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Abstract In the current manuscript, we comment on

(Alidousti J and Mostafavi 2019 in Nonlinear Dyn 95:

1841), where a three-species fractional differential

equation food chain model is considered. It is shown in

Alidousti J and Mostafavi (2019) that under certain

parametric restrictions the model has bounded solu-

tions for all positive initial conditions. We show that

this is not true. Solutions to the model can blow up in

finite time, for sufficiently large initial data, even

under the restrictions derived in Alidousti J and

Mostafavi (2019). We validate all of our results via

numerical simulations.
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1 Introduction

The purpose of this manuscript is to remark on the well

cited research article [1] where the following tri-

trophic food chain model is considered

dax

dta
¼f ðx; y; zÞ ¼ xð1� xÞ � xy

x þ a
; ð1:1Þ

day

dta
¼gðx; y; zÞ ¼ bxy

x þ a
� by � yz

y þ d
; ð1:2Þ

daz

dta
¼hðx; y; zÞ ¼ pz2 � qz2

y þ r
; ð1:3Þ

subject to the positive initial conditions

xð0Þ ¼ x0; yð0Þ ¼ y0; zð0Þ ¼ z0;

where the constants a; b; b; d; p; q; r are system

parameters and assumed positive. Here,
dau

dta
denotes

the Caputo fractional derivative of the function u(t), of

order a, where a 2 ð0; 1Þ, [9].
Food chains are defined as the linear links in a

larger food web, which essentially describes all of the

predator–prey interactions in an ecosystem [27, 28].
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The model system (1.1–1.3), is an extension of the

Upadhyay–Rai food chain model that models the

interaction between three trophic groups, and a prey

species x is depredated on by a middle predator species

y that in turn is depredated on by a top predator species

z, [43]. If one takes the formal limit a ! 1, in model

system (1.1–1.3), we would recover the classical

Upadhyay–Rai food chain model.We first describe the

classical model to fix ideas. The middle predator y is a

specialist and feeds only on x, and in the absence of x it

will die out. The top predator z is assumed to be a

generalist. That is, it can switch its food source, in the

absence of its favorite food y. The interaction between

the middle predator y and its prey x is modeled by a

standard Holling type II functional response. The

interaction between the top predator z and its prey and

the middle predator y is modeled in a nonstandard

way, via the modified Leslie–Gower scheme. Here, the

z population grows due to sexual reproduction—

essentially modeled as a direct product between the

males and females in the population, z
2
� z

2
� z2, which

is modulated by a density-dependent growth rate

p � q
yþr

� �
. This term is positive if the food source y is

above a certain threshold, and in this case the top

predator population grows, and if below this threshold,

it decays.

The Upadhyay–Rai model has a long standing

history in the mathematical ecology literature. It is the

first model to show chaotic dynamics, when the top

predator is a generalist—and the second after the

Hastings–Powell model [18], to show chaos in a three-

species food chain model. Boundedness for the model

was first shown in [6]. However, in 2015, the

Upadhyay–Rai model was shown to possess solutions

that blow up in finite time for sufficiently large initial

data [31], and then subsequently even for small initial

data [34]. Since then many works have appeared in the

literature, that have attempted to either dampen the

blow-up dynamic present in the basic model, via

ecological mechanisms such as time delay, fear effects

or refuge [29, 44], while others have attempted to

show that blowup does not occur altogether, via

mechanisms, such as toxins and Allee effects, [11, 23].

The latter have all been disproved [32, 33]. The

manuscript [1], which is the subject of the current note,

falls within the former group—that is it attempts to

show that if the classical time derivative in the

Upadhyay–Rai model is replaced by (a possibly

damping) fractional derivative, then blowup will be

prevented, and one has global existence. In this regard,

the work of the authors in [1] is relevant, and such

investigations are highly desirable. However, one

must take extreme care in deriving global existence

results for systems, where the top predator is modeled

via the modified Leslie–Gower scheme, given recent

results that show finite time blowup in such models

([26, 30–33] and [34]).

Fractional differential equation systems have

become popular in many scientific fields such as

engineering, physics, chemistry, control theory and

even population biology (see [4, 5, 17, 19, 25, 39], and

the references therein). In population biology, many

systems possess memory, and there is a distinct ‘‘lag’’

time between cause and effect and thus this type of

modeling can be argued to be more consistent with

reality. A number of such predator–prey systems have

been investigated by several authors (see

[2, 3, 10, 13, 16, 22, 24, 36, 37, 43]. Some of these

authors considered food chain systems with memory

effect.

In the current manuscript, we show the following

• Solutions to (1.1–1.3) can blow up in finite time for

large initial data even under condition (2.2) below,

i.e., under condition (5) derived in [1]. Thus, there

is no attracting set for initial conditions in R3
þ, as

claimed by the authors in [1].

• The proofs of the boundedness of ‘‘x’’ (Theorem 3

[1]) and the positivity of the solution of the system

(Lemma 2 [1]) are incorrect.

2 Finite time blowup

2.1 Preliminaries

There are several definitions of a fractional derivative

of order a[ 0 (see [9]). The two most commonly used

definitions are the Riemann–Liouville and Caputo

ones, respectively. Each definition uses Riemann–

Liouville fractional integration, and derivatives of

whole order. The difference between the two defini-

tions is in the order of evaluation. Riemann–Liouville

fractional integration of order a is defined as
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JauðtÞ ¼ 1

C að Þ

Z t

0

ðt � sÞa�1uðsÞds; a[ 0; t[ 0;

ð2:1Þ

where C xð Þ ¼
R1
0

tx�1e�tdt is the Euler–Gamma

function. The Caputo fractional derivatives of

order a[ 0 are defined as follows

Da
�uðtÞ ¼ Jm�a dmu

dtm

� �
;

where m � 1\a�m and m 2 N. Following the

authors of [1], we will denote
da

dta
as the Caputo

fractional derivative, instead of Da
�.

We recall the following result (Theorem 4 in [1]):

Theorem 1 All nonnegative solutions of (1.1–1.3)

initiating in R3
þ are uniformly bounded under the

following condition

bþ b
4b

þ r\
p

q
: ð2:2Þ

Remark 1 In [1], more precisely in the third section

entitled ‘‘Positivity and boundedness of the solutions’’

various results on the positivity and boundedness of

the solutions to system (1.1–1.3) are proved. The

authors prove that the solution (x, y, z) to (1.1–1.3) is

bounded, and claim that all solutions initiating for R3
þ

are confined to the region

R ¼ fðx; y; zÞ 2 R3
þ; 0\xðtÞ þ 1

b
yðtÞ þ czðtÞ

� 1þ 1

2b
þ M

b
þ /; for any /[ 0g:

In addition to the boundedness of the solutions to

system (1.1–1.3), the existence of an invariant attract-

ing set is also established.

Given a system of ODEs, depending on the

nonlinearities in the equations, one might not expect

a solution to always exist globally in time. In

particular, solutions of some ODEs may blow up in

finite time ([38]). Recall:

Definition 1 (Finite time blowup for ODE) We say

that a solution of a given ODE, with suitable initial

conditions, blows up at finite time if

lim
t!T�\1

u tð Þj j ¼ þ1;

where T�\1 is the blow-up time.

We need the following alternative (see A. Friedman

[14], D. Henry [15], A. Pazy [35], J. Smoller [42], and

F. Rothe [41]).

Proposition 1 The three-component system (1.1–1.3)

admits a unique local in time, classical solution

x; y; zð Þ on an interval ½0; Tmax½, and either

(i) The solution is bounded on ½0; TmaxÞ, and it is

global ( i.e., Tmax ¼ þ1).

(ii) Or

lim
t%Tmax

max xðtÞj j þ yðtÞj j þ zðtÞj j ¼ þ1;

ð2:3Þ

in this case the solution is not global, and we

say that it blows up in finite time Tmax, or it

ceases to exist, where Tmax\1 denotes the

eventual blowing-up time.

2.2 Finite time blowup

We state the following theorem

Theorem 2 Consider the three-species FDE model

(1.1–1.3). Then,

z(t) blows up in finite time, that is, lim
t%Tmax

jzðtÞj ! 1,

as long as the initial data y0, z0 are large enough, even

if condition (2.2) is satisfied.

Proof As y(t) is continuous, then if we choose y0
large enough, we can find d[ 0 such that

ðp � q
yþrÞ�

p
2
, for all t 2 ð0; dÞ. Consequently, we

have from (1.3)

daz

dta
� p

2
z2; for all t 2 ð0; dÞ: ð2:4Þ

By applying the operator Ja on each of the two sides of

(2.4), we get

Ja d
az

dta
¼ zðtÞ � z0 �

p

2
Jaz2;

where Ja is the Riemann–Liouville integral with

fractional order a 2 0; 1ð Þ which is defined by (2.1).

Using the following well-known property of the

Riemann–Liouville fractional integral
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JazðtÞ ¼ zðtÞ � z 0ð Þ;

we get

zðtÞ � z0 �
p

2CðaÞ

Z t

0

ðt � sÞa�1z2ðsÞds:

This gives

zðtÞ� z0 þ
pta�1

2CðaÞ

Z t

0

z2ðsÞds:

By the Cauchy–Schwarz’s inequality, we have

Z t

0

zðsÞds

� �2

� t:

Z t

0

z2ðsÞds;

then

zðtÞ� z0 þ
pta�2

2CðaÞ

Z t

0

zðsÞds

� �2

:

We set

ZðtÞ ¼
Z t

0

zðsÞds;

and then, Z(t) satisfies the following differential

inequality

dZ

dt
� pta�2

2CðaÞ Z2; for all t 2 ð0; dÞ:

Let t1 2 ð0; dÞ be close to zero, and put Z1 ¼ Zðt1Þ.
Then, if we integrate the two sides of the above

inequality, in the time interval ðt1; tÞ we obtain

� 1

Z
þ 1

Z1

� p

2CðaÞ

Z t

t1

sa�2ds; for all t1 � t � d;

which can be written as follows

� 1

Z
þ 1

Z1

� pta�1 � pta�1
1

2 a� 1ð ÞCðaÞ :

That is

1

Z
� 1

Z1

� pta�1

2 a� 1ð ÞCðaÞ þ
pta�1

1

2 a� 1ð ÞCðaÞ :

Set

U tð Þ ¼ 1

Z1

þ pta�1

2 1� að ÞCðaÞ �
pta�1

1

2 1� að ÞCðaÞ :

If we prove that the function U tð Þ vanishes at a time

T� [ 0, the solution z will blow up at a finite time. As

the function t ! ta�1 is decreasing, we can always

choose z0 sufficiently large and t1 2 ð0; dÞ close

enough to zero, such that by continuity Z1 ¼:
1

z t1ð Þ is

sufficiently small. Consequently, we can find T� 2
ðt1; dÞ satisfying

U T�ð Þ ¼ 0:

This implies z, and thus, the solutions of (1.1–1.3),

blow up in finite time in Lq Rþð Þ at t ¼ T�; for all

1� q�1. h

Corollary 1 Consider the three-species FDE model

(1.1–1.3). For any choice of parameters, there exist

initial data ðx0; y0; z0Þ s.t. z(t) blows up in finite time.

That is lim
t%Tmax

jzðtÞj ! 1.

2.3 Domain of attraction of solutions

We now provide some details on the domain of

attraction of solutions, in particular possible blowing-

up solutions to bounded states.

Remark 2 The general domain of attraction of blow-

up solutions for the Upadhyay–Rai class of models is a

difficult (an open) problem, [26]. Typically, this

domain will change as parameter restrictions change.

Thus, providing a generic condition for the domain of

attraction of solutions is not feasible. Under restric-

tions on initial data and parameters and combinations

thereof, partial results can be provided.

Lemma 1 Consider the three-species FDE model

(1.1–1.3). Then, z(t) does not blow up in finite time, as

long as the initial data y0\ q
p � r, and one has the

parametric restriction b
a \b. In this case, all large z0

blow-up solutions remain bounded.

Proof Consider the equation for the middle predator

y. Under the parametric restriction b
a \b, we have

day

dta
¼ bxy

x þ a
� by � yz

y þ d
\

b
a
� b

� �
y; ð2:5Þ

This follows via the boundedness of x via comparison

with the logistic equation and nonnegativity of solu-

tions. Consider a super solution to the above,
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da ~y

dta
¼ b

a
� b

� �
~y; ð2:6Þ

Then via the standard solution procedure for fractional

differential equations [13], we have

~y ¼y0Ea;1 � b � b
a

� �
ta

� �

¼y0
X1
k¼0

� b � b
a

� �
ta

� �k

ðakÞ!

ð2:7Þ

where Ea;1 is the Mittag–Leffler function. Now via the

comparison principle for fractional differential equa-

tions [13], we have

y\jyj � j~yj\y0e
�C1 a; b�b

að Þð Þt\jy0j\
q

p
� r 8t:

ð2:8Þ

This follows via standard power series manipulation

where C1 [ 0 depends on the parameters a; b; b; a.

Also, we use the assumed restriction on the initial data

y0, which then via rearrangement implies

p � q

y þ r

� �
\0: ð2:9Þ

Thus, we have that

daz

dta
¼ pz2 � qz2

y þ r
¼ p � q

y þ r

� �
z2 � 0; ð2:10Þ

Now applying the operator Ja to the above, we obtain

Ja daz

dta

� �
¼ zðtÞ � z0 � Jað0Þ ¼ 0; ð2:11Þ

Thus, jzj � jz0j, and this is true for arbitrarily large

initial condition z0. This proves the lemma. h

3 On the authors proofs of Theorem 3 and Lemma

2 in [1].

In this section, we prove that the proofs of Theorem 3

and Lemma 2 in [1] are incorrect.

3.1 On the proof of Theorem 3

We begin by recalling Theorem 3 in [1]

Theorem 3 Suppose that condition (2.2) is satisfied

and

A ¼
ðx; y; zÞ 2 R3

þ; 0� x� 1; 0� xðtÞ þ 1

b
yðtÞ� 1þ 1

b
;

0� xðtÞ þ 1

b
yðtÞ þ czðtÞ� 1þ 1

4b
þ M

b

8>><
>>:

9>>=
>>;
;

ð3:1Þ

where

c ¼ 1

b2 bþ b
4b þ r

� � ;

and

M ¼ 1

4 q � bþ b
4b þ r

� �
p

� � ;

then A is positively invariant.

We next recall Theorem 4 in [1]

Theorem 4 All nonnegative solutions of (1.1–1.3)

that initiate in R3
þ are uniformly bounded if

bþ b
4b þ r\ p

q.

Our first remark on the invariance of A is as follows

Remark 3 In the statements of both Theorems 3 & 4

in [1]), the parameters ‘‘p’’ and ‘‘q’’ should be

interchanged. Thus, the inequality should read

bþ b
4b

þ r\
q

p

Our second remark on the invariance of A is as

follows:

Remark 4 The constant functions xðtÞ 	 0 and

x tð Þ 	 1 were taken as upper and lower solutions for

x in [1]. The first one is a lower solution of equation

(1.1), but the second one is not an upper solution, since

we do not know the signs of x and y on the whole

interval of existence of the solution to deduce that the

term ‘‘� xy
xþa’’ is non-positive. Thus, even though the

reaction terms in (1.1–1.3) are continuously differen-

tiable with respect to x, we cannot conclude from

standard theory on extremal solutions of Caputo

fractional differential equations that A is invariant

(see [21], Thm. 2.4.3, p.p. 32 and [12] Corollary 1 page

10).
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3.2 On the proof of Lemma 2

Lemma 2 in [1] is stated as follows

Lemma 2 The positive set

IntðR3
þÞ ¼ fðx; y; zÞ 2 R3

þ; x[ 0; y[ 0; z[ 0g;

is invariant for system (1.1)-(1.3).

The authors proved the positivity of the solutions to

system (1.1–1.3) by using Theorem 2 in [1]. This is

essentially a Theorem in [13], concerning the exis-

tence and uniqueness of solutions to fractional ordi-

nary differential equations. We recall here Theorem 2

in [1]

Theorem 5 Consider the following fractional dif-

ferential system

daX

dta
¼ f ðt;X tð ÞÞ; a 2 0; 1ð Þ; ð3:2Þ

with initial conditions

X 0ð Þ ¼ X0

and f : R� R3 ! R.

According to [13], if the function f(t, X) is contin-

uous on R� R3 and satisfies a Lipschitz condition

with respect to the second variable X, then the initial

value problem (3.2) has a unique global solution on R.

Our remark on the positivity of the solutions to

system (1.1)-(1.3) is as follows

Remark 5 The authors in are inspired to use the

aforementioned result from Thm 8.11 in [13]. How-

ever, this is not applicable for the system (1.1–1.3),

since in this case the reaction terms are not Lipschitz

with respect to z in particular, on all R3.

They should apply Theorems 8.3 or 8.4 in [13]

which gives local existence in time for the system

(1.1–1.3), since in this case the reaction terms are

locally Lipschitz, and then, global (in time) existence

of solutions can possibly be proved by other tech-

niques, for certain initial data.

Remark 6 Note, as in the remark on the proof of

Theorem 3 concerning the invariance of the set A

given by (3), the system possesses lower solutions

xðtÞ 	 yðtÞ 	 zðtÞ 	 0, but there are no upper solu-

tions. Consequently, we cannot apply results of [21]

and [12] to deduce the positivity of the solutions. If the

initial data are positive, then the solutions are not

necessary positive on the whole interval of existence

0; Tmaxð Þ, but using the continuity of solutions, they

could be shown to be positive on a sub-interval 0; dð Þ
of 0; Tmaxð Þ for some d\Tmax:

4 Numerical validation

4.1 Blow-up dynamics

In this section we show by computer simulation that

the z component of the FDE system (1.1–1.3) can blow

up in finite time. For this, we consider the FDE system

(1.1–1.3) for a 2 f1; 0:9; 0:7; 0:5g.

Remark 7 Note, technically speaking in the case

a ¼ 1, (1.1–1.3) is an ODE system not an FDE system

In all these cases, we use the following choice of

model parameters

a ¼ 0:4000; b ¼ 0:6667; d ¼ 0:2667;

b ¼ 0:3000; p ¼ 3:7500; q ¼ 3:3333; r ¼ 0:5333:

ð4:1Þ

These values were chosen so that condition (2.2) is

satisfied. We are interested here in the numerical

solution ðznÞn� 0 of system (1.1)-(1.3) for the initial

conditions ðx0; y0; z0Þ ¼ ð1; 5; 10Þ.

First case a ¼ 1 The FDE system (1.1–1.3) is

simulated with MATLAB R2017a. The numerical

resolution of this system is carried out using the

ode45 solver of ordinary differential equations.

Figure 1 presents the evolution of z(t) over the time

interval [0, 0.0275], and the second panel therein

shows the time evolution of z(t) over a smaller

interval, namely [0, 0.0271].

Second case a ¼ 0:9 The numerical resolution of this

system is carried out using the fde12 solver. Figure 2

presents the evolution of z(t) up to the time interval

[0, 0.0127].

Third case a ¼ 0:7 The numerical resolution of this

system is carried out using the fde12 solver. Figure 2

presents the evolution of z(t) up to the time interval

[0, 0.0022].

Fourth case a ¼ 0:5 The numerical resolution of this

system is carried out using the fde12 solver. Figure 3
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presents the evolution of z(t) over the time interval

½0; 1:0586� 10�4
.

Remark 8 Thus, this experiment provides numerical

evidence to invalidate Theorem 4 in [1].

Note that the experimental part of our study

essentially considers the discrete version of

continuous equations, and the properties of these

maps depend on the stability of the chosen numerical

method. To this end, we perform extensive numerical

experiments with various time steps, parameters and

initial conditions.

4.2 Blow-up time computations

In this series of numerical experiment, we solve the

FDE system (1.1–1.3) numerically using the dis-

cretization steps hk ¼ 2�k, k ¼ 5; . . .; 20. Let ðziÞi� 0

be the numerical solution of the system (1.1–1.3). For

all k ¼ 5; . . .; 20, we denote sk the first moment for

which zi ¼ 1000zi�1. The FDE system (1.1–1.3) is

simulated with MATLAB R2017a. The numerical

resolution of this system is carried out using the

fde12 solver of fractional differential equations

proposed by Diethelm and Freed in [20], and imple-

mented by Garrappa in [40]. Figure 2 presents the

evolution of z(t) over the time interval [0, 0.0127].

We make the following observations:

Fig. 1 First Case: a ¼ 1. Evolution of z(t) over the interval [0, 0.0275], and in the second panel over the shorter interval [0, 0.0271]

Fig. 2 Second Case: a ¼ 0:9. Evolution of z(t) over the interval [0, 0.0127]. Finite time blowup is observed at T � 0:0127. Third Case:
a ¼ 0:7. Evolution of z(t) over the interval [0, 0.0022]. Finite time blowup is observed at T � 0:0022

Fig. 3 Fourth Case: a ¼ 0:5. Evolution of z(t) over the interval

½0; ½0; 1:0586� 10�4
. Finite time blowup is observed at

T � 1:0586� 10�4
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• For fixed x0, y0 and z0, the smaller the discretiza-

tion step, the smaller the blow-up time

• For fixed x0 and y0, the larger z0, the smaller the

blow-up time.

• For fixed x0, y0 and z0, the smaller a, the smaller the

blow-up time

Overall, the experiments with the time stepping reveal

that for a step size smaller than h ¼ 2�12, there is

essentially no change in blow-up time. Furthermore

from Figs. 4–6, it is evident that the convergence to

the true blow-up time is exponential. To this end, we

perform some more numerical fits, as seen in 6 panel

(b). Here, we explicitly plot sk versus 2k, where the

time step size is h ¼ 1
2k. This is carried out using the

MATLAB fitting tool. We see an exponential fit of the

type aeðbtÞ þ ceðdtÞ where the coefficients a ¼
0:09808ð0:07643;0:1197Þ, b ¼�0:01444ð�0:019;

�0:009876Þ, c ¼ 0:02988ð0:02739;0:03238Þ, d ¼
�9:552e� 08ð�3:568e� 07;1:658e� 07Þ with 95%

confidence bounds are the best fit coefficients. The

goodness of fit is given by the following metrics, SSE:

0.0001475, R-square: 0.9702, Adjusted R-square:

0.9627, RMSE: 0.003506. The SSE value of � 1
10000

shows how good a fit this is indeed. Similar fits are

observed when other initial conditions and parameter

values are tried.

Also, note the phase space is not restricted math-

ematically. Thus, one can choose as large a set of

initial conditions as one pleases. The larger the initial

condition, the quicker is the blow-up time as seen from

Figs. 1–6. However, from an ecological point of view,

extremely large initial conditions in the top predator

are not realistic. However, moderate-to-small initial

conditions in the top predator z also cause blowup as

seen from Fig. 6.

5 Conclusion

In the current manuscript, we have shown that the tri-

trophic population model considered in [1] does not

possess bounded solutions as claimed by the authors in

(Theorem 4 [1]), even under the parametric restric-

tions imposed therein. Solutions of this model can

actually exhibit finite time blowup, as long as the

initial data are positive and large enough. Further-

more, there is no attracting set as claimed in (Theo-

rem 4 [1]). Moreover, we have shown that the proofs

of the boundedness of the prey population density x,

and the positivity of the solutions as claimed in

(Theorem 3 and Lemma 2 [1], respectively), are not

correct.

A viable research direction would be to investigate

the interplay between the initial data and model

parameters, in particular the parameter a, to derive

global (in time) existence results for certain initial

data. Here, the effect of the fractional (a) order of the
derivatives as a damping mechanism could be

Fig. 4 We see sk versus k, for a ¼ 0:9 and initial conditions

ðx0; y0; z0Þ ¼ ð1; 5; 10Þ

Fig. 5 We see sk versus k, for a ¼ 0:9 and initial conditions ðx0; y0; z0Þ ¼ ð1; 5; 1000Þ. We see sk versus k, for a ¼ 0:9 and initial

conditions ðx0; y0; z0Þ ¼ ð1; 5; 10000Þ
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investigated. It may also be interesting to consider

different fractional orders of derivatives, in each of the

three equations in the model system (1.1–1.3).

Therein, the question would be to uncover if this

difference acts as a damping mechanism or exacer-

bates the blow-up dynamic. Currently, via Lemma 1

we see that the conditions to damp blow-up solutions

are no different than the classical case. That is y0 needs

to be chosen smaller than the threshold q
p � r, which

supplemented with the parametric restriction b
a \b.

This forces the z component of the solution to decay.

However, although this is a sufficient condition to

damp blow-up solutions, it is not necessary. A possible

approach (to determine necessary and sufficient con-

ditions on the initial data) is large-scale numerical

solution to determine the boundary that separates

initial data that blows up, versus that which is attracted

to an interior state.

It is worth commenting on the ‘‘largeness’’ aspect

of the initial condition to demonstrate blowup. In the

biological setting of the problem, model system (1.1–

1.3) represents three species in a tri-trophic food chain,

with the top predator z depredating on a middle

predator y which in turn depredates on a prey species

x. Blowup is possible in three generic situations, large

data in z, large data in y, large data in z and y. In the

setting of terrestrial vertebrate predators, large data

purely in z are not feasible. We often see that natural

apex predators do not have populations as those

species lower in the chain, see [29] and citations

within. However, there are exceptions to this rule in

the context of exotic invasions [29]. For example, in

the Florida everglades the invasion of the Burmese

python has led to excessively high population num-

bers, and the subsequent decline of populations of its

prey. The Burmese python essentially functions as an

apex predator. A similar case can be made for the Cane

toad in Australia [29]. However, the case of large data

in z and y can be made for biocontrol situations, where

a predator is introduced to control a pest (possibly

invasive). Here, one could think of the y species as the

invasive, with the introduced predator as z—in the

case of large initial densities of y, comparably large

densities of z might need to be introduced, but one

might be able to have control via introducing a

moderate amount of z, thus making a case for the

efficacy (or inefficacy in case of blowup) for such

control measures. Herein, we should note that in the

case of control by parasitoids (z), z could also be large

[29].

Also, we note that in simulations fairly moderate

initial conditions can lead to blowup, see Fig. 6. As

mentioned earlier, a possible approach to testing the

validity (and in particular the biological feasibility) of

initial conditions is large-scale numerical simulations,

where we attempt to explicitly quantify the blow-up

boundary and investigate its changes w.r.t parameter

variation. Herein, it might well be that the discovered

initial conditions that lead to blowup are rare and not

met in real/feasible data. Furthermore, once there is a

better estimate on this boundary, it will enhance our

understanding of where the FDE food chain model is

applicable versus where it is not. To this end,

comparing the boundaries in the a ¼ 1 case

Fig. 6 We see sk versus k, for a ¼ 0:9 and initial conditions ðx0; y0; z0Þ ¼ ð5; 5; 5Þ. We see the exponential fit of sk versus k in this

setting as well. Here, the Y2-axis is the sk values, while the X2-axis is the 2
k values
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(essentially the ODE case) to the case when 0\a\1

would be an interesting endeavor. We notice from

Fig. 2–3 that the blow-up time decreases as a does.

Thus, it would be interesting to see if the blow-up

boundary also shifts (and scales differently) as we vary

a. Also, we reiterate that from Figs. 4–6, it is seen that

the convergence to the true blow-up time is exponen-

tial, see Fig. 6 panel (b). The goodness of fit to an

exponential function is given by an SSE value

0.0001475. Similar experiments could be performed

with other numerical methods as well.

All in all, we caution authors to derive global

existence results for model systems, with reaction

terms such as (1.1)-(1.3), particularly, where the top

predator is modeled via the modified Leslie–Gower

scheme. It is imperative to carefully restrict initial

data, if one is attempting to derive global (in time)

existence results for such systems. We see from

Corollary 1 that there always exist initial data that will

lead to a blow-up solution, no matter how one chooses

parameters in (1.1–1.3). Thus, replacing classical

derivatives by fractional ones might damp blow-up

solutions in certain initial data and parameter regimes,

but will not altogether prevent the finite time blowup

of certain (large) initial data solutions.

Data Availability The data sets generated during and/or

analyzed during the current study are not publicly available due

to privacy issues, but are available from the corresponding

author on reasonable request.
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