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Abstract In this work, we investigate rogue wave
(RW) clusters of different shapes, composed of
Kuznetsov–Ma solitons (KMSs) from the nonlinear
Schrödinger equation (NLSE) with Kerr nonlinearity.
We present three classes of exact higher-order solutions
on uniform background that are calculated using the
Darboux transformation (DT) scheme with precisely
chosen parameters. The first solution class is charac-
terized by strong intensity narrow peaks that are peri-
odic along the evolution x-axis, when the eigenvalues
in DT scheme generate KMSs with commensurate fre-
quencies. The second solution class exhibits a form of
elliptical rogue wave clusters; it is derived from the
first solution class when the first m evolution shifts
in the nth-order DT scheme are nonzero and equal.
We show that the high-intensity peaks built on KMSs
of order n − 2m periodically appear along the x-axis.
This structure, considered as the central rogue wave,
is enclosed by m ellipses consisting of a certain num-
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ber of the first-order KMSs determined by the ellipse
index and the solution order. The third class of KMS
clusters is obtained when purely imaginary DT eigen-
values tend to some preset offset value higher than one,
while keeping the x-shifts unchanged.We show that the
central rogue wave at (0, 0) always retains its n − 2m
order. The n tails composed of the first-order KMSs are
formed above and below the centralmaximum.When n
is even, more complicated patterns are generated, with
m and m − 1 loops above and below the central RW,
respectively. Finally, we compute an additional solu-
tion class on a wavy background, defined by the Jacobi
elliptic dnoidal function, which displays specific inten-
sity patterns that are consistent with the background
wavy perturbation. This work demonstrates an incred-
ible power of the DT scheme in creating new solutions
of the NLSE and a tremendous richness in form and
function of those solutions.

Keywords Nonlinear Schrödinger equation · Rogue
waves · Kuznetsov–Ma rogue wave clusters · Darboux
transformation

1 Introduction

In this paper, we present and analyze new solutions of
the well-known partial differential equation, the non-
linear Schrödinger equation (NLSE) with Kerr nonlin-
earity. This equation is generally used for describing
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various nonlinear phenomena in nature [1–3]:

iψx + 1

2
ψt t + |ψ |2ψ = 0, (1.1)

where ψ ≡ ψ (x, t) is the slowly varying envelope of
the physical field under study and the nature of inde-
pendent variables x and t depends on the nature of the
problem considered. Here, we adopt the standard nota-
tion used in optical fibers, where t denotes the trans-
verse spatial variable and x is the retarded time in the
moving frame of reference. Another “standard” nota-
tion is used in the propagation problems of laser beams,
in which x is the propagation distance, usually denoted
by z, and t is the transverse spatial variable, denoted
by x . We confine our attention to the localized optical
waves generated on a constant intensity background
that can be considered as high-order rogue waves.

Under certain approximations, NLSE can be used
to describe the propagation of optical pulses in nonlin-
ear dispersive media, i.e., in optical fibers and waveg-
uides [4–7]. The usefulness of NLSE in photonics
stems from the fact that it is formally equivalent to
the paraxial wave equation in nonlinear optics. It is
also used in plasma physics for describing the coupled
dynamics of the electric field amplitude and the low-
frequency density fluctuations of ions [8]. This equa-
tion also describes the interaction of the intra-molecular
vibrations forming Davydov solitons with the acoustic
disturbances in a molecular chain [8]. NLSE governs
nonlinear optical modes in dilute Bose–Einstein con-
densates (BECs) [9], where it is known as the Gross–
Pitaevskii equation. It also determines the evolution of
an envelope that modulates long-crested surface grav-
ity waves in deep water [10–12].

In recent times, an extended family of nonlinear
Schrödinger equations (ENLSEs) has been proposed
and investigated [13,14]. These equations consistently
include any number of higher-order dispersion terms
with the corresponding additional nonlinear terms that
are conveniently grouped together in certain named
equations of the hierarchy of NLSEs. The effort to
derive and solve higher-order equations in the NLSE
hierarchy comes from the need to understand and
describe the propagation of ultrashort pulses through
optical fibers [15,16].Most attention so farwas focused
on the Hirota equation [17,18] (containing the third-
order dispersion) and quintic equation (with disper-
sions up to the fifth-order) [19–22]. In general, the

entire family of extended NLSE offers a subtlety of
possible forms for an additional shaping of basic NLSE
solutions.

Nevertheless, the basic NLSE mentioned above
remains a subject of broad interest, despite its relatively
simple form (having only a cubic nonlinear term). Pri-
marily, this is because of its complete integrability in
one dimension. It contains infinitely many solutions,
depending on the integration procedure and the form
of solutions. The integrability feature has initiated a
number of experimental and theoretical studies inmany
branches of physics, where the cubic NLSE can model
the dynamics of various systems. In addition, the same
mathematical procedure used for deriving the cubic
NLSE solutions can be easily generalized and applied
to the entire hierarchy of NLSEs. This implies that the
features of the basicNLSE solutions are similar to those
of the more complicated ENLSE family. Thus, by find-
ing and analyzing the simple NLSE solutions, one can
predict and describe the properties of similar solution
classes of the extended family.

There are many methods for solving various partial
differential equations (PDEs) with applications in non-
linear dynamics [23–26] and even in medicine [27,28].
The most basic is the inverse scattering method (ISM)
[29], originating from the seminal work by Gardner,
Greene,Kruskal, andMiura, in 1967 [30].An extension
of ISM, directly applicable toNLSE,was introduced by
Zakharov and Shabat in 1972 [31] and later (1974) gen-
eralized by Ablowitz, Kaup, Newell, and Segur [32] to
include other nonlinear PDEs into what is today known
as the AKNS method. Other useful methods include
the Bäcklund and Darboux transformations, based on
the treatment of the Lax pair matrix operators [29].
Recently, the propagation of internal solitary waves
in the ocean has been described by the solitary solu-
tions of another PDE, called the generalized nonlinear
Schrödinger equation, containing a third-order disper-
sion, in addition to the usual second-order [33].

Here, we are focused on theDarboux transformation
(DT) technique [34], which is widely used to derive
exact analytical solutions of both NLSE and ENLSEs
[18,34,35]. Briefly, DT is based on the Lax pair eigen-
value problem and the resulting recursive relations,
with the aim to calculate higher-order solutions starting
from the trivial zeroth-order seed function that satisfies
Eq. (1.1) (for more details, see Appendix). Different
solution classes can be derived by selecting the DT
order n, the zeroth seed, and a set of n complex eigen-
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values, with arbitrary real shifts along the x- and t-axes.
The major advantage of DT scheme is the straightfor-
ward algorithm for calculating infinitely many NLSE
wave functions with incredible richness of solutions’
patterns. The minor drawback of DT technique is that
only specific analytical solutions can be computed that
do not include the general NLSE evolution from arbi-
trary initial conditions. Also, by increasing the DT
order n, the DT procedure becomes computationally
expensive.

We also mention that the DT technique has sim-
ilarity to other techniques of PDE integration, such
as He’s semi-inverse variational principle (HVP) [36].
In the HVP technique, the given PDE is transformed
into ordinary differential equations (similar to the Lax
pair in DT). Also, an ansatz is assumed, in parallel
to the DT seed solution. The difference between HVP
and DT schemes is the procedure for generating the
final solution: In HVP, it is calculated using the varia-
tional formula and finding its stationary point, while in
DT the algebraic recursive relations are employed (see
Appendix).

Thebasic solutions of the cubicNLSE (andENLSEs)
that can be calculated using DT are the Akhmediev
breathers (ABs) [37,38] (localized in x , but periodic
along t-axis) and the Kuznetsov–Ma solitons (KMSs)
[31,39–41] (localized in t , but periodic along x-axis).
The Peregrine soliton (PS) (localized along both axes)
can be considered as the limiting case of both ABs and
KMSs when their corresponding periods go to infinity
[42,43]. All these basic solutions ride on a background
and can be considered as the prototype first-order RWs.

These solutionsmay also be considered as thefinger-
prints of NLSE—it is experimentally shown that such
structures spontaneously appear during the NLSE evo-
lution, even from thewhite noise [44]. Furthermore, the
first-order ABs, PS, and KMSs are the building blocks
for generating higher-order solutions of the NLSE.
Such solutions, characterized by a narrow peak of high
intensity, are considered as the true rogue waves. The
simplest example of a RW is the PS [45]. The research
onRWs is currently a hot topic, since these giant nonlin-
ear waves can appear in nonlinear optics [46,47], deep
ocean [12,48], quantum optics [49,50], and elsewhere.
A recent paper proposed a new way for RW excitation
[51], via the electromagnetically induced transparency
(EIT) [52–55]. Significant effort has been expended to
understand the nature and generating mechanisms of
optical rogue waves [56,57]. The root of their appear-

ance is related to the modulation instability [56,58].
A very recent paper succinctly summarizes the main
characteristics of the RWs: They are nonlinear, deter-
ministic, and physical in nature [59].

Our main objective in this paper is to present new
analytical RW solutions of the cubic NLSE arising on
the uniform background and indicate new intensity pat-
terns in the nonlinear systems governed by the NLSE.
To achieve this goal, we are using three different non-
linear superpositions of KMSs. The first class has the
form of a periodic array of RW peaks along the evolu-
tion x-axis. It is calculated by applying the commen-
surate periods of KMSs in the DT scheme of order n.
To calculate the second solution class, we introduce m
nonzero DT shifts (m < n) along x-axis, to achieve the
transformation of vertical (along evolution axis) RWs
into multi-elliptic RW clusters composed of KMSs
(KM MERWCs). The third solution class is obtained
by breaking the proportionality relation among the DT
constituents’ frequencies, while retaining the evolution
shifts. Imaginary parts of the eigenvalues are chosen
to be slightly higher than 1 (i.e., to lie in close vicin-
ity of 1), which could be approximately regarded as
a degenerate DT problem. In this manner, we came
up to cluster solutions characterized by a single high-
order rogue wave in the center of the xt-plane, with
n tails emanating before and after it, composed of the
first-order (KMS1) solitons. We show that the parity of
n determines whether the wave function contains the
loops of the first-order KMSs around the (0, 0) point.

The results presented here represent an extension
and closure of our recent work [60], in which ellip-
tic rogue wave clusters were obtained from the ABs
of NLSE (AB MERWCs). We thus add new and com-
plementary solutions to the previously described rogue
wave triplets [61], triangular cascades [62–64], and cir-
cular clusters [35,65–67], but now based on the KMSs.
The classification of multi-RW structures into different
families was presented in a series of papers by Akhme-
diev’s group [67–69]. We believe that the contribution
of the three new KMS clusters, which were not pre-
sented before, represents a necessary symmetric clo-
sure on the possible higher-order RW clusters that can
be obtained by the DT scheme.We also show that these
solutions can be computed numerically on the elliptic
dn background. Finally, the same sets of DT eigenval-
ues and shifts can be employed to all equations in the
extended NLSE hierarchy, to generalize KMS rogue
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wave clusters of more complex systems (not presented
here).

The paper is organized as follows. In Sect. 2, we
present the periodic array of RW peaks composed of
higher-order KMSs. In Sect. 3, we display NLSE solu-
tions in the formofmulti-elliptic roguewave clusters on
a uniform background, built fromKMSs. In Sect. 4, we
analyze the third class of KMS clusters obtained when
all imaginary parts of DT eigenvalues are higher than
but close to 1. In Sect. 5, we exhibit the NLSE KMS
cluster solutions on a nonuniform background, formed
by the Jacobi elliptic dnoidal function. In Sect. 6, we
summarize our results. A short introduction into the
general DT scheme for NLSE is provided in Appendix.

2 Periodic arrays of RWs composed by KMSs

The expression that describes all first-order solutions,
the AB, PS, and KMS on uniform background [37,38],
is given by:

ψ(t, x) =
[
1+ 2(1−2a) cosh λx+iλ sinh λx√

2a cosωt − cosh λx

]
eix .

(2.1)

Here, parameter a determines the type of solution: If
a < 0.5, one gets an AB that is periodic along the t-
axis, with the period L = π√

1−2a
. For a = 0.5, one

obtains a single peak at the coordinate center, known
as the Peregrine soliton. In this paper, we consider in
detail the case a > 0.5, when Eq. (2.1) describes the
Kuznetsov–Ma solitons. To analyze it further, we write
the following expressions for the growth factor λ and
the transverse frequency ω, present in (2.1):

λ = √
8a (1 − 2a), (2.2)

ω = 2
√
1 − 2a. (2.3)

Note that the parameter a is closely related to the imag-
inary part ν of λDT :

ν = √
2a. (2.4)

Therefore, we ignore the real parts of any DT eigen-
value λDT (assuming them equal to zero throughout
this paper) and concentrate only on the imaginary parts.
When a > 0.5, ν > 1 and both λ and ω become imag-
inary numbers, so cosh λx and sinh λx in (2.1) turn
into cos and sin functions, while cosωt transforms into
hyperbolic cosine. This means that KMSs are periodic

along the evolution x-axis and localized along the trans-
verse t-axis. The period Tx and frequency ωx along
x-axis are, respectively:

Tx = π

ν
√

ν2 − 1
(2.5)

and

ωx = 2π

Tx
= 2ν

√
ν2 − 1. (2.6)

Our idea is to build the periodic rogue waves from the
higher-order KMSs, using the DT scheme. The DT
equations for conducting such a task for NLSE were
presented in detail elsewhere [57], and a short descrip-
tion is provided in Appendix. The DT order n is also
the order of RW peaks along the x-axis. In this scheme,
we have n first-order KMSs (each defined by an imag-
inary eigenvalue λ j = iν j (ν ≡ ν1), with real vertical
shifts x j , and horizontal shifts t j preset to zero) that
are building blocks for a final solution. To produce a
vertical array of high-intensity peaks, with a complex
pattern in their vicinity, we employ the idea of com-
mensurate KMS frequencies:

ωx j = jωx , (2.7)

where ωx ≡ ωx1 is the frequency of the first KMS in
the DT scheme. This insures that all DT constituents
will eventually collide at the same points along x-axis,
thus producing periodic and strong intensity maxima.
By combining last equations, one can easily obtain the
DT eigenvalues needed to achieve the periodicity con-
dition:

ν j =

√√√√1 +
√
1 + 4 j2ν2

(
ν2 − 1

)
2

. (2.8)

We present analytical results when ν = 1.1 for the
second-order (n = 2) and third-order (n = 3) com-
mensurate KMSs in Fig. 1a and b, respectively. Other
eigenvalues in the DT scheme can be calculated using
Eq. (2.8). One can clearly see the vertical periodic array
of RWs having equal periods Tx = 6.24 along x-axis
in both figures, which is in agreement with Eq. (2.5).
The intensity Imax of each peak in the vertical array is
even higher than in the case of higher-order Akhme-
diev breathers (ν < 1). This can be simply explained
by means of the peak-height formula (PHF) [70,71]:

|ψ (0, 0)|2 =
⎛
⎝1 +

n∑
j=1

2ν j

⎞
⎠

2

. (2.9)
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By this equation, one can easily calculate themaximum
intensity of higher-order ABs or KMSs, under the con-
dition that all DT eigenvalues nonlinearly collide at the
same point, say (0, 0). When one builds higher-order
ABs, all imaginary parts are less than one, while for the
KMSs they are higher than 1. This is the reason why
KMSs are characterized by higher peaks. For the KMS
RW of order n = 2, we obtained Imax = 33.06, and
for n = 3 the value is Imax = 74.7. This is in agree-
ment with Eq. (2.8) and PHF for the starting value of
ν = 1.1.

We next performed numerical integration of these
solutions, to check the influence of modulation insta-
bility (MI) on the dynamical generation of higher-order
KMSs. The results are presented in Fig. 1c and d for
the second-order and third-order KMSs, respectively.
In both figures, one can see that higher Fourier modes
arise quickly after the iteration onset, due to MI. This
leads to the disintegration of the periodic array of RWs,
in favor of the irregular growth of lower intensity peaks
elsewhere in the (x, t) plane—in contrast to the desired
dynamic generation of higher-order ABs. Namely, the
Fourier transform (FT) in our split-step beam propaga-
tion method assumes periodicity along the transverse
axis, which is characteristic of ABs. This enables the
matching of constituent AB periods to the box size and
neat generation of RWs along the t-axis, as analyzed in
our previous papers [18,21,70]. Since KMSs are peri-
odic along the evolution axis, it is impossible to match
the periods of KMSs to the horizontal box, which is the
reason whyMI destroys RWs soon after the integration
starts.

3 Multi-elliptic rogue wave clusters of
Kuznetsov–Ma solitons

To generate KM MERWCs, we follow an analogous
procedure to the one described in our previous paper
for Akhmediev breathers [60]. The first condition is
to keep commensurate frequencies of constituent first-
order KMSs, as in the previous section (Eq.2.7). The
second requirement is to adjust the first m shifts along
the evolution axis (x j ) to be nonzero and equal: x j �= 0
for j ≤ m, and x j = 0whenm < j ≤ n. All transverse
shifts are t j = 0. Here, we use the same expression for
calculating x-shifts from the AB MERWCs paper [60]
(to keep close analogy with the Akhmediev breather

clusters):

x j =
∞∑
l=1

X jlω
2(l−1) = X j1 + X j2ω

2

+X j3ω
4 + X j4ω

6 + · · · , (3.1)

in which ω denotes a number close to zero. Note that ω
is a main DT frequency in the AB MERWCs case, but
that is not the case for the KM MERWCs. The reader
should not confuse ω → 0, which we retain for x j
calculation, with ωx of the KMSs (Eq. (2.6)).

In Fig. 2, we present KM MERWCs on uniform
background, having one ellipse around the central peak.
The frequency ω in the expansion (Eq. (3.1)) is set to
10−1, while X j4 = 106. This way, one gets evolution
shift x j in the order of 1. The imaginary part of the first
eigenvalue is chosen as ν = 1.1, while other ν j values
are calculated using Eq. (2.8). We set m = 1 and vary
the value of n, to change the order of the central RW.
For n = 4, one gets seven KMSs of order one (KMS1),
situated on an ellipse around the second-order KMS
(Fig. 2a). When n = 5, one obtains a third-order KMS,
surrounded by 9 KMS1 distributed along a single ring
(Fig. 2b).

The second example of KM MERWCs is shown in
Fig. 3. Here,m = 2 so the two rings are formed around
each central peak. Since m is increased compared to
Fig. 2, we need to increase the solution order n. For
n = 6, one obtains the second-order KMS at the center,
with 11 and 7 KMS1 on the outer and inner ellipses,
respectively (Fig. 3a). When n = 7, an array of the
third-order KMSs is formed, with 13 and 9 KMS1 on
two ellipses around each central RW peak (Fig. 3b). As
for the m = 1 case, we left ω = 10−1 and X j4 = 106

unchanged. In both Figs. 2 and 3, one can easily observe
the periodicity of the cluster along x-axis. The period
Tx is calculated from Eq. (2.5) and is not perturbed
by evolution shifts, meaning that the numerical value
remains Tx = 6.24 in Fig. 2, since we did not change
the ν value from Fig. 1. In Fig. 3, we set ν = 1.02, to
increase the Tx period according to equation (2.5). This
was done to zoom in the three clusters in the selected
numerical box, so the reader can clearly see the two
rings around each RW at the center.

Our final conjecture is that the RW of n − 2m order
(denoted hereafter as KMSn−2m or KMS (n − 2m) or
RWn−2m) is obtained at (0, 0), with m ellipses around
the peak for n ≥ 2m + 2. The outer ellipse contains
2n − 1 KMS1, while each following ring toward the
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Fig. 1 3D color plots of higher-order Kuznetsov–Ma solitons
with commensurate frequency components on a uniform back-
ground. a The second-order DT solution with eigenvalues ν =
ν1 = 1.1 and ν2, calculated using Eq. (2.8). b The third-order
DT solution with eigenvalues ν = ν1 = 1.1, ν2, and ν3, calcu-
lated using Eq. (2.8). The modulation instability of higher-order
KMSs is tested for (c) the second-order solution from figure (a)

and for (d) the third-order solution from figure (b), by executing
the second-order beam propagation method from the analyti-
cal DT wave function at some fixed time x0 between the two
peaks. The modulation instability appearing soon after the iter-
ation onset destroys the intensity distribution and periodicity of
higher-order KMS peaks

Fig. 2 3D color plots of KM MERWCs on the uniform back-
ground, having one ellipse (m = 1) around each n − 2m order
roguewave. The clusters are formed periodically along the evolu-
tion x-axis. Shifts of the constituent DT components are obtained

for X j4 = 106. The orders of Darboux transformation and the
high-intensity encircled peaks are, respectively: a n = 4 with
the second-order rogue wave, and b n = 5 with the third-order
rogue wave
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Fig. 3 3D color plots of KM MERWCs on the uniform back-
ground, having two ellipses (m = 2) around each n − 2m order
roguewave. The clusters are formed periodically along the evolu-
tion x-axis. Shifts of the constituent DT components are obtained

for X j4 = 106. The orders of Darboux transformation and the
high-intensity encircled peaks are, respectively: a n = 6 with
the second-order rogue wave, and b n = 7 with the third-order
rogue wave

center has four KMS1 less. If the rings are indexed
from 1 to m, going from outer to the inner one, the
number of KMS1 on each ring is ci = 2n − 4i + 3.
This is the same conclusion as for the AB MERWCs
[60,67,68]. The two differences are the lower intensity
of AB MERWCs as compared to the KM MERWC
case (due to PHF) and the direction of periodicity (AB
MERWC is periodic along the t−axis).

The explanationofKMScluster’s appearance is sim-
ilar to theAB case. If all x j shifts are zero, the nonlinear
superposition of all n DT components will take place
at equidistant points along the x-axis (including coor-
dinate origin), producing the periodic array of RWs, as
shown in Fig. 1a and b. However, if one sets x-shifts
to be nonzero for the first m ≥ 1 DT components,
the intensity distribution will decrease and split over
the xt-plane. The understanding of why KMMERWC
appears in such a way could be theoretically possible if
one applies the mathematical analysis of exact analyt-
ical DT solutions. It is well known that deriving very
complex DT expression for big n is extremely hard
work with relatively little theoretical insight, so it was
not performed anywhere before. Thus, we will not con-
duct that analysis here either.

4 Third solution class of nearly degenerate
eigenvalues

Here, we present the third class of KMS cluster solu-
tions that do not display a multi-elliptic form. This
class is characterized by long-tail structure distribu-
tions, with loops of KMS1 in certain cases. We were
motivated to explore new KMS patterns in order to
compare them with the AB solutions obtained under
similar computational conditions. Namely, the first
requirement for generating AB MERWCs was to pro-
vide the proportionality condition for higher-order DT
components (ω j = jω), which lead to the simple equa-
tion for the imaginary part of j th eigenvalue ν j =√
1 − 1

4 j
2ω2, with ω → 0 [60]. For the KMS case,

all ν j must be greater than one, so we slightly modified
the last equation to:

ν j = ν0 +
√
1 − 1

4
j2ω2, (4.1)

where ν0 denotes the offset of KMS eigenvalues. Con-
sequently, all ν j are close to the 1+ν0 value (in analogy
to the AB case, when ν j → 1). The difference, how-
ever, is significant: In the AB case, one retains the com-
mensurate frequencies andABMERWCs are obtained,
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while for the KMS a new ν j set destroys the propor-
tionality of frequencies. In this section, we show the
appearance of new KMS clusters under the condition
of Eq. (4.1).

The algorithm for calculating long-tail KMS clus-
ters is as follows: First, we set an offset ν0 and some
small value of ω. We choose values for n and m and
calculate all x-shifts using Eq. (3.1). Next, we com-
pute all eigenvalues in the DT scheme from Eq. (4.1)
(1 ≤ j ≤ n). Finally, we apply the DT procedure, to
numerically calculate wave functionψ (x, t) at all grid
points with an arbitrary precision.

In Fig. 4, we show the intensity distribution for n =
4, ν0 = 0.1, and ω = 0.05. When m = 0, a fourth-
order peak is obtained at the origin (0, 0), with a peak
intensity of 95.67 (in agreement with the PHF). The
intensity distribution is shown in Fig. 4a.One can easily
discern the central RW and four tails containing the
KMS1 solutions spreading below and above the peak.
In Fig. 4b, we show the intensity distribution for m =
1. In this case, the second-order KMS peak is formed
at the origin, with 28.97 maximal intensity. The one
nonzero shift clearly moved apart constituent KMSs,
producing a lower-order DT solution at the (0, 0) point.
Four KMS1 tails are also formed on both sides of the
central RW, but are separated in groups of two in the
lower half plane, for a given box. Further on, above the
KMS2, a single loop consisting of KMS1 is formed,
stretching out from x = 0 to x ≈ 43. Note that the
range of pseudo-color scales on both figures are set
to (0, 10) interval, to emphasize the central peak and
KMS1 along the tails. We also display the insets, to
show the central RW and its vicinity in more detail.

We next show the n = 5 case, for m = 0 (Fig. 5a),
m = 1 (Fig. 5b), and m = 2 (Fig. 5c). The values of
ν0 = 0.1 and ω = 0.05 are left unchanged. When
m = 0, RW5 is formed at the origin (peak inten-
sity 143.17, in agreement with the PHF). Since n is
changed, five symmetric KMS1 tails are observed on
both sides of the central peak. For m = 1, one can see
the RW3 at the (0, 0) point (max. intensity 57.26, see
the inset) and also five tails, but the outer two are not
participating in the building of the central structure. If
we setm = 2, no central RW emerges. Instead, a group
of six KMS1 appears at the origin, while five tails are
still preserved. The first clue of the solution structure
can now be deduced from Figs. 4 and 5. The central
peak at the origin, composed of the constituent KMS1
solitons, has the n − 2m order, as expected for the KM

MERWCs. Next, the number of tails above and below
the high-intensity peak is equal to the overall DT solu-
tion order n.

In Fig. 6, we present three long-tail KMS clusters for
the n = 6 case, with ν0 = 0.1 and ω = 0.05. The RW6
is formed at the origin,with the peak intensity of 199.83
(in agreement with the PHF), when m = 0 (Fig. 6a).
Below and above the sharpRWpeak (KMSof the sixth-
order: KMS6), six symmetric tails can be observed. In
Fig. 6b, the intensity distribution is presented for m =
1. One can observe the RW4 at (0, 0) (max. intensity
94.95, see the inset) and six tails emerging from the
origin, but the outer two are not contributing to the
central RW4 structure. In the upper half plane, the tails
are formed in three groups of two. Above the RW, one
loop of KMS1 appears stretching out from x = 0 to
x ≈ 69. This solution has a similar form to the n = 4,
m = 1 case shown in Fig. 4b. However, the loop is not
present when n = 5. One may conclude that the loop is
formed only for even values of n. This is supported by
the next case of n = 6 and m = 2, when the second-
order KMS is generated at the center, with two KMS1
loops above, one KMS1 loop below the RW, and six
tails (Fig. 6c). The tails are divided into three groups of
two, but only in the lower half of the plane.

Finally, we analyze the third class of solutions for
even higher DT order: n = 7 (ν0 = 0.1 and ω = 0.05)
and n = 8 (ν0 = 0.07 and ω = 0.05). When n = 7 and
m = 2, the third-order KMS at (0, 0), along with seven
tails, is formed (Fig. 7a). No loop appears in this case.
For n = 7 and m = 3, there is no RW at the center,
only an AB-like cluster, since n − 2m = 1 (Fig. 7b).
Again, seven tails are seen in both figures, but without
KMS1 loops. The appearance of the cluster is different
when n = 8. For m = 2, the KMS4 is found at the
origin (n − 2m = 4), with eight tails on both sides
of the peak. In the upper plane, the tails are formed
in four groups of two. Two KMS1 loops are obtained
above the peak and one loop is formed below the peak
(Fig. 7c). When n = 8 and m = 3, one sees KMS2 at
the xt-plane center and eight tails. Three/two KMS1
loops are generated above/below the RW (Fig. 7d).

From Figs. 4, 5, 6, and 7, we conclude the follow-
ing: Kuznetsov–Ma solitons of order n − 2m appear
at the origin (0, 0) when the overall solution order is
n and when the first m nonzero and equal shifts in
the DT scheme are used. Above and below the central
RW, n tails are formed, each consisting of KMS1 soli-
tons. For even values of n, the m (m − 1) KMS1 loops
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Fig. 4 2D color plots of the long-tail KMS clusters on the uni-
form background, having one rogue wave of the n − 2m order
formed at (0, 0) of the (x, t) plane. The starting offset for cluster
formation is ν0 = 0.1. DT shifts are obtained for X j4 = 106 and
ω = 0.05. The DT order is n = 4. The number of nonzero shifts

m and the order of high-intensity central peaks are, respectively:
a m = 0 with the fourth-order rogue wave and b m = 1 with the
second-order rogue wave. The insets in both images show the
enlarged central RW and its vicinity

emerge above (below) the RW. We emphasize that if
one changes the sign of x-shifts, the entire cluster sim-
ply flips about the x = 0 line (results not shown).

5 Long-tail KMS clusters on Jacobi elliptic
dnoidal background

In this section, we show the long-tail KMS clusters
computed on awavy background, defined by the Jacobi
elliptic dnoidal function dn. For this calculation, we use
the modified DT scheme for the NLSE [72]. We start
from the seed functionψdn(x, t) = dn(t, g)ei(1−g2/2)x ,
where the elliptic modulus is denoted by g (0 < g < 1)
and the ellipticmodulus squared ismdn = g2.Although
the choice of shifts and eigenvalues is the same as
in the previous section, the procedure for calculating
wave function is different. Namely, the exact analyt-
ical values of ψ can be obtained only when t = 0
[72]. We therefore use the fourth-order Runge–Kutta
algorithm to calculate ψ(x, t �= 0) values in the grid
along the t-line for the fixed x from the initial values
of ψ(x, t = 0).

In Fig. 8, we show the intensity distribution of the
long-tail KMS cluster built on the dn background with

mdn = 0.42. The order of DT solution is n = 6, and the
number of nonzero shifts is m = 2. The computational
parameters are: ν0 = 0.1, ω = 0.05, and X j4 = 106.
We report the formation of the second-order RW at the
origin (clearly observable in the inset). Since n is even,
we obtained two KMS1 loops above and one KMS1
loop below the central peak. The peak maximum is
28.61, but we set the maximum of pseudo-color scale
to 10, to emphasize the fine vertical stripes represent-
ing the crests and troughs of the dnoidal background.
Although the long-tail cluster is clearly visible, the tops
of the two upper loops are blurred by the background
wave.

6 Conclusion

In this paper, we presented the three classes of NLSE
solutions built from Kuznetsov–Ma solitons in the DT
scheme of order n. The first class is obtained for the
commensurate frequencies of DT components, with all
evolution shifts set to zero. These solutions have the
form of vertically periodic arrays of RWs, composed
of the nth-order KMSs. We discussed the difficulties
in generating these solutions dynamically, since the
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Fig. 5 2D color plots of the long-tail KMS clusters on the uni-
form background. The rogue wave of n − 2m order is condi-
tionally formed at (0, 0) of the (x, t) plane. The starting offset
for cluster formation is ν0 = 0.1. Shifts in the DT scheme are
calculated for X j4 = 106 and ω = 0.05. The DT order is n = 5

and the number of nonzero shifts is m. a The fifth-order rogue
wave for m = 0. b The third-order rogue wave for m = 1. c
For m = 2, the central structure resembles a single Akhmediev
breather, since n − 2m = 1. The insets in all images show the
enlarged regions centered around (0, 0)

Fig. 6 2D color plots of the long-tail KMS clusters on the uni-
form background. The rogue wave of n− 2m order is condition-
ally formed at (0, 0) of the (x, t) plane. The starting offset for
cluster formation is ν0 = 0.1. Shifts in the DT scheme are calcu-
lated for X j4 = 106 and ω = 0.05. The DT order is n = 6, and

the number of nonzero shifts is m. a The sixth-order rogue wave
is formed for m = 0. b The fourth-order rogue wave is formed
for m = 1. c The second-order rogue wave is formed for m = 2.
The insets on three images show the enlarged central RW and its
vicinity

higher Fourier modes arise quickly after the simulation
onset, due to the modulation instability, and lead to the
disintegration of the periodic array of rogue waves.

Next, we showed the multi-elliptic KMS clusters,
also periodic along the x-axis, computedusing the same
set of eigenvalues, but with the first m evolution shifts
set to be equal and nonzero. The KMS of order n−2m
(considered as the central rogue wave) is surrounded
by m ellipses composed of KMS1 peaks. The number
of KMS1 peaks on the outermost ellipse is 2n − 1. On
each following ring, we counted four KMS1 peaks less.

The third solution class are the long-tail KMS clus-
ters. They are computed for a set of n nearly degenerate
eigenvalues that are all close to some predefined value
greater than one. The firstm shifts were equal and zero,
as for the second solution class. The computation was
conducted to emphasize the analogy to multi-elliptic
clusters ofAkhmediev breathers. The central part of the
KMS cluster consists of the n − 2m-order Kuznetsov–
Ma soliton at the origin. Above and below this high-
intensity narrow peak, the n tails composed of KMS1s
are observed. Form = 0, the tails are perfectly symmet-
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Fig. 7 2D color plots of the long-tail KMS clusters on the uni-
form background, for higher values of DT order n. The high-
intensity central rogue wave is formed when n − 2m > 1. DT
shifts are obtained for X j4 = 106 and ω = 0.05. Values of n,
nonzero shifts m, and the starting offset ν0 are, respectively: a

n = 7, m = 2, ν0 = 0.1 (third-order RW at the center), b n = 7,
m = 3, ν0 = 0.1 (single AB at the center), c n = 8, m = 2,
ν0 = 0.07 (fourth-order RW at the center), and d n = 8, m = 3,
ν0 = 0.07 (second-order RW at the center). The insets in all
images show the enlarged regions centered around (0, 0)

ric. If m ≥ 1, the symmetry is partially broken down,
especially for even values of n. Namely, in this case
(n = 4, n = 6, n = 8) one observes the loops con-
sisting of the first-order KMSs around the peak. The
numbers of loops above and below the RW are m and
m−1, respectively. Depending on the particular values
of even n andm, the tails can be grouped in n/2 groups

by two, in the upper or lower half planes. Finally, these
specific features are not observed for the odd n cases
(n = 5 and n = 7).

We numerically built the long-tail KMS cluster on
a periodic background, using the modified Darboux
transformation scheme. The intensity of higher-order
Kuznetsov–Ma solitons at the plane origin significantly
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Fig. 8 2D color plot of the long-tail KMS cluster on the
Jacobi elliptic dnoidal background,with ellipticmodulus squared
mdn = 0.42. The starting offset is ν0 = 0.1, while DT shifts are
obtained for X j4 = 106 and ω = 0.05. The DT order value of
n = 6 and the number of nonzero shiftsm = 2 lead to generation
of the second-order RW at (x, t) = (0, 0). The inset shows the
enlarged central RW and its vicinity

surpasses the amplitude of ellipticABwaves.However,
we are still able to spot the weak background oscilla-
tions, on which the KMS cluster is constructed.

The results presented in this paper represent an
extension and conclusion of our previous work on the
multi-elliptic RW clusters composed of Akhmediev
breathers. A perfect agreement with all facets of the
complex DT analysis is demonstrated, often after com-
plicated calculations. Nevertheless, our opinion is that
even such complex investigation of various wave clus-
ters can be of further research interest—after many
years of NLSE research, new and interesting solutions
emerge, due to the rich variety of parameters and pos-
sibilities in the Darboux transformation scheme. The
research potential is increased even more if one con-
siders the cluster solutions for the infinite hierarchy of
extended nonlinear Schrödinger equations. The mate-
rial presented in this paper can be a starting point to
understand in more detail the rogue wave features in
more complex physical systems that are governed by
the extended nonlinear Schrödinger equations (Hirota,
quintic, etc.)
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Appendix: The general Darboux transformation
scheme

The NLSE solution of order N is a nonlinear superpo-
sition of N independent components, where each one
is determined by the complex eigenvalue λ j (1 ≤ j ≤
N ). The corresponding wave function is:

ψn = ψn−1 + 2
(
λ∗
n − λn

)
sn,1r∗

n,1∣∣rn,1
∣∣2 + ∣∣sn,1

∣∣2 . (A.1)

The functions rn,1 and sn,1 are given by the recursive
relations involving rn,p(x, t) and sn,p(x, t):

rn,p = [(λ∗
n−1 − λn−1

)
s∗
n−1,1rn−1,1sn−1,p+1

+ (
λp+n−1 − λn−1

) ∣∣rn−1,1
∣∣2rn−1,p+1

+ (
λp+n−1 − λ∗

n−1

) ∣∣sn−1,1
∣∣2rn−1,p+1]

/
(∣∣rn−1,1

∣∣2 + ∣∣sn−1,1
∣∣2) ,

sn,p = [(λ∗
n−1 − λn−1

)
sn−1,1r

∗
n−1,1rn−1,p+1 (A.2)
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+ (
λp+n−1 − λn−1

) ∣∣sn−1,1
∣∣2sn−1,p+1

+ (
λp+n−1 − λ∗

n−1

) ∣∣rn−1,1
∣∣2sn−1,p+1]

/
(∣∣rn−1,1

∣∣2 + ∣∣sn−1,1
∣∣2) .

Thus, all pairs rn,p and sn,p can be determined start-
ing from r1, j and s1, j . The functions r1, j (x, t) and

s1, j (x, t), forming the Lax pair R =
(
r
s

)
≡

(
r1, j
s1, j

)
,

are determined by the eigenvalue λ ≡ λ j and real shifts
of the solution

(
x j , t j

)
.

The Lax pair satisfies a system of linear differential
equations

∂R

∂t
= U · R,

∂R

∂x
= V · R, (A.3)

where matrices U and V for the NLSE are defined as
(ψ ≡ ψ0):

U = i

[
λ ψ(x, t)∗

ψ(x, t) −λ

]
,

V =
2∑

k=0

λk · i
[
Ak B∗

k
Bk −Ak

]
. (A.4)

The coefficients Ak and Bk are given by:

A0 = − 1

2
|ψ |2, (A.5)

B0 = i

2
ψt ,

A1 = 0,

B1 = ψ,

A2 = 1,

B2 = 0.

We next define the following terms:

κ j = 2
√
1 + λ2j

A j = 1

2
arccos

κ j

2

+ κ j

2

[(
t − t j

) + λ j
(
x − x j

)] − π

4

Bj = −1

2
arccos

κ j

2

+ κ j

2

[(
t − t j

) + λ j
(
x − x j

)] − π

4
.

(A.6)

From Eqs. (A.3)–(A.6), one can calculate r1, j and s1, j :

r1, j = 2ie−i x/2 sin A j

s1, j = 2eix/2 cos Bj .
(A.7)

To emphasize again, rn,1 and sn,1 are calculated from
r1, j and r1, j , by applying Eq. (A.2) multiple times.
Finally, the nth-order DT solutionψn is then calculated
from ψn−1, ..., ψ0 using Eq. (A.1).
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