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Abstract This paper considers the coordinated con-

trol problem of the multi-agent system modeled by a

class of time-varying non-affine nonlinear systems and

a non-autonomous nonlinear leader system with an

input, capable of adjusting the reference signal in real

time.We first propose a dynamic nonlinear observer to

estimate the state of the active leader system, which is

fully distributed without any prior knowledge of the

graph and the input. Then by further employing a

special group of time-varying functions, an observer-

based adaptive control law is constructed to asymp-

totically track the nonlinear reference signals, which

are allowed to be arbitrarily different for each follower

system. Our control law can be applied to solve the

leader-following synchronization and formation prob-

lems of multiple non-affine and affine nonlinear

systems, and the whole design is robust to actuator

fault, time-varying uncertain parameters and the

external disturbances, whose upper bounds can be

arbitrarily large and unknown.

Keywords Nonlinear systems �Multi-agent system �
Adaptive control

1 Introduction

Non-affine systems capture the dynamics of a large

group of nonlinear systems including the heli-

copters [1], missile systems [2] and Brusselator

model for the supply of reservoir chemicals [3], etc.

Various methods have been proposed to solve the

stabilization and tracking control of a non-affine

system. Ren et al. [4] constructed the uncertainty

and disturbance estimator-based control law to

asymptotically track a stable linear reference model,

while [3, 5] designed barrier Lyapunov functions-

based adaptive control laws to handle the full state

constraints after transforming the non-affine system

into a strict-feedback structure. An adaptive neural

output-feedback control was proposed in [6] by

combining Levant’s differentiator for the estimation

of the unbailable states. Zhang et al. [7] considered

an adaptive neural control for an unknown non-

affine system with input deadzone, and Wu et al.

[8] designed a scalarly virtual parameter adaptation

approach to achieve the prescribed performance.

Motivated by practical scenarios such as the

coordinated control of heterogeneous automatic

guided vehicle in the unmanned warehouse, the

tracking control of missiles with multiple targets, the

cooperative control of non-affine helicopters and so

on, many efforts have also been devoted to the

coordinated control problems of the non-affine multi-

agent systems in many scenarios. For the leaderless

case, Fan et al. [9] studied the stabilization and
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consensus problem of non-affine multi-agent systems

with output constraints and partially unknown control

directions by incorporating error transformation tech-

nique. Qin et al. [10] proposed a neural network-based

adaptive consensus protocol to achieve the synchro-

nization with a bounded residual error. In the leader-

following case, the desired reference signals can

usually be classified into two groups. The first one is

represented by the bounded unmodeled reference

signal as in [11, 12], which designed the neural

network based approach with guaranteed performance

to make sure the synchronization errors are semiglob-

ally, uniformly, and ultimately bounded. In the second

group, the reference signal is generated by a leader

system, e.g., Wang et al. [13] considered the reference

signals generated from a lower-triangular nonlinear

system, and based on the scaling function, developed a

conceptually new and structurally simple control law

to achieve the zero-error tracking.

In the framework of output regulation [14, 15],

both the reference signal and external disturbances

are generated by a so-called exosystem. When

extended into the cooperative output regulation

problem, the exosystem is regarded as the leader

system, heterogeneous with follower systems. In

order to design control methods in distributed

fashion, a variety of observers have been investi-

gated based on the local information. In particular,

Cai et al. [16] and Su and Huang [17] designed

distributed observers for a linear leader system and

solved the synchronization problem of linear

heterogeneous multi-agent systems, and Dong and

Chen [18] proposed a nonlinear observer for a

nonlinear autonomous leader system. Motivated by

the practical circumstances such as reaching a

desirable consensus value or avoiding hazardous

obstacles [19, 20], the attention is paid to tracking

an active leader system with an input. For example,

Hong et al. [21] and Hu and Feng [22] considered

the second-order linear leader system and local

dynamic observers were proposed to estimate the

state of the leader system. Li et al. [19] and Lv

et al. [23] studied general linear leader system and

the adaptive control technique was employed for

the observer design when the input of the leader

system was bounded and unknown, while the case

of multiple active linear leaders was considered in

[20], which could cooperatively generate safe

trajectories and avoid dynamic obstacles.

This paper further considers an active nonlinear

leader system with an unknown input to generate a

group of arbitrary trajectories for networked non-

affine nonlinear systems. Technically, it is essen-

tially required to deal with an information coupled

general time-varying nonlinear system with high

orders whose desired trajectories can be adjusted at

any time, and as a result, the reference is only

attainable in real time and its time derivatives are

unknown since the input is unknown. In order to

overcome these difficulties, we first design a

continuous nonlinear distributed observer to accu-

rately estimate the state of the active nonlinear

leader system, different from the linear/nonlinear

autonomous leader system in [16–18] or the active

linear leader system in [20–22]. Second, by incor-

porating a special class of time-varying functions, a

distributed control law based on the nonlinear

observer is designed for networked systems with

time-varying and arbitrarily large parametric uncer-

tainties and external disturbances without any

information of the input. It is also fully distributed

in nature in the sense that it depends on the state of

itself and neighboring agents without the global

information of the graph. Finally, the whole design

is not only robust to input–output nonlinearity such

as hysteresis and actuator faults, but also capable of

achieving the asymptotic tracking of the non-

autonomous leader system, instead of guaranteeing

the tracking error ultimately uniformly bounded. It

is applicable in leader-following synchronization

and formation problems for multi-agent systems in

both non-affine and affine forms.

The rest of this paper is organized as follows. In

Sect. 2, we will formulate the problem. In Sects. 3 and

4, the distributed observer and control design will be

presented, which will be illustrated by an example in

Sect. 5. Finally, we will close this paper in Sect. 6

with some concluding remarks. Throughout the paper,

the following notations are used. jj � jj represents the
Euclidean norm of a vector or the 2-norm of a matrix.

For xi 2 R, �xi ¼ x1; . . .; xi½ �T .
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2 Problem formulation

Consider a multi-agent system composed of a nonlin-

ear leader system and a group of followers modeled by

non-affine systems as follows,

_xji ¼ fjið�xjþ1;iÞ; j ¼ 1; . . .; n� 1; n� 2

_xni ¼ fnið�xni; jiðui; tÞ;wiðtÞÞ; i ¼ 1; . . .;N

ei ¼ x1i � x0iðg0Þ
ð1Þ

where �xji 2 Rj, j ¼ 1; . . .; n, i ¼ 1; . . .;N, are the

states, wiðtÞ 2 Rnw represents the unknown and

bounded time-varying parameters or/and external

disturbances, ji : R� R� 0 ! R represents the

input–output characteristics of the actuator, ei 2 R is

the tracking error for agent i, and g0 2 Rn0 is the state

of a non-autonomous nonlinear leader system

described by

_g0 ¼ f0ðg0Þ þ u0ðtÞ ð2Þ

where u0ðtÞ is the control input. All functions f0ð�Þ,
fjið�Þ, j ¼ 1; . . .; n, i ¼ 1; . . .;N, are assumed to be

globally defined, sufficiently smooth and satisfy

fjið0Þ ¼ 0, j ¼ 1; . . .; n� 1, fnið0; 0;wiðtÞÞ ¼ 0. The

input–output characteristics of the actuator satisfy

jiðui; tÞ ¼ piðtÞuiðtÞ þ /iðtÞ ð3Þ

where piðtÞ and /iðtÞ are time-varying functions. (3) is

a generalized form to model the input nonlinearity

such as hysteresis, dead-zone and backlash [9].

The communication network of the multi-agent

systems (1) and (2) is denoted by a graph G ¼ ðV; EÞ
where V ¼ f0; 1; . . .;Ng is the node set and E �
V � V is the edge set. Define a subgraph �G ¼ ð �V; �EÞ of
G where �V ¼ f1; . . .;Ng, and �E ¼ �V � �V is obtained

from E by removing all the edges between the node 0

and the nodes in �V. Each element ðj; iÞ 2 E represents

the edge from agent j to agent i. For i; j 2 V, aii ¼ 0,

aij [ 0 if ðj; iÞ 2 E and aij ¼ 0 otherwise. Associated

with G, define the Laplacian matrix H ¼ ½hij�Ni;j¼1

where hii ¼
PN

j¼0 aij and hij ¼ �aij for i 6¼ j,

i; j ¼ 1; . . .;N.
The objective is to design a distributed control law

for each non-affine nonlinear system (1) to track the

reference signal from (2) and guarantee that the

tracking errors asymptotically converge to zero. Then

the coordinated control problem can be described as

follows.

Problem 1 Given the multi-agent system composed

of N followers given by (1) and an active nonlinear

leader (2), and the corresponding graph G, find a

distributed control law such that the trajectory of the

closed-loop system from any initial conditions exists

and is bounded for t� 0, and the asymptotic tracking

can be achieved, i.e.,

lim
t!1

eiðtÞ ¼ 0; i ¼ 1; . . .;N ð4Þ

Remark 1 The coordinated control problem consid-

ered here generalizes the leader-following consensus

problem in the sense that an input is introduced in the

nonlinear non-autonomous leader system (2) to adjust

the desired trajectory for each follower system in real

time, and each subsystem is modeled by time-varying

non-affine nonlinear system (1), whose desired trajec-

tories x0iðg0Þ are further allowed to be arbitrarily

different, motivated by more practical scenarios

including cooperative control of multiple AGVs,

missiles, helicopters, etc. Thus the technique can also

be applied to solve the formation problem. At the same

time, those control laws depending on the virtual

consensus error evi ¼
PN

j¼0 aijðx1i � x1jÞ for the pur-

pose of reaching consensus such as [9, 11, 12], cannot

be applied here since the virtual error evi will not

converge to zero if the reference signals are different

for each agent. These generalizations also make the

internal model based methods in [18, 24] for cooper-

ative output regulation problem infeasible.

For the solvability of the problem, we need the

following assumptions on the reference and the graph.

Assumption 1 The input u0ðtÞ and the state g0ðtÞ in
(2) are bounded for all t� 0, but their upper bounds are

unknown. It is also assumed that x0iðg0Þ is globally

defined, sufficiently smooth and bounded for t� 0.

Assumption 2 The graph G is connected in the sense

that each node i ¼ 1; . . .;N, is reachable from the node

0 and �G is undirected. Laplacian matrix H is unavail-

able to all agents.

Remark 2 Same as the references considering the

input in the leader system in [19, 20, 23], u0ðtÞ is

assumed to be bounded. Also same as references for

non-affine systems in [5, 13, 18], it is required that the
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reference to track is bounded. In Assumption 2, we

require the graph is undirected in order to design a

fully distributed control law, i.e. the global informa-

tion of the graph represented by H is unknown. Our

method is also applicable to a general directed graph if

the upper bounds of u0, g0 and H are available to all

agents, detailed in Remark 4 in what follows.

We end this section by providing a useful lemma.

Lemma 1 [25] For any scalar positive function

t tð Þ : R� 0 ! Rþ and any variable z 2 R; the

following inequality holds

0� zj j\t tð Þ þ z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ t2 tð Þ

p :

3 Nonlinear observer design

In this section, we propose a distributed nonlinear

observer for the non-autonomous nonlinear leader. For

this purpose, define a class of time-varying positive

functions tjðtÞ, j ¼ 1; . . .; 4, satisfying
Z t

0

tjðsÞds� �tj; j _tiðtÞj� tj ð5Þ

where �tj [ 0 and tj [ 0. The nonlinear observer takes

the following form:

_gi ¼ f0ðgiÞ �
#̂igviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21ðtÞ þ jjgvijj
2

q � k̂iqiðgviÞgvi � c0igvi

ð6aÞ

_̂
#i ¼ c1i

jjgvijj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21ðtÞ þ jjgvijj2

q � t2ðtÞ#̂i

0

B
@

1

C
A ð6bÞ

_̂
ki ¼ c2i qiðgviÞjjgvijj

2 � t2ðtÞk̂i
� �

; i ¼ 1; . . .;N

ð6cÞ

where gvi ¼
PN

j¼0 aijðgi � gjÞ, i ¼ 1; . . .;N, cji [ 0,

j ¼ 0; 1; 2, and qið�Þ � 1 is some smooth function

determined later.

We construct a lemma to show the property of the

observer (6).

Lemma 2 Under Assumption 2, consider the system

(2) and (6). The solution of the closed-loop system

exists and is bounded, and

lim
t!1

�
giðtÞ � g0ðtÞ

�
¼ 0; i ¼ 1; . . .;N: ð7Þ

Proof Let �gi ¼ gi � g0, i ¼ 0; 1; . . .;N. Define

�#i ¼ #� #̂i, �ki ¼ ki � k̂i, i ¼ 1; . . .;N, for some con-

stants #[ 0 and ki [ 0. The closed-loop system of (2)

and (6) becomes, for i ¼ 1; . . .;N,

_�gi ¼ �f 0ð�gi; g0Þ þ �aiðtÞ � u0ðtÞ; gvi ¼
XN

j¼0

aijð�gi � �gjÞ

_�#i ¼ c1i
jjgvijj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t1ðtÞ2 þ jjgvijj2
q � t2ðtÞ#̂i

0

B
@

1

C
A

_�ki ¼ c2i qiðgviÞjjgvijj
2 � t2ðtÞk̂i

� �

ð8Þ

where �aiðtÞ ¼ � #̂igviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1
ðtÞþjjgvijj2

p � k̂iqiðgviÞgvi � c0igvi

and �f 0ð�gi; g0Þ ¼ f0ð�gi þ g0Þ � f0ðg0Þ. Let �g ¼
col ð�g1; . . .; �gNÞ and �gv ¼ col ð�gv1; . . .; �gvNÞ. Note

that gv ¼ ðH 	 In0Þ�g. Under Assumption 2, by Lemma

1 in [17], all the nonzero eigenvalues of H have

positive real parts and H is nonsingular. Since the

graph �G is undirected, H is positive definite. Define

W ¼ 1

2
�gTðH 	 In0Þ�gþ

XN

i¼1

1

2c1i
�#
2

i þ
1

2c2i
�k
2

i

� �

:

ð9Þ

Along the trajectory of (8), the time derivative of W

satisfies,

_W ¼
XN

i¼1

gTvi _gi �
1

c1i
�#i
_̂
#i �

1

c2i
�ki
_̂
ki

� �

¼
XN

i¼1

gTvi �f 0ð�gi; g0Þ þ gTvi�ai � gTviu0ðtÞ �
1

c1i
�#i
_̂
#i �

1

c2i
�ki
_̂
ki

� �

Let F0ð�g; g0Þ ¼
PN

i¼1 g
T
vi
�f 0ð�gi; g0Þ. Note that �f 0ð�Þ is

sufficiently smooth and satisfies �f 0ð0; g0Þ ¼ 0. By

Lemma 7.8 in [15], there exists some smooth function

qið�Þ� 1 such that, for any bounded signal g0,

jjF0ð�g; g0Þjj ¼ jjF0ððH�1 	 In0Þ gv; g0Þjj �
PN

i¼1

kiqiðgviÞ jjgvijj
2
with ki unknown since the upper

bounds of g0 and H are unknown to all agents. Since
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u0ðtÞ is bounded with unknown upper bound, there

exists some unknown constant #[ 0 such that

jju0ðtÞjj �#. By Lemma 1, we can obtain,

gTviu0ðtÞ�#t1ðtÞ þ
#jjgvijj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21ðtÞ þ jjgvijj2
q ð10Þ

Then,

_W �
XN

i¼1

�
� c0ijjgvijj2 þ �kiqiðgviÞjjgvijj2

� 1

c2i
�ki
_̂
ki

� 1

c1i
�#i
_̂
#i þ

�#ijjgvijj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21ðtÞ þ jjgvijj2

q þ #t1ðtÞ
�

¼
XN

i¼1

�
� c0ijjgvijj2 þ #t1ðtÞ

þ t2ðtÞ �#i#̂i þ t2ðtÞ �kik̂i
�

Note that

t2ðtÞ �#i#̂i ¼ t2ðtÞð �#i#� �#
2

i Þ�
1

4
t2ðtÞ#2

t2ðtÞ �kik̂i ¼ t2ðtÞð �kiki � �k
2

i Þ�
1

4
t2ðtÞk2i

ð11Þ

Then,

_W �
XN

i¼1

ð�c0ijjgvijj2 þ #t1ðtÞ

þ 1

4
t2ðtÞ#2 þ 1

4
t2ðtÞk2i Þ:

By the property of tjðtÞ, j ¼ 1; 2, in (5), we can obtain,

WðtÞ�Wð0Þ þ
XN

i¼1

�
#

Z t

0

t1ðsÞds

þ 1

4
#2

Z t

0

t2ðsÞdsþ
1

4
k2i

Z t

0

t2ðsÞds
�

�Wð0Þ þWm

ð12Þ

where Wm ¼
PN

i¼1ð#�t1 þ 1
4
ð#2 þ k2i Þ�t2Þ, implying �gi,

�#i, �ki, #̂i and k̂i, i ¼ 1; . . .;N, are bounded. Since g0 is
bounded for t� 0, gi is bounded for t� 0. From (8), we

can also obtain _�gi is bounded for t� 0, which implies
€WðtÞ is bounded together with (5). By Barbalat’s

Lemma in [26], we can obtain limt!1 gviðtÞ ¼ 0.

Thus, under Assumption 2, (7) can be achieved. h

Remark 3 The design idea for (6a) is to compensate

the nonlinear term f0ðg0Þ by the first term, counteract

the effect of the input u0 and F0ð�g; g0Þ by the second

and third terms, respectively, and the last term is for

the consensus purpose. And then we design the

adaptive update laws (6b) and (6c) to generate enough

force not only to make sure the control parameters do

not depend on the global information of the network,

such as the Laplacian matrix H, but also to allow the

upper bounds of u0ðtÞ and g0ðtÞ to be arbitrarily large

and unknown to all agents. As a result, (6) can

accurately estimate the state g0 from the nonlinear

leader system (2), as opposed to the linear one in

[16–18]. At the time, it allows the existence of the

input u0 to adjust the course in real time, which is also

more general than those in [20, 24] and promises more

applications.

4 Distributed control design

Benefiting from the design of the nonlinear observer

(6) for the non-autonomous leader system (2), we can

then propose a control law in a distributed form for the

heterogeneous multi-agent system systems composed

of (1) and (2).

4.1 System transformation

First, transform each of the non-affine nonlinear

systems (1) into the strict-feedback system. Define a

set of variables sji 2 R, j ¼ 1; . . .; n, i ¼ 1; . . .;N, with

s1i ¼ x1i ¼ b1ið�x1iÞ.
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_s1i ¼ f1ið�x2iÞ ¼ b2ið�x2iÞ,s2i; i ¼ 1; . . .;N

_s2i ¼
ob2ið�x2iÞ
ox1i

f1ið�x2iÞ

þ ob2ið�x2iÞ
ox2i

f2ið�x3iÞ ¼ b3ið�x3iÞ,s3i

_sji ¼
Xj

k¼1

objið�xjiÞ
oxki

fkið�xkþ1;iÞ

¼ bjþ1;ið�xjþ1;iÞ,sjþ1;i; j ¼ 3; . . .; n� 1

_sni ¼
Xn�1

k¼1

obnið�xniÞ
oxki

fkið�xkþ1;iÞ

þ obnið�xkiÞ
oxni

fnið�xni; ji;wiÞ

ð13Þ

By the mean value theorem, there exists ki 2 ð0; 1Þ
such that

fnið�xni; ji;wiÞ

¼ fnið�xni; 0;wiÞ þ
ofnið�xni; ji;wiÞ

oji

�
�
�
ji¼kiji

ji

It is also noted that from (13),

ob2ið�x2iÞ
ox2i

¼ of1ið�x2iÞ
ox2i

¼ g1ið�x2iÞ

objþ1;ið�xjþ1;iÞ
oxjþ1;i

¼ objið�xjiÞ
oxji

ofjið�xjþ1;iÞ
oxjþ1;i

¼
Yj

k¼1

gkið�xkþ1;iÞ; j ¼ 2; . . .; n� 1

where

gjið�xjþ1;iÞ ¼
ofjið�xjþ1;iÞ
oxjþ1;i

; j ¼ 1; . . .; n� 1

gnið�xni; ji;wiÞ ¼
ofnið�xni; ji;wiÞ

oji
; i ¼ 1; . . .;N

As a result, we can obtain the following strict-

feedback system,

_sji ¼ sjþ1;i; j ¼ 1; . . .; n� 1; i ¼ 1; . . .;N

_sni ¼ �f ið�xni;wiÞ þ gið�xni; ji;wiÞji
ð14Þ

where

�f ið�xni;wiÞ ¼
Xn�1

k¼1

obnið�xniÞ
oxki

fkið�xkþ1;iÞ

þ obnið�xniÞ
oxni

fnið�xni; 0;wiÞ

gið�xni; ji;wiÞ ¼
obnið�xniÞ
oxni

gnið�xni; kiji;wiÞ

¼ gnið�xni; kiji;wiÞ
Yn�1

k¼1

gkið�xkþ1;iÞ

ð15Þ

For the solvability of the coordinated control problem,

we also need the following assumption to guarantee

the controllability of the nonlinear systems, similar to

[2, 3, 9, 11, 13], etc.

Assumption 3 The signs of gjið�Þ, j ¼ 1; . . .; n,

i ¼ 1; . . .;N, are known, and assumed to be positive

without loss of generality. And it is further assumed

that gjið�Þ � g
ji
, piðtÞ� pi, and j/iðtÞj � �/i for gji [ 0,

pi [ 0 and �/i � 0.

4.2 Controller design

In this subsection, a distributed controller is proposed

to achieve the asymptotic tracking of the non-

autonomous leader system, which takes the following

form,

z1i ¼s1i � x0iðgiÞ;

zji ¼sji � aj�1;i; j ¼ 2; . . .; n

a1i ¼� p1iz1i �
m̂1iz1i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ z21i

p ; i ¼ 1; . . .;N

_̂m1i ¼c1i
� z21iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ z21i
p � t4ðtÞm̂1i

�

aji ¼� pjizji � zj�1;i

�
m̂jil

2
jizji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ l2jiz

2
ji

q þ
Xj�1

k¼1

oaj�1;i

oski
skþ1;i

þ
Xj�1

k¼1

oaj�1;i

om̂ki

_̂mki; j ¼ 2; . . .; n� 1

ð16Þ
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_̂mji ¼cji

 
l2jiz

2
ji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ l2jiz

2
ji

q

� t4ðtÞm̂ji

!

; j ¼ 2; . . .; n� 1

l2i ¼
�
�
�
oa1i
ot3ðtÞ

�
�
�þ
�
�
�
�
�
�
oa1i
ogi

�
�
�
�
�
�

lji ¼
�
�
�
oaj�1;i

ot3ðtÞ

�
�
�þ
�
�
�
oaj�1;i

ot4ðtÞ

�
�
�þ
�
�
�
�
�
�
oaj�1;i

ogi

�
�
�
�
�
�;

j ¼ 3; . . .; n

ani ¼ �pnizni � zn�1;i � ĥ
T

i ni
_̂hi ¼ cniðznini � t4ðtÞĥiÞ

�ni ¼

Xn�1

k¼1

oan�1;i

oski
skþ1;i

þ
Xn�1

k¼1

oan�1;i

om̂ki

_̂mkilni sign ðzniÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

T

ni ¼
.2i zniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t24ðtÞ þ .2i z
2
ni

p �n
T

i

" #T

ui ¼ � a2nizniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ a2niz

2
ni

p � 1

pi
�/i sign ðzniÞ

ð16Þ

where constant cji [ 0, j ¼ 1; . . .; n, i ¼ 1; . . .;N, and
.i ¼ .ið�xniÞ is a smooth positive function determined

by (26) in what follows.

Now we can present the main theorem for the

solvability of Problem 1.

Theorem 1 Under Assumptions 1 and 3, the coor-

dinated control problem of multi-agent systems with

follower systems given by (1) and a nonlinear non-

autonomous leader system (2) can be solved by the

observer-based control law (16) and (6).

Proof The proof includes n steps. Define

�mji ¼ mji � m̂ji, j ¼ 1; . . .; n, i ¼ 1; . . .;N, for some

constant mji [ 0.

In the 1-st step, define

V1i ¼
1

2
z21i þ

1

2c1i
�m2
1i ð17Þ

Note that

_z1i ¼ s2i � _x0iðgiÞ ¼ z2i þ a1i � _x0iðgiÞ ð18Þ

Then the time derivative of V1i satisfies

_V1i ¼ z1iz2i þ z1ia1i � z1i _x0iðgiÞ �
1

c1i
�m1i

_̂m1i

In the proof of Lemma 2, we have shown that gi and _�gi,
i ¼ 1; . . .;N, are bounded for t� 0. From (2), _g0 is

bounded since g0 and u0ðtÞ are bounded and f0ð�Þ is

smooth, and thus _gi is bounded, but the upper bound is
unknown. Under Assumption 1, _x0iðgiÞ is bounded

with unknown upper bound, i.e., j _x0iðgiÞj�m1i for

m1i [ 0. By Lemma 1,

z1i _x0iðgiÞ� jz1ijm1i �m1it3ðtÞ þ
m1iz

2
1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ z21i
p :

Then we can obtain,

_V1i � z1iz2i � p1iz
2
1i �

m̂1iz
2
1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ z21i
p þ m1it3ðtÞ

þ m1iz
2
1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ z21i
p � 1

c1i
�m1i

_̂m1i

� z1iz2i � p1iz
2
1i þ m1it3ðtÞ

þ �m1i

�
� 1

c1i
_̂m1i þ

z21iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ z21i

p
�

� z1iz2i � p1iz
2
1i þ m1it3ðtÞ þ

1

4
t4ðtÞm2

1i

Define for j ¼ 2; . . .; n� 1, i ¼ 1; . . .;N,

�Vji ¼
1

2
z2ji þ

1

2cji
�m2
ji; Vji ¼ Vj�1;i þ �Vji: ð19Þ

Now we claim that

_Vj�1;i � zj�1;izji �
Xj�1

k¼1

pkiz
2
ki

þ t3ðtÞ
Xj�1

k¼1

mki þ
1

4
t4ðtÞ

Xj�1

k¼1

m2
ki

ð20Þ

To verify (20), in the j-th step, j ¼ 2; . . .; n� 1, note

that aj�1;i ¼ aj�1;ið�sj�1;i; m̂1i; . . .; m̂j�1;i; gi; t3ðtÞ;
t4ðtÞÞ with �sj�1;i ¼ s1i . . . sj�1;i½ �T . Then,
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_zji ¼ _sji � _aj�1;i

¼ sjþ1;i �
Xj�1

k¼1

oaj�1;i

oski
skþ1;i �

Xj�1

k¼1

oaj�1;i

om̂ki

_̂mki

� oaj�1;i

ogi
_gi �

oaj�1;i

ot3ðtÞ
_t3ðtÞ �

oaj�1;i

ot4ðtÞ
_t4ðtÞ

¼ zjþ1;i þ aji �
Xj�1

k¼1

oaj�1;i

oski
skþ1;i

�
Xj�1

k¼1

oaj�1;i

om̂ki

_̂mki �
oaj�1;i

ogi
_gi

� oaj�1;i

ot3ðtÞ
_t3ðtÞ �

oaj�1;i

ot4ðtÞ
_t4ðtÞ

ð21Þ

Since _gi, i ¼ 1; . . .;N, is bounded for t� 0, there exists

some constant gMi [ 0 such that jj _gijj � gMi. From (5),

j _t3ðtÞj � t3 and j _t4ðtÞj � t4. Let

m2i ¼ maxft3; gMig;
mji ¼ maxft3; t4; gMig; j ¼ 3; . . .; n� 1:

ð22Þ

From the definition of lji in (16), we can obtain that,

along the trajectory of (21), the time derivative of �Vji

satisfies,

_�Vji ¼ zjizjþ1;i þ zjiaji

� 1

cji
�mji

_̂mji � zji

�Xj�1

k¼1

oaj�1;i

oski
skþ1;i

þ
Xj�1

k¼1

oaj�1;i

om̂ki

_̂mki

�

� zji

� oaj�1;i

ogi
_gi þ

oaj�1;i

ot3ðtÞ
_t3ðtÞ þ

oaj�1;i

ot4ðtÞ
_t4ðtÞ

�

� zjizjþ1;i þ zjiaji

� 1

cji
�mji

_̂mji þ jzjijljimji

� zji

�Xj�1

k¼1

oaj�1;i

oski
skþ1;i þ

Xj�1

k¼1

oaj�1;i

om̂ki

_̂mki

�

By Lemma 1,

jzjijljimji �mjit3ðtÞ þ
mjil

2
jiz

2
ji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ l2jiz

2
ji

q :

Then,

_�Vji � zjizjþ1;i � pjiz
2
ji � zjizj�1;i þ mjit3ðtÞ

þ �mji

�
� 1

cji
_̂mji þ

l2jiz
2
ji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t23ðtÞ þ l2jiz

2
ji

q
�

¼ zjizjþ1;i � pjiz
2
ji � zjizj�1;i þ mjit3ðtÞ

þ 1

4
t4ðtÞm2

ji;

and from (20),

_Vji � zjizjþ1;i � pjiz
2
ji � zjizj�1;i

þ mjit3ðtÞ þ
1

4
t4ðtÞm2

ji

þ zj�1;izji �
Xj�1

k¼1

pkiz
2
ki

þ t3ðtÞ
Xj�1

k¼1

mki þ
1

4
t4ðtÞ

Xj�1

k¼1

m2
ki

¼ zjizjþ1;i �
Xj

k¼1

pkiz
2
ki þ t3ðtÞ

Xj

k¼1

mki

þ 1

4
t4ðtÞ

Xj

k¼1

m2
ki;

which verifies the claim.

In the n-th step, define

g0i ¼ minf
Qn

j¼1 gji; pi
Qn

j¼1 gjig. It is noted that under

Assumption 3, from (15),

gið�xni; ji;wiÞ� g
ni

Yn�1

k¼1

g
ki
� g0i [ 0 ð23Þ

Define

�Vni ¼
1

2g0i
z2ni þ

1

2cni
�h
T
i
�hi; Vni ¼ �Vni þ Vn�1;i ð24Þ
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where �hi ¼ hi � ĥi for ĥi 2 R3 and some constant

vector hi. Note that
an�1;i ¼ an�1;ið�sn�1;i; m̂1i;

. . .; m̂n�1;i; gi; t3ðtÞ; t4ðtÞÞ. Then,

_zni ¼ _sni � _an�1;i

¼ �f ið�xni;wiÞ þ gið�xni; ji;wiÞji

�
�Xn�1

k¼1

oan�1;i

oski
skþ1;i þ

Xn�1

k¼1

oan�1;i

om̂ki

_̂mki

�

�
� oan�1;i

ogi
_gi þ

oan�1;i

ot3ðtÞ
_t3ðtÞ þ

oan�1;i

ot4ðtÞ
_t4ðtÞ

�

ð25Þ

Then along the trajectory of (25), the time derivative

of �Vni is given by,

_�Vni ¼
1

g0i
zni �f ið�xni;wiÞ þ

gið�xni; ji;wiÞ
g0i

zniji

� 1

g0i
zni

�Xj�1

k¼1

oaj�1;i

oski
skþ1;i þ

Xn�1

k¼1

oan�1;i

om̂ki

_̂mki

�

� 1

g0i
zni

� oan�1;i

ogi
_gi þ

oan�1;i

ot3ðtÞ
_t3ðtÞ

þ oan�1;i

ot4ðtÞ
_t4ðtÞ

�
� 1

cni
�h
T

i
_̂hi

From (15), under Assumption 3,

j �f ið�xni;wiÞj �
�
�
�
Xn�1

k¼1

obnið�xkiÞ
oxki

fkið�xkþ1;iÞ
�
�
�

þ
�
�
�
obnið�xniÞ
oxni

fnið�xni; 0;wiÞ
�
�
�

Note that wiðtÞ is bounded. There exists a positive

constant ŵi such that jjwiðtÞjj � ŵi. Define

Ri ¼ fwiðtÞ : jjwiðtÞjj � ŵig. Since fnið�xni; 0;wiÞ is

sufficiently smooth with fnið0; 0;wiÞ ¼ 0 for all

wiðtÞ 2 Ri, by Lemma 7.8 in [15], there exist smooth

functions �.ji : R ! R, j ¼ 1; . . .; n, satisfying

�.jið0Þ ¼ 0, such that

jfnið�xni; 0;wiÞj �
Xn

j¼1

�cji�.jiðxjiÞ� �ci�.ið�xniÞ

where �ci ¼ maxj¼1;...;nf�cjig and �.ið�xniÞ ¼
Pn

j¼1 �.ji
ðxjiÞ. As a result,

j �f ið�xni;wiÞj �
�
�
�
Xn�1

k¼1

obnið�xkiÞ
oxki

fkið�xkþ1;iÞ
�
�
�

þ
�
�
�
obnið�xniÞ
oxni

�
�
��ci�.ið�xniÞ

� ~cni.ið�xniÞ

ð26Þ

where ~cni ¼ maxf1; �cig, and

.ið�xniÞ ¼ j
Pn�1

k¼1
obnið �xkiÞ
oxki

fkið�xkþ1;iÞj þ �.ið�xniÞj
obnið �xniÞ
oxni

j.
Thus,

1

g0i
zni �f ið�xni;wiÞ�

~cni
g0i

jznij.ið�xniÞ

� cnit3ðtÞ þ
cni.2i ð�xniÞz2niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ .2i ð�xniÞz2ni
p

where cni ¼ ~cni
g0i
. Let ui ¼ u1i þ u2i with u1i ¼

� 1
pi
�/i sign ðzniÞ and u2i ¼ � a2nizniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
3
ðtÞþa2niz

2
ni

p . From (23),

gið�xni; ji;wiÞ
g0i

zniðpiðtÞu1i þ /iðtÞÞ

� � gið�xni; ji;wiÞpiðtÞ
g0ipi

zni �/i sign ðzniÞ

þ gið�xni; ji;wiÞ
g0i

jznij �/i

¼ gið�xni; ji;wiÞjznij �/i

g0i
ð1� piðtÞ

pi
Þ� 0

gið�xni; ji;wiÞpiðtÞ
g0i

zniu2i � zniani

¼ � gið�xni; ji;wiÞpiðtÞ
g0i

a2niz
2
niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ a2niz
2
ni

p

þ a2niz
2
niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ a2niz
2
ni

p þ m3ðtÞ

¼
�
1� gið�xni; ji;wiÞpiðtÞ

g0i

� a2niz
2
niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t23ðtÞ þ a2niz
2
ni

p

þ m3ðtÞ� m3ðtÞ

�h
T

i ĥi ¼ �h
T

i hi � �h
T

i
�hi � jj�hijj2

þ 1

4
jjhijj2 � jj�hijj2 �

1

4
jjhijj2

ð27Þ

Let hi ¼ cni � 1

g0i

mni

g0i

� 	

. Then from (27),
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_�Vni � cnit3ðtÞ þ
cni.2i ð�xniÞz2niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t24ðtÞ þ .2i ð�xniÞz2ni
p

� 1

cni
�h
T
i
_̂hi þ

gið�xni; ji;wiÞ
g0i

zniui

þ mni

g0i
lnijznij

� 1

g0i
zni

�Xj�1

k¼1

oaj�1;i

oski
skþ1;i þ

Xn�1

k¼1

oan�1;i

om̂ki

_̂mki

�

¼ cnit3ðtÞ þ znih
T
i ni �

1

cni
�h
T

i
_̂hi

þ gið�xni; ji;wiÞ
g0i

zniðpiðtÞu1i þ /iðtÞÞ

þ gið�xni; ji;wiÞ
g0i

znipiðtÞu2i � zniani þ zniani

¼ cnit3ðtÞ þ zni�h
T
i ni

� 1

cni
�h
T

i
_̂hi � znizn�1;i � pniz

2
ni þ t3ðtÞ

� ðcni þ 1Þt3ðtÞ þ
1

4
v4ðtÞjjhijj2 � znizn�1;i � pniz

2
ni

As a result,

_Vni �ðcni þ 1Þt3ðtÞ þ
1

4
v4ðtÞjjhijj2

� znizn�1;i � pniz
2
ni

þ zn�1;izni �
Xn�1

k¼1

pkiz
2
ki þ t3ðtÞ

Xn�1

k¼1

mki

þ 1

4
t4ðtÞ

Xn�1

k¼1

m2
ki

¼ �
Xn

k¼1

pkiz
2
ki þ VMiðt3ðtÞ þ t4ðtÞÞ

ð28Þ

where VMi ¼ maxfcni þ 1 þ
Pn�1

k¼1 mki;
1
4
ðjjhijj2þ

Pn�1
k¼1 m

2
kiÞg. Then,

VniðtÞ�Vnið0Þ þ VMi

Z t

0

ðt3ðsÞ þ t4ðsÞÞds

�Vnið0Þ þ VMið�t3 þ �t4Þ
ð29Þ

which implies �zji, j ¼ 1; . . .; n, �mji, j ¼ 1; . . .; n� 1, �hi,

i ¼ 1; . . .;N are bounded for t� 0, and thus m̂ji, _̂mji, ĥi,
j ¼ 1; . . .; n� 1, are bounded.

It remains to verify (4). For this purpose, we need to

show that _zji, j ¼ 1; . . .; n, i ¼ 1; . . .;N, are bounded

for t� 0. It also includes n steps.

In the 1-st step, since z1i and x0iðgiÞ are bounded,

s1i ¼ z1i þ x0iðgiÞ and a1i are bounded, implying l2i is

bounded. From (18), together with the fact that _x0iðgiÞ
is bounded, _z1i is bounded.

In the 2-nd step, s2i ¼ z2i þ a1i is bounded since z2i
and a1i are bounded. Since a1i is sufficiently smooth,

_a1i is also bounded since s1i; s2i; _̂m1i; _gi; _t3ðtÞ; _t4ðtÞ are
bounded, and thus from (16), a2i and l3i are bounded.

From (21), _z2i is bounded since z3i, a2i, and _a1i are
bounded.

Repeat the procedure, we can conclude that sji,

_aj�1;i, aji, ljþ1;i and _zji, j ¼ 2; . . .; n� 1, are bounded.

In the n-th step, it can be verified that sni ¼
zni þ an�1;i is bounded. Since sji, j ¼ 1; . . .; n,

i ¼ 1; . . .;N, is bounded, from (13) and the fact that

functions fjið�Þ are sufficiently smooth, �xni is bounded,

implying .ið�xniÞ and �f nið�xni; ji;wiÞ are bounded. And

thus from (16), ni is bounded, which leads to the

boundedness of ani and ui. As a result, _zni is bounded

for t� 0 from (25).

From the boundedness of _z1i; . . .; _zni and (5), we can

conclude €Vni is bounded for t� 0, implying _Vni is

uniformly continuous for t 2 ½0;1Þ, and from (28),

limt!1 _VniðsÞds exists and is finite. Then by Bar-

balat’s lemma in [26], we can obtain limt!1 zji ¼ 0,

which implies limt!1 ei ¼ z1i ¼ 0. h

Remark 4 Dynamic gains k̂i, #̂i in (6b), (6c), and m̂ji,

ĥi in (16) are designed to generate enough force to

dominate large and unknown actuator fault, time-

varying uncertain parameters and the external distur-

bances. If we relax Assumptions 1 and 2 by allowing

the upper bounds of u0, g0 and H are all known as in

[13, 18], (6) can be reduced into

_gi ¼ f0ðgiÞ �
#gviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21ðtÞ þ jjgvijj2
q � kiqiðgviÞgvi � c0igvi

ð30Þ

and our control design (16) based on (30) is applicable

to a directed graph.

5 Example

In this section, we consider a multi-agent system

composed of 6 follower systems given by (32) and a

non-autonomous system (31), which generates the
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reference signal to track and can be adjusted at any

time by changing the input u0ðtÞ. The leader system is

in the following form,

_g0 ¼
g20

�g10 þ ð1� g210Þg20

� 	

þ u0ðtÞ ð31Þ

where g0 ¼ g10 g20½ �T . And as in [2], each follower

system is modeled by

_x1i ¼ x1i þ x2i þ
1

5
x32i

_x2i ¼
1

2
x1ix2i þ ji þ

1

4
j

5
3

i ; i ¼ 1; . . .;N

ð32Þ

where jiðui; tÞ ¼ piðtÞui þ /iðtÞ with

piðtÞ ¼
1; t\15;

0:5; otherwise :




/iðtÞ ¼ 0:1 sinðtÞ

Let s1i ¼ x1i and s2i ¼ x1i þ x2i þ 1
5
x32i. Then the non-

affine system (32) can be transformed into (14) where

�f ið�xi;wiÞ ¼ x1i þ x2i þ
1

5
x32i þ

1

2
ð1þ 3

5
x22iÞx1ix2i

gið�xi; ji;wiÞ ¼ ð1þ 3

5
x22iÞð1þ

5

12
ðkijiÞ

2
3Þ� 1

It can be verified that Assumption 3 is satisfied.

The communication network of the multi-agent

systems (31) and (32) is described by the graph

G ¼ ðV; EÞ, shown in Fig. 1, which satisfies Assump-

tion 2.

We first provide the simulation results for the

nonlinear observer. For the purpose of simulation,

define u0ðtÞ ¼ 0 for t 2 ½0; t1Þ and for t� t1, u0ðtÞ ¼

sinðtÞ
cosðtÞ

� 	

with t1 ¼ 10.

By Lemma 1, the observer for the non-autonomous

leader system can be designed by (6) where

gi ¼ g1i g2i½ �T ; c01 ¼ 2; c1i ¼ c2i ¼ 1

qiðgviÞ ¼ 1þ jjgvijj2; t1ðtÞ ¼ t2ðtÞ ¼ 0:5e�0:1t

ð33Þ

For the purpose of simulation, we provide the initial

condition for (6) as follows,

g1ð0Þ ¼ 2 3½ �T ; #̂1 ¼ 1; k̂1 ¼ 1;

g2ð0Þ ¼ �2 � 3½ �T ; #̂2 ¼ 2; k̂3 ¼ 3

g3ð0Þ ¼ 0 � 1½ �T ; #̂3 ¼ 3; k̂3 ¼ 1;

g4ð0Þ ¼ 3 0½ �T ; #̂4 ¼ 4; k̂4 ¼ 2

g5ð0Þ ¼ �1 � 2½ �T ; #̂5 ¼ 7; k̂5 ¼ 2;

g6ð0Þ ¼ 2 0½ �T ; #̂6 ¼ 5; k̂6 ¼ 1

ð34Þ

The performance of the observer can be found in

Figs. 2, 3. It can be observed that the estimation errors

asymptotically converge to zero even though the

course is adjusted at t ¼ 10. Figure 3 displays the

adaptive update laws #̂iðtÞ, k̂iðtÞ for (6), i ¼ 1; . . .; 6.

If the leader system is an autonomous one as [24],

i.e., u0ðtÞ,0 for all t� 0, by allowing the upper

bounds of g0ðtÞ and H known to all agents, the

observer (6) is reduced to be the following form

_gi ¼ f0ðgiÞ � kqiðgviÞgvi ð35Þ

for a sufficiently large k[ 0. The performance of (35)

can be found in Fig. 4. Note that (35) can be used to

estimate the state of the leader system as in [17, 18],

0
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Fig. 1 The communication network G
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Fig. 2 Profile of the estimation errors gi � g0 for (6),

i ¼ 1; . . .; 6
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but due to the existence of u0 and the unavailable

information of g0 and H for all agents, the existing

observers, including (35), are inadmissible for esti-

mating the state of (31).

Based on the observer (6), design the distributed

control law (16) where

p1i ¼ p2i ¼ 10; c1i ¼ c2i ¼ 2; t3ðtÞ ¼ t4ðtÞ ¼ 0:5e�0:1t

.i ¼ jx1i þ x2i þ
1

5
x32ij þ

1

2
ð1þ 3

5
x22iÞjx1ix2ij:

The initial values for xi, m̂1i and ĥi are given as

follows,

x1 ¼ 0 1½ �T ; m̂11 ¼ 1; ĥ1 ¼ 4; x2 ¼ 1 1½ �T ;

m̂12 ¼ 2; ĥ2 ¼ 3

x3 ¼ 3 0½ �T ; m̂13 ¼ 0:1;

ĥ3 ¼ 1; x4 ¼ �5 2½ �T ;

m̂14 ¼ 4; ĥ4 ¼ 6

x5 ¼ 8 � 1½ �T ;

m̂15 ¼ 2; ĥ5 ¼ 0:9; x6 ¼ 6 0½ �T ;

m̂16 ¼ 3; ĥ6 ¼ 2

ð36Þ
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Fig. 3 Profile of adaptive update laws #̂iðtÞ, k̂iðtÞ for (6), i ¼ 1; . . .; 6
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Figure 5 displays the tracking error for all agents,

which asymptotically converge to zero. Figure 6

shows the adaptive update laws m̂1iðtÞ and ĥiðtÞ in

(16), i ¼ 1; . . .; 6, and the profile of the tracking law ui,

i ¼ 1; . . .; 6, is provided in Fig. 7.

6 Conclusion

This paper has proposed a global robust distributed

control law for networked nonlinear non-affine sys-

tems with parametric uncertainty and external distur-

bances, which are allowed to be arbitrarily large and

unknown. Our control law can not only tolerate a

general form of the input–output characteristics

including but not limited to actuator fault, hysteresis,

etc., but also achieve the asymptotic tracking of the

time-varying nonlinear reference signals. The design

consists of a dynamic nonlinear observer, which can

accurately estimate the state of the non-autonomous

nonlinear leader under the condition that the input and

its upper bound is unavailable to all agents.
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