr8Þ; r3 ¼ 441 sinh ðr8Þ2; r4 ¼ 147 sinh ðr8Þ2;

r5 ¼ 20000 cosh ðr8Þ4;r6 ¼ 2000 coshr8
4;r7 ¼

2000 cosh ðr8Þ2;r8 ¼
ffiffi

3
p ffiffiffiffi

10
p

}
400

: The remaining coeffi-

cient of the series solution can be computed using

MATLAB software package. The tsunami velocity

and wave amplification (height) are given by the series

as follows:

t }; ‘ð Þ ¼ #0 }ð Þ
þ #1 }ð Þ‘þ #2 }ð Þ ‘2 þ . . .;

x }; ‘ð Þ ¼ -0 }ð Þ
þ -1 }ð Þ‘þ -2 }ð Þ ‘2 þ . . .;

where #0 }ð Þ,#1 }ð Þ,#2 }ð Þ; . . . and -0 }ð Þ;-1 }ð Þ;
-2 }ð Þ; . . . are coefficient and given by Eqs. (17)–(22).

Case II: Amplification (Breaking) and run-up of the

tsunami waves on the shore Taking u }ð Þ ¼ m}þ 300,

Eqs. (1) and (2) reduces to

ot
o‘

þ t
ot
o}

þ g
ox
o}

¼ 0; ð23Þ

ox
o‘

þ o

o}
t m}þ 300 þ xð Þð Þ ¼ 0: ð24Þ

Applying RDTM to Eqs. (23) and (24), we get

following system of recursive formula:

jþ1ð Þ#jþ1 }ð Þþ
X

j

i¼0

#i }ð Þ#j�i }ð Þþg
o-j }ð Þ
o}

¼0;

ð25Þ

jþ 1ð Þ-jþ1 }ð Þ þ m#k }ð Þ þ m}
o#k }ð Þ
o}

þ 300
o#j }ð Þ
o}

þ
P

j

i¼0

#i }ð Þ j� iþ 1ð Þ-j�iþ1 }ð Þ

þ
P

j

i¼0

-i }ð Þ j� iþ 1ð Þ#j�iþ1 }ð Þ ¼ 0:

ð26Þ

The coefficient of series solution is obtained by

substituting j ¼ 0; 1; 2; . . .; n in Eqs. (25) and (26).

Some of the coefficients of the series solution are

mention below:

#0 }ð Þ

¼ 7

5 cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 
2
; ð27Þ

#1 ¼
49

ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


500 r1
3

þ
49

ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


5000 r1
5

;

ð28Þ

where r1 ¼ cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


.

-0 ¼ 2

cosh
ffiffi

3
p ffiffiffiffi

10
p

x
400

	 
2
: ð29Þ

-1 ¼
21

ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh

ffiffiffi

3
p ffiffiffiffiffi

10
p

x

400

� �

10 r2
3

þ 14

25r2
2

þ
7
ffiffiffi

3
p ffiffiffiffiffi

10
p

sinh

ffiffiffi

3
p ffiffiffiffiffi

10
p

x

400

� �

250 r2
5

þ
7
ffiffiffi

3
p ffiffiffiffiffi

10
p

x sinh

ffiffiffi

3
p ffiffiffiffiffi

10
p

x

400

� �

2500 r2
3

;

ð30Þ

where r2 ¼ cosh
ffiffi

3
p ffiffiffiffi

10
p

}
400

	 


. The remaining coefficient

of the series solution can be computed using

MATLAB software package. The tsunami velocity

and wave amplification (height) are given by the series

as follows:
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t }; ‘ð Þ ¼ #0 }ð Þ
þ #1 }ð Þ‘þ #2 }ð Þ ‘2 þ . . .;

x }; ‘ð Þ ¼ -0 }ð Þ
þ -1 }ð Þ‘þ -2 }ð Þ ‘2 þ . . .;

where #0 }ð Þ,#1 }ð Þ,#2 }ð Þ,...and -0 }ð Þ;-1 }ð Þ;
-2 }ð Þ; . . . are coefficient and given by Eqs. (27)–(30).

5 Result and discussion

The objective is to validate the solution technique,

namely the reduced differential transform method for

solving shallow water equations, by simulating

tsunami propagation along the coastline. Two main

simulation scenarios are considered: (1) mid-ocean

tsunami propagation; and (2) breaking (amplification),

and running-up of tsunami waves on the beach for

three different coast slopes. To further clarify the

results after entering the coast region, the simulation is

visualized graphically in the positive portion of the

computational domain.

To validate the results of RDTM, the obtain

solution is compared with the exact solution for

velocity and tsunami wave height in the open ocean.

Figures 3 and 4 show that while propagating at a

constant speed, tsunami waves maintain their shape

and velocity. Nonlinear and dispersive effects in the

medium cancel out to cause the tsunami wave to

behave this way. Because there are no coasts where

waves can break, the tsunami wave remains intact. To

show the reliability and accuracy of the obtained

result, comparison of exact and obtained results is

shown in Figs. 4 and 5. One can check the conver-

gence of analytical solution for particular parameter

values using Theorems 1 and 2.

Tables 2 and 3 show the of tsunami velocity and

wave amplification for different time and distance for

Case I. Using a simulation, we have simulated the

breaking behavior of the tsunami wave at three

Fig. 3 Solution of tsunami wave velocity (t }; ‘ð Þ) and wave amplification (l }; ‘ð Þ) case 1, respectively

Fig. 4 Comparison of obtained result and exact solution for Case I
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Fig. 5 Solution of tsunami wave velocity (t }; ‘ð Þ) and wave amplification case 1, respectively, for m ¼ 0:2

Table 2 Numerical value of tsunami velocity (t }; ‘ð Þ) for different time ð‘Þ and distance (}) for Case I

} ‘ ¼ 0 ‘ ¼ 0:5 ‘ ¼ 1 ‘ ¼ 1:5 ‘ ¼ 2 ‘ ¼ 2:5 ‘ ¼ 3

0 1.4 1.38315013 1.3326005 1.248351125 1.130402 0.97875313 0.7934045

10 1.37407467 1.39803676 1.39119522 1.353550069 1.2851013 1.1858489 1.05579289

20 1.30003528 1.36123804 1.39928782 1.414184625 1.40592845 1.3745193 1.31995717

30 1.18799276 1.27751151 1.35377799 1.416792219 1.46655418 1.50306389 1.52632133

40 1.0516621 1.15790194 1.26038561 1.359113125 1.45408448 1.54529967 1.63275869

50 0.9051375 1.01676105 1.13196743 1.250756636 1.37312867 1.49908354 1.62862123

60 0.76036419 0.8683383 0.98450554 1.108865893 1.24141936 1.38216595 1.53110566

70 0.62585452 0.72424275 0.83299602 0.952114317 1.08159765 1.22144601 1.37165941

80 0.50655866 0.59232566 0.68886084 0.796164187 0.9142357 1.04307539 1.18268325

90 0.40446093 0.4767804 0.55919326 0.65169949 0.75429911 0.86699211 0.98977849

100 0.31944916 0.37891956 0.44727387 0.524512096 0.61063423 0.70564027 0.80953022

Table 3 Numerical value of wave amplification (l }; ‘ð Þ) for different time ð‘Þ and distance for case I

} ‘ ¼ 0 ‘ ¼ 0:5 ‘ ¼ 1 ‘ ¼ 1:5 ‘ ¼ 2 ‘ ¼ 2:5 ‘ ¼ 3

0 2 1.97556125 1.902245 1.78005125 1.60898 1.38903125 1.120205

10 1.96296382 2.00191894 1.99626404 1.945999142 1.85112423 1.71163931 1.52754438

20 1.85719326 1.95331289 2.01606247 2.045441996 2.04145147 2.0040909 1.93336027

30 1.69713252 1.83577332 1.95550928 2.056340397 2.13826668 2.20128813 2.24540474

40 1.50237443 1.6650529 1.8225965 1.975005233 2.12227909 2.26441808 2.40142221

50 1.29305357 1.46219039 1.63673837 1.816697534 2.00206786 2.19284936 2.38904203

60 1.08623455 1.2482572 1.42224314 1.608192369 1.8061049 2.01598072 2.23781983

70 0.89407789 1.04042442 1.20176664 1.378104553 1.56943816 1.77576745 1.99709244

80 0.72365523 0.85024976 0.99234811 1.149950273 1.32305626 1.51166606 1.71577969

90 0.57780133 0.6838486 0.80438548 0.939411975 1.08892808 1.25293381 1.43142914

100 0.45635594 0.54308662 0.64254704 0.754737208 0.87965712 1.01730677 1.16768617
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different sea depths, u }ð Þ ¼ m}þ 300, where

m ¼ 0:2; 0:4; 0:6. Figures 5, 6 and 7 illustrate tsunami

wave velocity and height at various time and coast

slopes. For the case 2 the exact solution is not

available, so to validate the obtained result by

proposed method comparison is shown in Tables 4

and 5 of tsunami velocity and wave amplification for

different time and distance with slope m ¼ 0:6. The

tsunami’s wave speed and amplitude decrease as it

approaches the coastline, and the wave’s amplitude

grows initially before diminishing gradually as it

approaches the coast. As a result of the shoaling effect,

the tsunami undergoes a transformation. Due to the

fact that the water becomes superficial, shoaling

Fig. 6 Tsunami wave velocity(t }; ‘ð Þ) and wave amplification (l }; ‘ð Þ) for case II with m ¼ 0:4

Fig. 7 Tsunami wave velocity (t }; ‘ð Þ) and wave amplification (l }; ‘ð Þ) for case II with m ¼ 0:6:

Table 4 Comparison of numerical value of tsunami velocity (t }; ‘ð Þ) for different time ð‘Þ and distance ð}Þ for Case II with slope

m ¼ 0:6

t }; ‘ð Þ t }; ‘ð Þ t }; ‘ð Þ

‘ ¼ 0:2 ‘ ¼ 0:6 ‘ ¼ 1

} EAD DTM EAD DTM EAD DTM

10 1.35946 1.358891502793080 1.14278 1.142775064784360 0.679091 0.679090568929142

20 1.30418 1.302546898680710 1.15324 1.153240395946720 0.795233 0.795232713974754

30 1.20949 1.207236595989610 1.13923 1.139230224090950 0.924348 0.924348096761879

40 1.08655 1.084190949028520 1.09466 1.094664207633950 1.02696 1.026955170069150

50 0.948252 0.946186536105328 1.01953 1.019533998005340 1.07646 1.076462706539930
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occurs because the waves impact the sea floor. A wave

becomes sluggish as it moves over the superficial part

of the water; this causes it to decelerate. Waves lose

their wavelength as they decelerate, so their length

decreases. Waves increase in amplitude with decreas-

ing wavelength. It is possible to imagine that waves

are compressed laterally, causing water in the waves to

soar due to a very small space to occupy as

wavelengths reduce. While tsunamis are relatively

small in mid-ocean, they can be as big as two feet or

more when they reach the coasts. In Fig. 8, the

amplitude of a tsunami wave is shown to be affected

by the depth of the sea near the shore and in the middle

of the ocean. While sea depth affects wave width in

mid-sea, it does not affect wave amplification. As the

sea depth increases, the tsunami wave width increases,

while the amplitude remains the same. The wave-

length and amplitude of wave are both influenced by

the depth when the wave is close to the shore. As sea

depth increases, the width of tsunamis also increases,

but their amplitudes decrease.

6 Conclusion

To simulate tsunami waves propagating in oceans and

on ocean coasts, a robust scheme based on the Taylor’s

series expansion has been presented in this paper.

Numerical results indicate that the proposed scheme is

highly accurate and reliable in solving such models.

Using numerical simulations, we examined the effects

of coast slopes and ocean depths on tsunami run-up.

The numerical simulations are based on a nonlinear

shallow-water model. This study finds that tsunami

wave velocity decreases as it approaches coastlines

and their height increases in the first moments before

decreasing over time once it enters the shoaling water.

Based on previous studies and tsunami physics, the

Table 5 Comparison of numerical value of wave amplification (l }; ‘ð Þ) for different time ð‘Þ and distance ð}Þfor Case II with slope

m = 0.6

u u u

‘ ¼ 0:2 ‘ ¼ 0:6 ‘ ¼ 1

} EAD DTM EAD DTM EAD DTM

10 2.0644 2.06440167378855 1.96075 1.96075033007329 1.4484 1.44839624526724

20 2.26096 2.26096326734831 2.82285 2.82285028618823 3.0572 3.05719997373317

30 2.34221 2.34220683755841 3.47529 3.47528663349674 4.39894 4.39894131389632

40 2.30491 2.30491044956210 3.845 3.84499975839850 5.29845 5.29844543980635

50 2.16675 2.16675394905275 3.92628 3.92627576660135 5.70196 5.70195898688862

Fig. 8 Graph of tsunami velocity (t }; ‘ð Þ) and wave amplification (l }; ‘ð Þ) near the coast with slope m ¼ 0:4 at time ‘ ¼ 1 at different

depth D ¼ 20; 25; 30
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run-up height is primarily determined by the coast

slope. When the coast slope becomes steep, the

tsunami wave’s velocity and height decrease.
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