
ORIGINAL PAPER

Generalized Darboux transformation and solitons
for a Kraenkel-Manna-Merle system in a ferromagnetic
saturator

Xi-Hu Wu . Yi-Tian Gao . Xin Yu . Fei-Yan Liu

Received: 9 December 2022 / Accepted: 13 April 2023 / Published online: 6 June 2023

� The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract Ferromagnetic materials are considered to

have the applications in data storage, data processing

and telecommunication. A Kraenkel-Manna-Merle

system, which describes the nonlinear electromagnetic

short waves in a ferromagnetic saturator, is investi-

gated in this paper. With respect to the magnetization

related to the saturated ferromagnetic material and

external magnetic field, a generalized Darboux trans-

formation (GDT) is constructed and utilized to derive

the solitons, multi-pole solitons and their interactions.

Analytic expressions of the double-pole solitons are

offered and analyzed via the asymptotic analysis.

Then, amplitudes, characteristic lines, slopes and

phase shifts of the asymptotic solitons are presented.

With the multiple spectral parameters involved in the

GDT, interactions among the solitons and multi-pole

solitons are illustrated.

Keywords Ferromagnetic material � Kraenkel-
Manna-Merle system � Generalized Darboux

transformation � Multi-pole soliton � Asymptotic

analysis

1 Introduction

Recent development of the computer and information

technology has accompanied the demands of the

massive data and high-density storage [1]. Ferromag-

netic materials have been regarded as the ideal storage

media in information technology [2, 3]. Ferromag-

netic materials, e.g., iron, cobalt, nickel and certain

rare-earth metals, have exhibited a spontaneous net

magnetization at the atomic level in the absence of an

external magnetic field [4]. Furthermore, ferromag-

netic materials have been considered to have the

applications in data processing and telecommu-

nication [5, 6].

To describe the nonlinear electromagnetic short

waves in a ferromagnetic saturator, a Kraenkel-

Manna-Merle system has been proposed1 [7–23]
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1 According to Ref. [7], the researchers have thought the

ferromagnetic saturator as a insulator, i.e., a ferromagnetic

saturator with the zero conductivity. During the derivation of

System (1), effects of the current and free charge have been

ignored in the Maxwell equation [7].
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uxt � uvx þ jvx ¼ 0;

vxt þ uux ¼ 0;
ð1Þ

where u and v are two real differentiable functions of x

and t, u is related to the component of the magneti-

zation in a certain direction about the saturated

ferromagnetic material, v is related to the component

of the external magnetic field in a certain direction, j
represents the damping effect, and the subscripts

denote the partial derivatives with respect to the scaled

space variable x and time variable t.

Solitons, a kind of the nonlinearwaves, have exhibited

the capability of the propagation of the waves without

losing the shape for a long distance [24]. Therefore,

solitons, which are stable, has been investigated in fluid

mechanics [25], fiber optics [26], plasma physics [27],

material sciences [28] and other fields [29]. With the

development of the advanced large-scale information

storage and transmission, solitons have shown the

potential applications in ferromagnetic materials [30].

Moreover, other nonlinear waves, e.g., breathers, peri-

odic waves and rogue waves, have also attracted the

researchers’ attention [31–34].

For System (1), the breather solitons, periodic oscil-

lation solitons and multi-pole instantons via the consis-

tent tanh expansion method have been presented [8];

certain dark solitons, bright solitons, singular solitons,

combined dark-bright solitons, combined dark-singular

solitons, periodic and singular periodic waves via the

extended sinh-Gordon equation expansion method have

been exhibited [9]; loop-like periodicwaves in the Jacobi

elliptic functions and solitons in the hyperbolic functions

have been investigated [10]; effects of the inhomoge-

neous exchange and simultaneous damping effects on the

magnetic solitons have been explored [11]; loop solitons

in the localized multivalued waveguide channels have

been offered [12]; certain solitons have been studied via

the inverse scattering transform method and Wadati-

Konno-Ichikawa scheme [13]; Darboux transformation

(DT) and a series of the loop-like soliton structures have

been obtained [14]; through the generalized G0=G-
expansion method, hump-soliton, cusp-soliton, loop-

soliton and kink-soliton have been observed [15];

single soliton, complex combo solitons, complex

hyperbolic and trigonometric solutions through the

extended direct algebraic method have been stud-

ied [16]; two types of the soliton twining behaviors

have been derived via the bilinear method [17]; two

types of the periodically oscillating solitons have been

discussed via the Riccati equation mapping

method [18]; influences of the damping effect on the

solitons in the ferrites materials have been investi-

gated [19, 20]; some novel traveling wave solutions

have been presented [21]; certain dark, singular and

combo solitons along with periodic solutions have

been studied via the modified auxiliary equation

method and generalized projective Riccati equations

method [22]; oscillation rogue waves via the truncated

Painleve method have been obtained [23].

When j is selected as 0, a Lax pair for System (1)

has been obtained as [14, 35]

U ¼ /1 /2ð ÞT; Ux ¼ UU; Ut ¼ VU;

U ¼ k
vx ux

ux � vx

 !
; V ¼

1

4k
� u

2

u

2
� 1

4k

0
BB@

1
CCA;

ð2Þ

where /1 and /2 are two real differentiable functions

of x and t, k is a real spectral parameter, the superscript

‘‘T’’ denotes the transpose of the matrix. From the

compatibility condition Ut � Vx þ UV � VU ¼ 0 of

Lax Pair (2), System (1) has been obtained [14].

DT method has enabled the users to obtain the

solutions with the aid of the Lax pair of certain

nonlinear evolution equations [36]. However, one

limitation of the DT method has been considered as

that each spectral parameter can only be iterated once

in the multi-iteration process [36]. Thus, in the N-fold

solutions obtained via the DT, each spectral parameter

has corresponded to a separate localized wave com-

ponent, e.g., the soliton, breather and rogue wave,

where N is a positive integer [37]. On the basis of Lax

Pair (2), N-fold DT and solitons with the straight

characteristic lines for System (1) have been

offered [35]. However, due to the disturbances and

soliton energy dissipations in the ferromagnetic satu-

rator, velocities of the nonlinear waves for System (1)

have been considered as changeable under certain

conditions [7]. Therefore, we have considered that the

localized waves with the changeable velocities have

the potential applications in the ferrites.

Multi-pole solitons, also called the degenerate

solitons or higher-order solitons, whose characteristic

lines are the curves, have been obtained through the

generalized Darboux transformation (GDT) method

and Hirota method [38–40]. Multi-pole solitons have
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described the interactions of multiple chirped pulses

with the same amplitudes and group velocities in an

optical fiber [41]. Different from the DTmethod, GDT

method, in which the spectral parameters can be

iterated more than once, has enabled us to obtain the

localized waves with the changeable velocities [42].

In the GDT method, the kth-order multi-pole solitons

have been derived through iterating one spectral

parameter k times, which are different from the kth-

order solitons obtained via the Darboux transforma-

tion (DT) method, where k is a integer and k� 2 [43].

To our knowledge, GDT, multi-pole solitons and

interaction among the solitons and multi-pole solitons

for System (1) have not been investigated. In Sect. 2,

with symbolic computation [44–48] we will construct

a GDT for System (1). In Sect. 3, multi-pole solitons

and interaction among the solitons and multi-pole

solitons for System (1) will be presented and ana-

lyzed. In Sect. 4, our conclusions will be drawn.

2 GDT for System (1)

Based on Lax Pair (2), we firstly construct of anN-fold

Darboux transformation for System (1). Motivated by

the form of the first-order DT matrix in Refs. [14, 35],

we assume the N-fold DT matrix D½N� as the following
form

D½N� ¼
1þ

PN
j¼1 a

ðjÞkj
PN

j¼1 b
ðjÞkjPN

j¼1ð�1Þjþ1bðjÞkj 1þ
PN

j¼1ð�1Þ jaðjÞkj

0
@

1
A;

ð3Þ

where j ¼ 1; 2; . . .; N, aðjÞ’s and bðjÞ’s are 2N func-

tions of x and t to be determined, and the superscript

[N] denotes the Nth-order iteration.

Through the following equations [35]

D½N�U
� ���

k¼kj
¼ 0; ð4Þ

we utilized the Crammer’s Rule and calculate að1Þ and

bð1Þ as

where C1 is derived through replacing the first column

of C with c, C2 is derived through replacing the

ðN þ 1Þth column of C with c, kj’s are N different

spectral parameters, and /1;j;/2;j

� �T
is a solution of

Lax Pair (2) at k ¼ kj and the seed solutions u, v.

Then, an N-fold DT and solutions for System (1)

can be expressed as

U½N� ¼ D½N�U; U½N�
x ¼ U½N�U½N�; U½N�

t ¼ V ½N�U½N�;

U½N� ¼ k
v
½N�
x u

½N�
x

u
½N�
x � v

½N�
x

 !
; V ½N� ¼

1

4k
� u½N�

2

u½N�

2
� 1

4k

0
BBB@

1
CCCA;

u½N� ¼ uþ bð1Þ; v½N� ¼ vþ að1Þ þ f1ðtÞ;
ð6Þ

að1Þ ¼ C1

C
; bð1Þ ¼ C2

C
;

C ¼

k1/1;1 k21/1;1 � � � kN1 /1;1 k1/2;1 k21/2;1 � � � kN1 /2;1

ð�1Þ1k1/2;1 ð�1Þ2k21/2;1 � � � ð�1ÞNkN1 /2;1 ð�1Þ2k1/1;1 ð�1Þ3k21/1;1 � � � ð�1ÞNþ1kN1 /1;1

k2/1;2 k22/1;2 � � � kN2 /1;2 k2/2;2 k22/2;2 � � � kN2 /2;2

ð�1Þ1k2/2;2 ð�1Þ2k22/2;2 � � � ð�1ÞNkN2 /2;2 ð�1Þ2k2/1;2 ð�1Þ3k22/1;2 � � � ð�1ÞNþ1kN2 /1;2

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

kN/1;N k2N/1;N � � � kNN/1;N kN/2;N k2N/2;N � � � kNN/2;N

ð�1Þ1kN/2;N ð�1Þ2k2N/2;N � � � ð�1ÞNkNN/2;N ð�1Þ2kN/1;N ð�1Þ3k2N/1;N � � � ð�1ÞNþ1kNN/1;N

��������������������

��������������������

;

c ¼
�
� /1;1;�/2;1;�/1;2;�/2;2; � � � ;�/1;N ;�/2;N

�T
;

ð5Þ
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where f1ðtÞ is a differential function of t, u and v are

the seed solutions, u½N� and v½N� are the N-fold

solutions, and U½N� and V ½N� are the transformed Lax

pair matrices.

Next, on the basis of N-Fold DT (6), we will

construct a GDT for System (1).

We choose M spectral parameters ks, where M is a

positive integer, M�N and s ¼ 1; 2; . . .;M. Among

the M spectral parameters, each spectral parameter ks
will be iterated rs þ 1 times, where rs is a positive

integer and M þ
PM

s¼1 rs ¼ N. We add a real small

parameter perturbation � to ks, i.e.,

ks ! ks þ �: ð7Þ

At this time, the relationships between the potentials

u½N�; v½N� and u, v via the GDT is the same as the

relationships in N-Fold DT (6). However, different

from Eq. (4), aðjÞ’s and bðjÞ’s are determined via the

following equations

lim
�!0

D½N���
k¼ksþ�

/1

/2

 !�����
k¼ksþ�

��ps ¼ 0; ð8Þ

where ps ¼ 0; 1; . . .; rs.

Through Eq. (8), að1Þ and bð1Þ are determined as

where X1 and X2 can be obtained through replacing

the 1st and ðN þ 1Þth columns of As in X with

�/1jk¼ksþ�;�/2jk¼ksþ�

� �T
, respectively.

In particular, when M ¼ N, i.e., rs ¼ 0, each of the

N spectral parameters is iterated only once. Under

such condition, Solutions (9) are reduced to the

solutions in Eq. (5).

In Solutions (9), the value of M represents that

Solutions (9) are composed of the M independent

nonlinear waves, the value of rs represents that the

order of the nonlinear waves corresponding to ks is
rs þ 1, and the value of N represents the total order of

Solutions (9). In sum, N-Fold DT Matrix (3) and

Solutions (9) form an N-Fold GDT for Eq. (1).

3 Solitonic interactions for System (1)

In order to derive certain solitons for System (1), we

need to select the seed solutions for System (1). After

the calculation, we find that the following seed

solutions, i.e., u ¼ a; v ¼ bxþ f2ðtÞ, are the sufficient
conditions for obtaining the solitons for System (1). In

this section, we set a ¼ f2ðtÞ ¼ f1ðtÞ ¼ 0. However,

the following studies can be extended to the cases

under af1ðtÞf2ðtÞ 6¼ 0.

Therefore, eigenfunctionU ks þ �ð Þwith k ¼ ks þ �

for Lax Pair (2) can be presented as

u½N� ¼ uþ bð1Þ; v½N� ¼ vþ að1Þ þ f1ðtÞ;

að1Þ ¼ jX1j
jXj ; bð1Þ ¼ jX2j

jXj ;

X ¼ lim
�!0

�
AT
1 ;

d

dk1
AT
1 ; � � � ;

dr1

ðr1Þ!dkr11
AT
1 ; � � � ;AT

m;
d

dkM
AT
M; � � � ;

drM

ðrMÞ!dkrMM
AT
M

�T

;

As ¼ As;1;As;2

� �
;

As;1 ¼
ðks þ �Þ/1jk¼ksþ� ðks þ �Þ2/1jk¼ksþ� � � � ðks þ �ÞN/1jk¼ksþ�

ð�1Þ1ðks þ �Þ/2jk¼ksþ� ð�1Þ2ðks þ �Þ2/2jk¼ksþ� � � � ð�1ÞNðks þ �ÞN/2jk¼ksþ�

0
@

1
A;

As;2 ¼
ðks þ �Þ/2jk¼ksþ� ðks þ �Þ2/2jk¼ksþ� � � � ðks þ �ÞN/2jk¼ksþ�

ð�1Þ2ðks þ �Þ/1jk¼ksþ� ð�1Þ3ðks þ �Þ2/1jk¼ksþ� � � � ð�1ÞNþ1ðks þ �ÞN/1jk¼ksþ�

0
@

1
A;

ð9Þ
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U ks þ �ð Þ ¼
gs

hs

 !
¼

l1e
bðksþ�Þxþ 1

4ðksþ�Þt

l2e
�bðksþ�Þx� 1

4ðksþ�Þt

 !
; ð10Þ

where � is a small parameter. Next, we expand

eigenfunction U ks þ �ð Þ with the small parameter �

as follows:

gs

hs

 !
¼

gs;0

hs;0

 !
þ

gs;1

hs;1

 !
�þ

gs;2

hs;2

 !
�2 þ � � � ;

gs;0

hs;0

 !
¼

l1e
bksxþ 1

4kst

l2e
�bksx� 1

4kst

 !
;

gs;1

hs;1

 !
¼

bx� t

4k2s

 !
gs;0

t

4k2s
� bx

 !
hs;0

0
BBBBB@

1
CCCCCA;

gs;2

hs;2

 !
¼

1

2
bx� t

4k2s

 !2

þ t

4k3s

2
4

3
5gs;0

1

2
bx� t

4k2s

 !2

� t

4k3s

2
4

3
5hs;0

0
BBBBBBB@

1
CCCCCCCA

� � �

ð11Þ

We find that gs;1; hs;1; gs;2; hs;2 and so on are the

mixtures of polynomials and exponential functions.

Therefore, Solutions (9), which contain both the

polynomials and exponential functions, are called

the semirational solutions. Through setting the values

of N, M and rs in Solutions (9), different types of the

semirational solutions for System (1) can be obtained.

When rs � 1, i.e., the complex spectral parameter ks is
iterated more than once, ks corresponds to the

ðrs þ 1Þth-order multi-pole solitons in Solutions (9);

when rs ¼ 0, ks corresponds to the one soliton in

Solutions (9).

3.1 Multi-pole solitons for Eq. (1)

As we set M ¼ r1 ¼ 1; N ¼ 2 in Solutions (9), with

respect to the magnetization related to the saturated

ferromagnetic material and external magnetic field,

the double-pole solitons solutions for Eq. (1) can be

derived as

u½1� ¼ 2l1l2
l21ðq� 2k1Þe

h
2 � l22ðqþ 2k1Þe�

h
2

k21 l41e
h þ l42e

�h
� �

þ l21l
2
2ðq2 þ 2k21Þ

;

v½1� ¼ bx� 2
k1 l41e

h � l42e
�h

� �
þ 2l21l

2
2q

k21 l41e
h þ l42e

�h
� �

þ l21l
2
2ðq2 þ 2k21Þ

;

h ¼ t

k1
þ 4bk1x; q ¼ t � 4bk21x:

ð12Þ

As shown in Fig. 1, the characteristic lines of the

double-pole solitons are the curves. We also find that

the background plane of u½1� is fixed, while the

background plane of v½1� changes from negative to

zero and then to positive with the increase of t.

Since the background of u½1� is fixed while the

background plane of v½1� is changing, we take u½1� as an
example to analyze the asymptotic properties of

Solutions (12). In fact, u½1� and v½1� own the same

curve characteristic lines.

Motivated by Refs. [40–42], we firstly perform the

following asymptotic analysis procedure to investigate

the asymptotic behaviors of u½1� in Solutions (12).

We firstly prove that the characteristic lines of u½1�

are not the straight lines as follows:

Fig. 1 3D figures of the

double-pole solitons: a
Component u; b Component

v via Solutions (12) with

k1 ¼ 1; b ¼ 1
4
and

l11 ¼ l12 ¼ 1

123
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We consider an arbitrary line L : t
k1
þ c1x ¼ c2,

where c1 and c2 are the arbitrary real numbers. Since

q ¼ k1h� 8bk21x; u½1� are dependent only on the

variables h and x. Thus, it is necessary to investigate

the behavior of h alone L as jxj ! 1. In view of

h� t
k1
þ c1x

� �
¼ 4bk1 � c1ð Þx, as x ! þ1, the

value of h is

h ¼

�1; c1 [ 4bk1;

Oð1Þ c1 ¼ 4bk1;

þ1; c1\4bk1;

8>>><
>>>:

ð13Þ

and vice versa, where O(1) denotes that the two

quantities are of the same order, i.e., the ratio limit of

two quantities tends to a nonzero constant.

As shown in Expressions (13), the value of h can be
þ1; �1 or O(1) at infinity on the line L. Hence, we

can calculate the dominant behaviors of u½1� corre-
sponding to the above three cases of h as

u½1� ¼

�2
l1ðqþ 2k1Þ

k21l2
e
h
2; h!�1;

2l1l2
l21e

h
2
� l22e

�h
2

� �
q� 2k1 l21e

h
2
þ l22e

�h
2

� �
l21l

2
2q

2þ k21 l41e
hþ l42e

�h
� �

þ 2l21l
2
2k

2
1

; h¼Oð1Þ;

2
l2ðq� 2k1Þ

k21l1
e�

h
2; h!þ1:

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

Easy to know that e
h
2 ! 0 as h ! �1, e�

h
2 ! 0 as

h ! 1, and l21l
2
2q

2 �
��� l21e

h
2 � l22e

�h
2

� �
q
��� as h ¼ Oð1Þ;

x ! �1. That is to say, no matter which of the three

cases in Expressions (13), u½1� will approach 0 as jxj !
1 alone the line L. In summary, characteristic lines of

u½1� are not the straight lines.

Therefore, characteristic lines of u½1� are the curves

in the x� t plane. Along the curves to infinity, eh and q
approach infinity. Thus, a balance between eh and q
can be considered as

q
eph

	Oð1Þ; jxj ! þ1; ð15Þ

where p is a real variable constant depending on the

values of eh and q. According to the relationship

between p and � 1
2
, we classify and obtain the

following six dominant behaviors of u½1� as

u½1� ¼

2l1
l2

e
h
2

q
; p[

1

2
; h ! 1;

2l1l2
qe

h
2

k21l
2
1e

h þ l22q
2
; p ¼ 1

2
; h ! 1;

2l2

l1k
2
1

q

e
h
2

; 0\p\
1

2
; h ! 1;

� 2l1

l2k
2
1

q

e�
h
2

; � 1

2
\p\0; h ! �1;

�2l1l2
qe�

h
2

k21l
2
2e

�h þ l21q
2
; p ¼ � 1

2
; h ! �1;

� 2l2
l1

e�
h
2

q
; p\� 1

2
; h ! �1:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

Equations (16) indicate that u½1� behaves as the

solitons with the stable amplitudes only when

p ¼ � 1
2
. Whether p ¼ 1

2
or � 1

2
, x may approach to

þ1 or�1. Therefore, we assume that k1l1l2 [ 0 and

b[ 0, and then calculate the following four asymp-

totic solitons as

u½1� ! u
½1�
1;þ ¼ 1

k1
sech

h
2
þ ln

k1l1
l2q

� �
;

qe�
h
2 ¼ Oð1Þ; h ! þ1; x ! þ1; q[ 0;

u½1� ! u
½1�
1;� ¼ 1

k1
sech

h
2
þ ln

�ql1
k1l2

� �
;

qe
h
2 ¼ Oð1Þ; h ! �1; x ! �1; q\0;

u½1� ! u
½1�
2;þ ¼ � 1

k1
sech

h
2
þ ln

ql1
k1l2

� �
;

qe
h
2 ¼ Oð1Þ; h ! �1; x ! þ1; q[ 0;

u½1� ! u
½1�
2;� ¼ � 1

k1
sech

h
2
þ ln

k1l1
�l2q

� �
;

qe�
h
2 ¼ Oð1Þ; h ! þ1; x ! �1; q\0:

ð17Þ

Similar to the above analysis procedure, we can prove

that v½1� in Solutions (12) possesses the same charac-

teristic lines as u½1� in Solutions (12). However, since

the background of v½1� is a linear functions of t, i.e., bt,

asymptotic solitons v
½1�
1;� and v

½1�
2;� have no fixed

amplitudes.

3D figures and contour figures of u½1� and v½1� via
Solutions (12) are shown in Fig. 2.
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Asymptotic Solitons (17) represent the two bright-

type solitons u
½1�
1;� and two dark-type solitons u

½2�
2;�.

From Asymptotic Solitons (17), the following prop-

erties of the four asymptotic solitons u
½1�
1;� and u

½1�
2;� are

obtained as follows:

(a) Amplitudes:

Aðu½1�1;�Þ ¼ Aðu½1�2;�Þ ¼
1

jk1j
: ð18Þ

(b) Characteristic lines:

u
½1�
1;þ : k1l1e

h
2 � l2q ¼ 0; u

½1�
1;� : ql1e

h
2 þ k1l2 ¼ 0;

u
½1�
2;þ : ql1e

h
2 � k1l2 ¼ 0; u

½1�
2;� : k1l1e

h
2 þ l2q ¼ 0:

ð19Þ

(c) Slopes:

Sðu½1�1;�Þ ¼
1

4k21b

2k1 � jqj
2k1 þ jqj ;

Sðu½1�2;�Þ ¼
1

4k21b

2k1 þ jqj
2k1 � jqj :

ð20Þ

(d) Phase shifts PðvÞ between u
½1�
v;þ and

u
½1�
v;� ðv ¼ 1; 2Þ:

Fig. 2 a, c 3D figures; b, d
Contour figures of the

double-pole solitons via

Solutions (12) with k1 ¼
1; b ¼ 1

4
and l11 ¼ l12 ¼ 1
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Pð1Þ ¼ �Pð2Þ ¼ 2 ln
k1
q

����
����: ð21Þ

The above four asymptotic solitons own the same

amplitude. In view of P(1) and P(2) are opposite under

the same jqj, and the value of Sðu½1�v;þÞ at b is equal to

that of Sðu½1�v;�Þ at �q, we can infer that the interaction

between u
½1�
1 and u

½1�
2 is elastic.

We have

SðhÞ ¼ � 1

4k21b
� Sðu½1�1;�Þ� 0;

Sðu½1�2;�Þ� SðhÞ ¼ � 1

4k21b
:

ð22Þ

Therefore, asymptotic solitons u
½1�
1;� are located

between the two straight lines L1 : h ¼ 0 and

L2 : x ¼ 0, and asymptotic solitons u
½1�
2;� are located

outside of the straight line L1, as shown in Fig. 2b.

As we set M ¼ 1; r1 ¼ 2; N ¼ 3 in Solutions (9),

the triple-pole solitons for Eq. (1) are illustrated in

Fig. 3; as we set M ¼ 1; r1 ¼ 3; N ¼ 4 in Solu-

tions (9), the quadruple-pole solitons for Eq. (1) are

illustrated in Fig. 4. We summarize a rule about the

Nth-order multi-pole solitons for Eq. (1): when N is

even, the Nth-order multi-pole solitons consist of N
2

bright solitons and N
2
dark solitons; when N is odd, the

Nth-order multi-pole solitons consist of N�1
2

bright

solitons and Nþ1
2

dark solitons. Moreover, these bright

and dark solitons are arranged alternately.

Compared with the solitons in Refs. [8–19, 21,

22, 35], the double-pole solitons in Figs. 1 and 2 show

the different dynamic characteristics. Curve charac-

teristic lines indicate that the velocities of the solitons

are changing with the changes of x and t. Moreover,

each branch of u½1� owns the same amplitude.

3.2 Interactions among the solitons and multi-pole

solitons for System (1)

As we setM ¼ 1; r1 ¼ 0 andN ¼ 1 in Solutions (12),

with respect to the magnetization related to the

saturated ferromagnetic material and external mag-

netic field, expressions of the one-soliton solutions are

derived as

u½1� ¼ � 1

k1
sech

h
2
þ ln

l11
l12

� �
;

v½1� ¼ bx� l211e
h � l212

k1 l211e
h þ l212

� � ;
h ¼ t

k1
þ 4bk1x:

ð23Þ

From One-Soliton Solutions (23), we obtain that

velocity of the one soliton is � 1
4bk21

.

As we set M ¼ 2; r1 ¼ 1; r2 ¼ 0 and N ¼ 3 in

Solutions (12), the interaction among the one soliton

and double-pole solitons is illustrated in Fig. 5.

Figures 3 and 5 both contain three soliton compo-

nents, including two curve-type solitons and one line-

type soliton. However, the line-type soliton in Fig. 3

doesn’t have a phase shift before and after the

interaction while the line-type soliton in Fig. 5 has a

phase shift before and after the interaction. In other

Fig. 3 3D figures of the

triple-pole solitons: a
Component u; b Component

v via Solutions (9) with

k1 ¼ 2
3
; b ¼ 2

3
and

l11 ¼ l12 ¼ 1
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words, we can consider that Fig. 3 with an arbitrary

line-type soliton is a special case of Fig. 5.

As we set M ¼ 2; r1 ¼ 2; r2 ¼ 0 and N ¼ 4 in

Solutions (12), the interaction among the one soliton

and triple-pole solitons are illustrated in Fig. 6. As we

set M ¼ 2; r1 ¼ 1; r2 ¼ 1 and N ¼ 4 in Solu-

tions (12), the interaction among the two double-pole

solitons are illustrated in Fig. 7.

Compared with those simple situations in Figs. 1, 3,

4, the interaction areas in Figs. 5, 6, 7 appear more

disordered, which correspond to the realistic occasions

of the electromagnetic wave propagation in a ferro-

magnetic saturator. In fact, with the increase ofM and

N, i.e., the total order of Solutions (12) and the number

of spectral parameters, solutions of System (1) will be

composed of more solitons. Due to the limitation of

computing power, we only show up to the fourth-order

solutions.

In Figs. 5, 6, 7, all the solitons extend to infinity and

maintain their shapes. We find that before and after the

interaction, the solitons and multi-pole solitons only

have a phase shift while their velocities, amplitudes,

shapes, and widths do not change at all. That is to say,

interactions among the solitons and multi-pole soli-

tons are elastic. We also find that the one soliton

component in Fig. 6 is dark-type, while the one soliton

component in Fig. 5 is bright-type.

In Figs. 1, 2, 3, 4, only a peak arises in the multi-

pole solitons. However, soliton interactions in Figs. 5,

6, 7 present more peaks and depressions as follows:

two depressions in Fig. 5, two peaks and a depression

in Fig. 6, and two peaks and two depressions in Fig. 7.

Fig. 4 3D figures of the

quadruple-pole solitons: a
Component u; b Component

v via Solutions (12) with

k1 ¼ 2
3
; b ¼ 2

3
and

l11 ¼ l12 ¼ 1

Fig. 5 3D figures of the

interaction among the one

soliton and double-pole

solitons: a Component u; b
Component v via

Solutions (12) with k1 ¼
2
3
; k2 ¼ �1; b ¼ 2

3
and

l11 ¼ l12 ¼ l21 ¼ l22 ¼ 1
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Moreover, interaction regions of the fourth-order

solitons in Figs. 6, 7 are kinked.

It has been reported that the bound-state solitons

appear and exhibit the periodic attractions or repul-

sions between the adjacent solitons when two or more

solitons have the same velocity [43]. However, in

Solutions (12), unequal spectral parameters indicate

that different solitons have different velocities, thus,

bound-state solitons cannot be derived.

4 Conclusions

In this paper, a Kraenkel-Manna-Merle system, i.e.,

System (1), which describes the nonlinear

electromagnetic short waves in a ferromagnetic satu-

rator, has been investigated. On the basis of N-Fold

DT (6), a GDT has been constructed and utilized to

derive Solutions (12).

Double-pole soliton solutions have been derived as

Solutions (12) and have been shown in Fig. 1.

Asymptotic analysis on Solutions (12) has given rise

to Asymptotic Solitons (17), which lead to Character-

istic Lines (19), Slopes (20) and Phase Shifts (21) of

u
½1�
1;� and u

½1�
2;�. We have found that the four asymptotic

solitons u
½1�
1;� and u

½1�
2;� own the same amplitude jk1j�1

,

the asymptotic solitons u
½1�
1;� are located between the

two straight lines L1 and L2, and the asymptotic

Fig. 7 3D figures of the interaction among the two double-pole solitons: a Component u; b Component v via Solutions (12) with

k1 ¼ 2
3
; k2 ¼ �1; b ¼ 2

3
and l11 ¼ l12 ¼ l21 ¼ l22 ¼ 1

Fig. 6 3D figures of the

interaction among the one

soliton and triple-pole

solitons: a Component u; b
Component v via

Solutions (12) with k1 ¼
2
3
; k2 ¼ �1; b ¼ 2

3
and

l11 ¼ l12 ¼ l21 ¼ l22 ¼ 1
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solitons u
½1�
2;� are located outside of the straight line L1,

as shown in Fig. 2. The above conclusions and

phenomena on the double-pole solitons have been

similar to those analyses in Refs. [38, 40], i.e.,

System (1) and the generalized nonlinear Schrödinger

equations have shown the same multi-pole soliton

characteristics.

For Eq. (1), the triple-pole solitons have been

shown in Fig. 3; the quadruple-pole solitons have been

illustrated in Fig. 4; the interaction among the one

soliton and double-pole solitons has been presented in

Fig. 5; the interaction among the one soliton and

triple-pole solitons has bee shown in Fig. 6; the

interaction among the two double-pole solitons has

been presented in Fig. 7. We have summarized a rule

about the Nth-order multi-pole solitons: when N is

even, the Nth-order multi-pole solitons consists of N
2

bright solitons and N
2
dark solitons; when N is odd, the

Nth-order multi-pole solitons consists of N�1
2

bright

solitons and Nþ1
2

dark solitons. Compared with the

normal solitons in Ref. [33], the above multi-pole

solitons have only shown changes in propagation

velocities while other physical properties such as the

wave heights and amplitudes remain unchanged.

In the future, we expect to extend the above

asymptotic analysis method to the triple-pole or even

N-fold-pole soliton solutions and multi-pole breather

solutions, although those discussions must be more

complex. It is worth noting that the simultaneous

emergence among the multi-pole phenomena and

bound states also have potential research spaces.
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