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Abstract Under some constraints, we build exact and
approximate first- and second-order rogue wave (RW)
solutions with two control and one free parameters for
a quasi-one-dimensional Gross–Pitaevskii (GP) equa-
tion with a time-varying interatomic interaction, an
external trap and gain/loss term through the similar-
ity transformation technique. Considering three differ-
ent forms of the strength of the two-body interatomic
interaction, we employ these rogue wave solutions to
study the dynamics of matter rogue waves and super-
posed rogue waves in respectively one-component and
coherently two-component Bose–Einstein condensates
(BECs) when the gain/loss of the condensate atoms is
taken into consideration. Our results show that the solu-
tion parameters (two control and one free parameters)
can be used for formation and manipulating first- and
second-order in BEC systems under consideration. We
also show that when we change parameters appearing
in the strength of the two-body interatomic interaction,
first- and second-order RWs can be reduced to either
one- or multiple-breather solitons or rogue wave mul-
tiplets. Our results also show that the control and free
parameter appearing in the RW solutions can be used
for controlling the splitting of the rogue wave com-
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ponents into multi-peak solutions. In the context of
coherently coupled BECs, we show that linear super-
position of different rogue wave solutions of the quasi-
one-dimensional GP equation results into four kinds
of nonlinear coherent structures namely, coexisting
first–first-order (F–F) RWs, second–second-order (S–
S) RWs, first–second-order (F–S) RWs, and second–
first-order (S–F) RWs. These four kinds of superposed
rogue waves are investigated in some detail. Also, the
effects solution parameters as well as those of the intra-
component strength on these four kinds of composite
waves are investigated.

Keywords Bose–Einstein condensate · Gross–
Pitaevskii equation · Nonlinear Schrödinger equation ·
Superposed rogue wave

1 Introduction

Since the first observation and realization of Bose–
Einstein condensates [1,2], we a rapid development in
this field has been observed. Proposing a novel platform
for quantum metrology based on qubit states of two
Bose–Einstein condensate solitons, optically manip-
ulated, trapped in a double-well potential, and cou-
pled through nonlinear Josephson effect, Ngo et al.
[3] have solved the problem of two-soliton formation
for one-dimensional (1D) BECs trapped effectively in
a double-well potential. Based on driven dissipative
Gross–Pitaevskii equations coupled to the rate equa-
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tion, Zhang et al. [4] have theoretically investigate the
dynamics of two dark solitons in a polariton conden-
sate under nonresonant pumping. By mean field anal-
ysis, Hansen et al. [5] have investigated the reflec-
tion and transmission properties of matter wave soli-
tons impinging on localized scattering potentials in one
spatial dimension. Using the Feshbach resonance tech-
nique, Khaykovich et al. [6] have reported the produc-
tion of matter-wave solitons in an ultracold lithium-7
gas. Studying the dynamics of vortex lattices in stirred
BECs at finite temperatures, Abo-Shaeer et al. [7] have
investigated the crystallization and decay of vortex lat-
tices and have found both processes to be dissipative.
Stimulated by experimental observations of solitons
and vortices in BECs, [6–9], physicists and applied
mathematicians have carried out intensive studies on
the nonlinear excitations of BEC matter waves such
as the modulational instability (MI) [10,11], matter-
wave solitons and vortices [12–15],matter roguewaves
[16–18], domain walls in binary BECs [19–21], inter-
ference patterns [22–24], as well as compacton mat-
ter waves [25]. The generation, the dynamics, and the
management of BECmatter waves being important for
a number of BEC applications [26–29], we believe that
one of the most important aspects of those BEC mat-
ter waves is their manipulation [17,30–33], whose key
ingredients are external localized impurities and peri-
odic potentials [33].

The problem of the flow of Bose–Einstein conden-
sates (one of fundamental differences between wave
andflowbeing thatwave is a patternwith a spatial struc-
ture, represented by a function of the coordinates, while
flowmay be spatially uniform,without any dependence
on coordinates) has been investigated by a number of
scientists (one of similarities between waves and flows
is thatwavesmaypropagate on topof flows [34]).Using
the combination of the locally steady hydraulic solution
of the 1D Gross–Pitaevskii equation and the solutions
of the Whitham modulation equations describing the
resolution of the upstream and downstream disconti-
nuities through dispersive shocks, Leszczyszyn et al.
[35] have investigated analytically the problem of the
transcritical flow of a BEC through a wide repulsive
penetrable barrier and showed that within the physi-
cally reasonable range of parameters, the downstream
dispersive shock is attached to the barrier and effec-
tively represents the train of very slow dark solitons,
which canbeobserved in experiments. Jendrzejewski et
al. [36] have reported the direct observation of resistive

flow through aweak link in aweakly interacting atomic
Bose–Einstein condensate. Considering the problem of
the flow of a BEC in a channel under the action of a pis-
ton, Kamchatnov and Korneev [37] have employed the
Whitham averaging method to show the formation in
the condensate flow of a dispersive shock wave charac-
terized by rapid oscillations of the condensate density
and flow velocity. Invesitagting thermal relaxation of
superfluid turbulence in a highly oblate BEC, Kwon et
al [38] have generated turbulent flow [39] in the con-
densate by sweeping the center regionof the condensate
with a repulsive optical potential.

As it is well known, the dynamics of weakly inter-
acting bosonic gases at ultra-low temperature can be
described by a nonlinear Schrödinger (NLS) equation
with an external trap potential [alias Gross–Pitaevskii
equation] [1,40]. In the case of the cigar-shaped trap-
ping potential, this NLS equation may result in the fol-
lowing quasi-one-dimensional dimensionless equation
[40]

i
∂ψ

∂t
+ ∂2ψ

∂x2
+ g |ψ |2 ψ −

(
αx2 + iγ

)
ψ = 0. (1)

Here, the time t and the space coordinate x are
measured in harmonic-oscillator units 2/ω⊥ and a⊥,
respectively, ω⊥ being the radial oscillation (or
harmonic-oscillator), and a⊥ = √

h̄/ (mω⊥) being the
corresponding linear oscillator length in the transverse
direction, m denoting the atomic mass. In the cigar-
axis direction, we denote by ω0 the axial-oscillation
frequency, leading to a0 = √

h̄/ (mω0). Parameter g
of the cubic nonlinearity stands for the strength of the
two-body interatomic interaction and can be negative
(positive) for repulsive (attractive) interatomic interac-
tions. α is the strength of the magnetic trap and can be
maybepositive (confiningpotential) or negative (repul-
sive potential); it expresses the trapping frequency in
the x direction [41]. The small parameter γ is related
to the loss (γ < 0) or gain (γ > 0) of atoms in the
condensate resulting from the contact with the thermal
cloud and three-body recombination [42]. ψ (x, t) is
the macroscopic wave function of the condensate nor-

malized in units of
√

8πgh̄
mω⊥ .

In order to control and manipulate the dynamics of
BEC in an external trapping potential, strength g of
the two-body interatomic interaction as well as param-
eters α and γ can be allowed to be a function of time
t [43,44]. In the present work, we consider the non-
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linearity parameter g, the potential parameter α, and
the gain/loss parameter γ to be time-dependent, so
that Eq. (1) can be used to describe the control and
manipulation of BEC matter waves by properly choos-
ing the three time-varying parameters. To our knowl-
edge less attention have been paid to the use of Eq.
(1) when γ �= 0 for the management of matter rogue
waves [sudden hump (peak) localized both in space
and time with maximum amplitude on a continuous
wave background] and composite rogue waves, which
is one of fundamental nonlinear excitations inBEC sys-
tems. Using Eq. (1) for studying matter rogue waves in
BECs when the loss/gain of atoms in the condensate is
ignored (γ = 0), Wen et al. [16] found that the forma-
tion of rogue wave is mainly due to the accumulation
of energy and atoms toward to its central part, while the
decay rate of atoms in unstable matter rogue wave can
be effectively controlled by modulating the trapping
frequency of external potential. Ignoring the gain/loss
of atoms of the condensates (γ = 0), Manikandan et
al. [17] employed Eq. (1) to show how to manage the
shapes ofBECbreathers and higher-order roguewaves.
Combining the phase-imprint technique with themodi-
fied lens-type transformations, Kengne et al. [18] have
recently used Eq. (1) for engineering chirped matter
rogue waves in BECs when the loss/gain of atoms is
neglected (γ = 0); their results demonstrated that the
temporal modulation of the s-wave scattering length
and strength of the inverted parabolic potential can be
used to manipulate the evolution of rogue matter waves
in BEC.

Based on exact and approximate analytical solutions
of single/coupled GP equations, we intend to investi-
gate themanipulation of matter rogue waves and super-
posed/composite RWs in one- and two-component
BECs with time-varying scattering length and har-
monic potential when the gain/loss of atoms in the
condensate is taken into consideration (γ �= 0). The
rest of our paper is organized as follows. In Sect. 2, we
employ a modified lens-type transformation to estab-
lish the integrable conditions for Eq. (1), and reduceEq.
(1) to a well-known nonlinear equation of Schrödinger
type. First- and second-order rogue wave (exact and
approximate) solutions for Eq. (1) with time-varying
s-wave scattering length and time-varying harmonic
trapping potential are obtained when γ �= 0. These
exact and approximate RW solutions are employed
in Sects. 3 and 4 for investigating the manipulation
of first- and second-order RWs and superposed rogue

waves in respectively one-component and coherently
two-component BECs. Main results are summarized
in Sect. 5.

2 Integrable conditions, exact and approximate
solutions of equation (1)

In order to obtain exact and approximate solutions
for manipulating matter rogue waves in BEC system
described by the GP Eq. (1), we first establish the inte-
grable condition forEq. (1).Wefirst performamodified
lens-type transformation of the form [45]

ψ (x, t) = √
R0g (t)� (ξ, τ ) exp

[
i f (t) x2

−2iτ + η (t)] , ξ

=
√

R0

2
xg (t) , (2)

where R0 is any positive real constant, and f (t) , τ (t) ,

and η (t) are three real functions of time t. In ansatz
(2), R0 and η (t) are two control parameters. The mod-
ified lens-type transformation (2) implicitly assumes
that g (t) > 0 and corresponds to the attractive inter-
atomic interaction. By asking that

dτ

dt
= − R0

2
g2, (3a)

f (t) = − 1

4g

dg

dt
, (3b)

dη

dt
+ 2 f − γ = 0, (3c)

d f

dt
+ 4 f 2 + α = 0, (3d)

Equation (1) is converted to the following NLS equa-
tion

i
∂�

∂τ
− ∂2�

∂ξ2
− 2

(
exp [2η] |�|2 − 1

)
� = 0. (4)

Inserting Eq. (3b) into Eqs. (3c) and (3d) yields the fol-
lowing relationships between the nonlinearity param-
eter g (t), the harmonic trapping potential α (t) , the
loss/gain parameter γ (t) , and the control parameter
η (t)

dη

dt
− 1

2g

dg

dt
− γ = 0, (5)
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1

g

d2g

dt2
− 2

g2

(
dg

dt

)2

− 4α = 0. (6)

In the special case when the control functional param-
eter η = 0, Eq. (2) is reduced to the following type
of NLS equation whose many kind of exact solutions
have been derived in various fields of physics [46–48]

i
∂�

∂τ
− ∂2�

∂ξ2
− 2

(
|�|2 − 1

)
� = 0. (7)

In the following, conditions (5) and (6) will be referred
to as the “integrable” conditions under which we may
find exact analytical rogue wave solutions (when η =
0) and approximate roguewave solutions (when η �= 0)
of the GP Eq. (1) with control parameters R0 and η(t).

2.1 Exact analytical rogue wave solutions of the GP
equation (1)

Exact analytical rogue wave solutions of the GP equa-
tion (1) can be obtained when the control functional
parameter η(t) is taken as η(t) = 0, reducing Eq.
(4) into the focusing NLS Eq. (7). With the use of
the bilinear method in the soliton theory [49], Ohta
and Yang [46] have built, under the boundary condi-
tion � (ξ, τ )|ξ,τ=±∞ = 1, the general rogue wave
solutions of Eq. (7). From these general rogue wave
solutions, we can derive the first- and the second-order
rogue wave solutions of Eq. (7) as follows

�I (ξ, τ ) = 1 − 4 (1 − 4iτ)

1 + 16τ 2 + (2ξ − 1)2
, (8a)

�I I (ξ, τ ) = 1 + F (ξ, τ )

G (ξ, τ )
, (8b)

where F (ξ, τ ) and G (ξ, τ ) are given in Appendix.
For the first-order RW solution (8a), we compute the
maximum peak amplitude and find |�I (0, 0)| = 3,
which is three times the background amplitude. It has
been shown that the second-order RW solution (8b)–
(26b) The maximum peak amplitude of the second-
order RW solution (8b)–(26b) has been found to be
equal to 5, and was obtained when φ = −1/12 [46].

Inserting Eqs. (8a) and (8b) into ansatz (2) and going
back to original variables x and t , we obtain the first-
and second-order RW solutions of the GP equation (1).
For example, a first-order RW solution of the GP equa-

tion (1) obtained with the control functional parameter
η(t) = 0 is found to be

ψ (x, t) =√
R0g (t)

×
⎡
⎢⎣1−4

1−2i
(
2τ0−R0

∫ t
0 g2 (y) dy

)

1+8
(
2τ0−R0

∫ t
0 g2 (y) dy

)2 + (
1−√

2R0xg (t)
)2

⎤
⎥⎦

× exp

[
i

{
f (t) x2+R0

∫ t

0
g2 (y) dy−2τ0

}]
,

(9)

where τ0 = τ(0) is an arbitrary real constant.
It is important to notice that for the above exact

first- and second-order RW solutions obtained with
the functional parameter η(t) = 0, parameter g (t)
of the two-body interatomic interaction, the potential
strength α (t) , the loss/gain parameter γ (t), and the
time-varying function f (t) appearing in ansatz (2)
must be related by the conditions

f (t)=1

2
γ (t)=−1

4

1

g

dg

dt
and

1

g

d2g

dt2
− 2

g2

(
dg

dt

)2

−4α = 0. (10)

2.2 Approximate rogue wave solutions of the GP
equation (1)

We now turn to the search rogue wave solutions of Eq.
(4) when the control functional parameter η (t) �= 0. In
such a situation, we assume that the control functional
parameter η (t) is very small and focus on the approxi-
mate RW solution of Eq. (4). Assuming thus η (t) to be
small enough and expanding exp [−2η] = 1/ exp [2η]
into Taylor series truncated at order O (η), we can
rewrite Eq. (4) as follows

i
∂�

∂τ
− ∂2�

∂ξ2
+ 2� − 2

1 − 2η
|�|2 � = 0. (11)

In the special case when the control functional param-
eter is of the form

η (t) = η0τ (t) , (12)

where η0 �= 0 is an arbitrary real parameter which in
the following is referred to as the control parameter,
lens-type transformation

ζ = ξ

1 − 2η0τ
, T = τ

1 − 2η0τ
, � (ξ, τ )
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Fig. 1 (Color online) Second-order rogue waves generated with the use of the exact RW solution (8b) [top] and approximate RW
solution (15b) [bottom] for parameters (a), (e): φ = −1/12, (b),(f): φ = 5/3, (c),(g): φ = 5i/3, and (d),(h): φ = −5i/3.

= �√
1 − 2η0τ

exp

[
i
η0

2

ξ2 − 8τ 2

1 − 2η0τ

]
(13)

approximates equation (4) by an equation of form (7):

i
∂�

∂T
− ∂2�

∂ζ 2 − 2
(
|�|2 − 1

)
�. (14)

Repeating equations (8a) and (8b) for Eq. (14), we
obtain the following approximate first- and second-
order rogue wave solutions of equation (4)

� I (ξ, τ ) = 1√
1−2η0τ

(
1− 4 (1−4iT )

1+16T 2+ (2ζ−s1)2

)

exp

[
i
η0

2

ξ2 − 8τ 2

1 − 2η0τ

]
, (15a)

� I I (ξ, τ ) = 1√
1 − 2η0τ

(
1 + F (ζ, T )

G (ζ, T )

)

exp

[
i
η0

2

ξ2 − 8τ 2

1 − 2η0τ

]
, (15b)

where ζ = ζ (ξ, τ ) and T = T (τ ) are given in Eq.
(13) and F (ζ, T ) and G (ζ, T ) are given by equations
(26a)–(28). Combining equations (15a) and (15b) with
equations (12), (13), and ansatz (2) and going back to
the original variables x and t, we can easily write the
approximate first- and second-order rogue wave solu-
tions of the GP equation (1). For example, the approx-
imate first-order RW solution of Eq. (1) has the form

ψ (x, t) =
√

R0g (t)

(1 − 2η0τ)
exp [η0τ ]

⎡
⎢⎣1− 8 (1−2η0τ) (1−2η0τ−4iτ)

2 (1 − 2η0τ)2 +32τ 2 + R0

(
2xg (t) +

√
2
R0

(2η0τ−1)
)2

⎤
⎥⎦

× exp

[
i

{
f (t) x2+ R0η0

4

x2g2 (t)

1−2η0τ
−2τ− 4η0τ 2

1−2η0τ

}]
,

(16)

where

τ = τ (t) = τ0− R0

2

∫ t

0
g2 (y) dy, f (t) = −1

4

1

g

dg

dt
,

(17a)

η0 �= 0 and τ0 being two arbitrary real constants (η0
must be taken from the condition 1− 2η0τ (t) �= 0 for
every t ≥ 0).

For the approximate first- and second-order rogue
wave solutions of the GP equation (1), parameter g (t)
of the two-body interatomic interaction, the potential
strength α (t) , and the loss/gain parameter γ (t) must
satisfy the conditions

1

g

dg

dt
+ η0R0g

2 + 2γ = 0,

1

g

d2g

dt2
− 2

g2

(
dg

dt

)2

− 4α = 0. (18)

It is important to note that approximateRWsolutions
exist only when function 1− 2η0τ(t) does not present
any singularity.
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As we can see from plots of Fig. 1, parameter φ

can be used for modulating the second-order rogue
waves obtained with the use of the above exact and
approximate second-order rogue wave solutions of Eq.
(4 ). Figure1(a) and (e) showing the density |� (ξ, τ )|2
with the highest peak amplitude of the second-order
RW generated with respectively the exact and approx-
imate solutions are obtained with φ = −1/12. We
can easily see that these Fig. 1(a) and (e) are the spe-
cial second-order rogue waves obtained by Akhme-
diev et al. [50] after a shift in ξ . By varying the solu-
tion parameter φ as has been done for Fig. 1(b), (c)
and (d) for the exact solution and for Fig. 1(f), (g) and
(h) for the approximate solution, rogue waves gener-
ated with the above exact and approximate RW solu-
tions have very different solution dynamics from that
in Fig. 1(a) and (e). Each of Fig. 1(b), (c) and (d)
and Fig. 1(f), (g) and (h), obtained with respectively
φ = 5/3, φ = 5i/3, and φ = −5i/3, admits three
intensity humps (triplet second-order RW), each of
which is roughly a first-order RW (8a) or (15a), that
occur at different times τ and/or space variable ξ.

For example, it is seen from Fig. 1(d) that the solu-
tion first rises up and reaches the peak with magni-
tude 8.11639 at (ξ, τ ) ≈ (−1.075, 0.412). Afterwards,
the solution temporally decays and then, rises up for
the second time and reaches the peak with magnitude
12.1393 at (ξ, τ ) ≈ (.45,−0.583738) before decay-
ing for the second time, and then, rises up for the third
time and reaches the peak with magnitude 8.04242 at
(ξ, τ ) ≈ (2.095, 0.3914555) before decaying for ever!
Fig. 1(b), (c), (e), (f) and (g) have the same behavior as
Fig. 1(d) butwith humps reaching their peak at different
positions (ξ, τ ).

3 Characteristics of the rogue matter waves

In this section, we use the found exact and approximate
first- and second-order rogue wave solutions for inves-
tigating the properties of rogue matter waves in BECs
with loss/gain of atomswhose dynamics is described by
theGP equation (1).Wefirst notice that the above found
exact and approximate RW solutions are all expressed
in terms of the nonlinearity parameter g (t). An obvi-
ous analysis of Eqs. (3a), (5), (6), and (12) reveals that
the determination of the functional parameter τ = τ (t)
and the control parameter η (t), as well as the trap fre-
quency α (t) and the gain/loss parameter γ (t) is based

only on strength g (t) of the interatomic interaction. In
this section, we focus on three different forms of the
interaction parameter g (t) for investigating the char-
acteristics of the rogue matter waves in BEC systems
described by equation (1):

g(t) = g0 exp [±λt] , g0 |λ| > 0, (19a)

g (t) = g0 (1 + m tanh [�t]) , (19b)

g(t) = g0 (1 + m sin [�t]) , (19c)

where � and m are arbitrary real parameters with
0 < |m| < 1. These interesting nonlinearities with
corresponding trap parameter α (t) and the gain/loss
parameter γ (t) are plotted in Fig. 2 in the special case
η (t) = 0.

3.1 Time-independent trap

We begin our investigation with the case in which the
trap frequency is a constant, that is, α (t) = −λ2

4 ,

where λ �= 0 is an arbitrary real constant. Such a
time-independent trap frequency implies that the fre-
quency does not change with time and space. The time-
independent harmonic potential parameter α (t) =
−λ2

4 was used in the experimental creation of bright
BEC solitons [6]. In that experiment, ω0 = 2π i × 70
Hz, ω⊥ = 2π × 710 Hz, so λ ≈ 0.14142. Substituting
α (t) = −λ2

4 in the integrable condition (10) or (18),
we find that the time-dependent interaction term should
be of the form g(t) = g0 exp [±λt], while the gain/loss
parameter γ (t) should be γ (t) = ∓λ

2 for η (t) = 0,
and γ (t) = ∓λ

2 − η0R0g20 exp [±2λt] for η (t) �= 0,
where g0 > 0 is an arbitrary real constant. Using now

Eq. (3a), we obtain τ (t) = τ0 ∓ R0g20
4λ exp [±2λt] ,

where τ0 is an arbitrary constant of integration.
Figure3 shows the effects of the control parame-

ter R0 on the first-order (top panels) and second-order
(middle and bottom panels) rogue waves in BECs gen-
erated with respectively the exact first-order RW solu-
tion (8a) and the exact and approximate second-order
RW solution (8b) and (15b), respectively, for param-
eters g0 = 0.1, λ = 0.14142, η0 = 0.05, τ0 = 0,
and φ = −1/12. In this Fig. 3 we present the spa-
tiotemporal evolution of RWs in cigar-shaped BECs.
Plots of the top panels standing for the evolution of
the first-order RW show the density of atoms local-
ized in space and time, which is what we observe as
rogue waves. Different scenarios showed in plots of
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Fig. 2 (Color online) Typical forms of modulated nonlinearity
parameter g(t) given by Eqs. (19a)–(19c) with corresponding
trap parameter α (t) and the gain/loss parameter γ (t) for g0 =
0.1 and � = 1. Top panels: a g (t) = g0 exp [±λt], b α (t) =
− λ2

4 , and c γ (t) = ∓ λ
2 withλ = 0.14142; solid anddashed lines

stand for sign “+” and sign “−” in g (t) .Middle panels:d g (t) =
g0 (1 + m tanh [�t]) , e α (t) = −m�2

2
sinh[�t]+m cosh[�t]

(1+m tanh[�t])2 cosh3[t�]
,

and f γ (t) = − m�

2(1+m tanh[�t]) cosh2[�t]
, solid and dashed

line standing for m = 0.9 and m = −0.9, respectively.
Bottom panels: g g (t) = g0 (1 + m sin [�t]) , h α (t) =
−m�2

4
sin[�t]+m

(
1+cos2[�t]

)
(1+m sin[�t])2

, and i γ (t) = −m�
4

cos[�t]
(1+m sin[�t]) ,

solid and dashed line standing for m = 0.4 and m = −0.4,
respectively. Trap parameter α (t) and the gain/loss parameter
γ (t) are computed with the use of Eq. (10) in the special case
η (t) = 0.

Fig. 3 can be interpreted as follows. For example, the
scenarios generated by the first-order RWs for example
(top panels) have the following meanings: In Fig. 3(a),
we can observe a wave, which suddenly appears out
of nowhere, reaches its peak about the position (0, 0),
and leaves without a trace. In BEC context, the sud-
denly appearance of the wave to reach its peak at (0, 0)
and its disappearance without a trace means that atoms
in the condensate suddenly accumulate after sometime
to form a hump towards the center of the condensate
at some given time. We can also conclude that the for-
mation of the first-order RW is due to the accumula-
tion of energy and atoms toward to the central part of
the condensate. The manipulation of RWs, as one can
observe from Fig. 3 (a)–(d), can be visualized by tun-

ing the control parameter R0. For example, when we
increase the control parameter R0 from 0.05 to 15, we
can observe the evolution of more and more localized
first-order RWs with increasing amplitude moving in
a monotonically increasing background. At R0 = 15,
weobserve a large amplitudewavewhich is sufficiently
localized both in space and in time. The evolution of
second-order RWs is demonstrated in plots of the mid-
dle and bottom panels for the same set of values of the
control parameter R0. Plots of themiddle (bottom) pan-
els of Fig. 3 show second-order RWs that propagate on
a monotonically increasing (decreasing) background.
Each of plots showing the second-order RWs presents
three intensity humps that appear at different times t
and/or space variable x , and each intensity hump is
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Fig. 3 (Color online) Spatiotemporal evolution of the first-
order (top panels) and second-order (middle and bottom panels)
rogue wave in BECs for the time-varying nonlinearity coeffi-
cient g(t) = g0 exp [λt] and time-independent trap frequency

α (t) = − λ2

4 , obtained using (top panels): the exact first-order

RW solution (8a), (middle panels): the exact second-order RW
solution (8b), and (bottom panels): approximate second-order
RW solution (15b) with φ = −1/12. The control parameter
R0 = 0.05 for panels (a), (e) and (i), R0 = 1 for (b), (f) and (j),
R0 = 4 for (c), (g) and (k), and R0 = 15 for (d), (h) and (l). The
other parameters are given in the text

Fig. 4 (Color online) Contour plot of the second-order RWs in
BECs obtained with the exact second-order rogue wave solution
(8b) for the same parameters as in Fig. 3. Plots a, b, c, and d

are generated with R0 = 0.05, R0 = 1, R0 = 4, and R0 = 15,
respectively

roughly a first-order rogue wave, localized in space
and time. The position of the three intensity humps
of each second-order RW showed in the middle and

bottom panels varies with the control parameter R0,

while their amplitude increases with the increase in
the values of R0; this fact can be well seen in Fig. 4
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Fig. 5 (Color online) Evolution of the second-order rogue wave

in BEC obtained with the exact solution (8a) for α (t) = − λ2

4 ,
g(t) = g0 exp [λt] , and γ (t) = − λ

2 . The solution parameter φ

is varied as a: φ = 16, b: φ = 16i, and c: φ = (i − 1) /16. Pan-
els d–f are their corresponding contour plots. Other parameters
are the same as in Fig. 3, while τ(t) is given in the text

corresponding to the contour plot for the second-order
rogue waves obtained with the exact second-order RW
solution (27) for the same parameters as in the middle
panels of Fig. 3. As we can see from different plots of
Fig. 4, the giant hump (hump with the maximal ampli-
tude) is localized at (x0, t0) ≈ (8, 10) for R0 = 0.05,
(x0, t0) ≈ (4.9, 3) for R0 = 1, (x0, t0) ≈ (4.85,−2)
for R0 = 4, and (x0, t0) ≈ (4.81,−6.5) for R0 = 15.
After a given value of the control parameter R0, the
value of the spatial variable x at which similar humps
reach their maximal amplitude is almost the same. It is
clearly seen from plots of Fig. 4 that after some time,
atoms in the condensate suddenly accumulate to form a
giant hump localized in space and time at some (x0, t0)
and then split to form twohumps, localized in space and
time at some (x10, t10) and (x20, t20) with t20 ≈ t10. It
is important to note that second-order RWs with mul-
tiple humps showed in Fig. 3 are different from those

obtained in the context of BECs by Manikandan et al.
[17] and Sun et al. [51].

It is evident that the trap parameter λ, the nonlinear-
ity parameter g0, the control parameterη0, and the solu-
tion parameter φ may affect the evolution of the first-
and second-order RWs in BEC system described by the
GP equation (1). For instance, consider the effects of
the solution parameter φ and control parameter η0 on
the spatiotemporal evolution of the second-order rogue
waves in the BEC system governed by the GP equation
(1). To demonstrate how RWs structure may vary with
respect to the solution parameter φ, we have depicted
in Fig. 5 the spatiotemporal evolution (top panels) and
the contour plot (bottom panels) of the second-order
RWs obtained with the exact solution (8a) for differ-
ent values of parameter φ, other parameters being the
same as in Fig. 3.We can see from plots of Fig. 5 that by
varying parameter φ, the number of intensity humps of
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Fig. 6 (Color online) Top, middle, and bottom panels repre-
sent the formation of second-order RWs with respectively a
single, two, and three intensity humps in BECs for the time-
dependent nonlinearity coefficient g(t) = g0 exp [λt], time-

independent trap frequency α (t) = − λ2

4 , and loss parameter
γ (t) = − λ

2 − η0R0g20 exp [2λt] with g0 = 0.1, λ = 0.14142,
and R0 = 15. Different plots are generated with the approxi-
mate second-order RW solution ( 15b) with various values of the

solution parameter φ and the control parameter η0 : Top panels:
φ = 16, with the control parameter η0 = 70 for panel (a), 2 for
(b), 0.2 for (c), and 10−2 for (d). Middle panels: φ = 16i, with
the control parameter η0 = 70 for panel (e), 10 for (f), 1 for (g),
and 0.2 for (h). Bottom panels: φ = −1/12, with the control
parameter η0 = 1.7 for panel (i), 1 for (j), 0.7 for (k), and 0.1 for

(l). All these plots are obtained for τ (t) = τ0 − R0g20
4λ exp [2λt]

with τ0 = 0.

the second-order RW varies from one to three: φ = 16
leads to one intensity hump (Fig. 5(a) and (d)), while
φ = 16i and φ = (i − 1) /12 lead to two (Fig. 5(b)
and (e)) and three (Fig. 5(c) and (f)) intensity humps,
respectively. Plots of Fig. 5 also reveal that amplitude of
different intensity humps as well as their position vary
with parameter φ. Depending on the value of parame-
ter φ, intensity humps of each of the second-order RW
may appear as roughly first-order rogue waves (this is
well sen in Fig. 5b or e). In the case of multiple inten-
sity humps (Fig. 5b and c), two of these humps appear
approximatively at the same time. In the situation when
the second-order RW admits only one single intensity
humpas that shown inFig. 5a, one can easily observe, in

addition with the second-order RWmoving like a first-
order rogue wave, the motion of a bright solitary wave
which disappears exactly just before the apparition of
the first-order RW (this is clearly seen in Fig. 5d).

We end this subsection with the effects of the con-
trol parameter η0 on the second-order RWs in BECs. In
Fig. 6 the top, middle, and bottoms panels represent the
density profiles of the second-order RWs with respec-
tively one, two, and three intensity humps, obtained
with the use of the approximate second-order rogue
wave solution (15b) with F (ζ, T ) and G (ζ, T ) given
by Eqs. (27) and (28) for φ = −1/12, respectively
(ζ and T being given in Eq. (13)). In this figure, we
present the formation of second-order RWs in cigar-
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shaped BECs whose wavefunction is described by the
GP equation (1). It is the fluctuation in the density
of atoms, localized in both time and space, which is
what we observe as second-order RWs. For instance,
consider the formation of second-order RWs with two
intensity humps displayed in Fig. 6e–h. We may inter-
pret these scenarios as follows [17]. For very large value
of the control parameter η0 appearing in Eq. (12), the
second-order RW obtained from the approximate solu-
tion behave like a bright soliton, as one can see from
Fig. 6e obtained with η0 = 70. As we decrease the
value of η0, the bright soliton starts to split and we
can observe the formation of two dependent humps, as
we can see from Fig. 6f and g generated with respec-
tively η0 = 10 and η0 = 1. This means that atoms in
the condensate after some time suddenly accumulate to
form two dependent intensity humps, symmetric with
respect to the centre of the condensate at finite time, as
we can observe from Fig. 6f and g. For small enough
value of the control parameter η0, we can visualize a
doublet second-order RW, that is, a second-order RW
made of two first-order rogue waves each of which is
sufficiently localized both in time and space, symmet-
ric with respect (0, 0), as showed in Fig. 6 (h) obtained
with η0 = 0.2. Each first-order RW of the doublet
second-order RW appearing out of nowhere and leav-
ingwithout a trace,we can affirm that in such a situation
that atoms in the condensate suddenly accumulate to
form two independent intensity giant humps symmet-
ric with respect to the center of the condensate at finite
time while leaving voids in the density which appear
as troughs in the RWs, depending on the initial state.
The formation of single second-order RWs (second-
order RWwith one hump) and triplet second-order RW
(second-order RW made of three first-order RWs) is
demonstrated in respectively the top and bottom panels
of Fig. 6 with different values of the solution parame-
ter φ and the control parameter η0. We can clearly infer
from plots of these panels that the time-dependent non-
linear interaction between the atoms induces density
fluctuations over the condensate, which gets more and
more localized both in space and in time as we decrease
the order of the RW.

3.2 Time-varying trap

Our next example is carried out with the parame-
ter g (t) of the two-body interatomic interaction of

form (19b). Such nonlinearity parameter was used
by Xue [41] when investigating the phenomenon
of the modulational instability in a trapped BEC
and by Manikandan et al. 8b for manipulating mat-
ter rogue waves and breathers in BECs with time-
dependent trap. Inserting Eq. (19b) in either Eq. (10)
or (18), we compute the strength α (t) of the har-
monic potential and the gain/loss parameter γ (t) and
obtain the time-dependent trap parameter α (t) = −
m�2

2
sinh[�t]+m cosh[�t]

(1+m tanh[�t])2 cosh3[t�]
, and γ (t) = −

m�

2(1+m tanh[�t]) cosh2[�t]
for η (t) = 0, and γ (t) =

− m�

2 cosh2[�t](1+m tanh[�t])
− R0g20η0 (1 + m tanh [�t])2

when η (t) �= 0. It is obvious that both parameters
α (t) and γ (t) are negative functions of time t , which
leads to BECs in attractive potential with loss of atoms.
Computing now τ(t) from Eq. (3a) yields

τ (t) = τ0 − R0g20
2

[
(1 − m)2 t + 2m2

�(1 + exp [2t�])

+2m

�
ln

[
exp [2t�] + 1

]]
, (20)

where τ0 is a constant of integration. It is important
to notice that the above time-varying trap frequency
α (t) is different from that used by Manikandan et al.
8b when investigating the manipulation of rogue waves
in BECs when the gain/loss of atoms was ignored. The
qualitative nature of the first- an second-order RWs for
the present example turns out to be the same as in the
previous example when the solution parameter φ and
the control parameters R0 and η0 are varied, and so
we do not display the outcome here separately. When
varying other parameters such as m and �, we can
identify interesting structures, which are discussed in
the following.

In Fig. 7 we display the first-order RWs for the non-
linearity parameter g(t) given in Eq. (19b) with the use
of both exact [panels (a)–(c) and (g)–(i)] and approxi-
mate [plot (d)–(f) and (j)–(l)] rogue wave solutions (9)
and (16), respectively. When � = 0.1, the first-order
RWs are as shown in Fig. 7a and g for the correspond-
ing contour plot and Fig. 7d and j for the corresponding
contour plot. When we increase the value of the non-
linearity parameter � to 0.5, we can observe a modifi-
cation in the structure of the first-order RWs as showed
in Fig. 7b and e and the corresponding contour plots 7h
and 7k. It is also seen from plots of Fig. 7 that as param-
eter � of the interatomic interaction is increased, the
first-order RWs gradually become more localized in
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Fig. 7 (Color online) First-order RWs for the nonlinearity
parameter g (t) = g0 (1 + m tanh [�t]), the trap parameter

α (t) = −m�2

2
sinh[�t]+m cosh[�t]

(1+m tanh[�t])2 cosh3[t�]
, and the loss param-

eter γ (t) = − m�

2(1+m tanh[�t]) cosh2[�t]
for η (t) = 0, and

γ (t) = − m�

2 cosh2[�t](1+m tanh[�t])
− R0g20η0 (1 + m tanh [�t])2

when η (t) �= 0, with g0 = 0.1, m = 0.8, R0 = 1, η0 = 0.1,

and three distinct values of � : � = 0.1 for panels (a), (d), (g),
and (j), � = 0.5 for plots (b), (e), (h), and (k), and � = 1.0 for
panels (d), (f), (i), and (l). Panels (a)–(d) and the correspond-
ing contour plots (g)–(i) are generated with the use of the exact
first-order RW solution (9), while panels (d)–(f) and the corre-
sponding contour plots (j)–(l) are obtained with the approximate
first-order RW solution (16). Here, we have use τ(t) given by
Eq. (20) with τ0 = 0.

time and the condensate atoms settle down to a slightly
higher density background; this phenomenon is due to
the attractive nature of the potential. Figure7c and f
and the corresponding contour plots 7i and 7l show the
modified structure of the first-order RWs for � = 1.

The density profiles of the second-order RWs with
double- and triple- intensity humps generated with
the use of the exact second-order RW solution (8b)–
(26b) are presented in Fig. 8 for different values of
the nonlinearity parameter m. In the following, any
first- or second-order rogue wave with two (three) sep-
arated intensity humps will be referred to as the twin
(triplet) first- or second-order rogue wave. In Fig. 8, we
present the density profiles of second-order RWs with
two intensity humps (first column) and three intensity
humps (third column) and their corresponding, con-
tour plots (second and fourth columns, respectively) for
the nonlinearity parameter (19b) and the correspond-
ing trap parameter, loss parameter, and τ(t). Fixing the
value of � = 1, we vary parameter m from m = 0.1
to m = 0.999 for Fig. 8(a)–(d) and the corresponding
contour plots 8 (e)–(h) and fromm = 0.1 tom = 0.999
for Fig. 8(i)–(l) and the correspond contour plots 8(m)–
(p). With the increasing in the values parameter m, the
amplitude of each of the two first-order RWs (intensity
humps) of the twin second-order RWs increases and the
two humps become more and more localized in both

time and space, as we can observe from Fig. 8(a)–(d),
while the distance between the two intensity humps
diminishes, as it is well seen from the contour plots
(Fig. 8 (e)–(h)).Moreover, the position of the two inten-
sity humps is symmetric with respect to x = 0 and
moves in the−t direction asm increases. Aswe can see
from Fig. 8(d) and the corresponding contour plot 8(h),
the two humps do not fuse as m → 1. Second-order
roguewaves shown in Fig. 8(i)–(l) with the correspond-
ing contour plots 8(m)–(p) show interesting features.
At m = 0.1, we observe that the triple-hump second-
order rogue wave, as shown in Fig. 8(i), presents one
giant intensity hump and two satellite intensity humps.
As the value of parameter m increases, the amplitude
of the giant hump diminishes and its width increases,
while the amplitude (width) of the two satellite intensity
humps increases (decreases), the two satellite humps
becoming more and more localized in both space and
time, as we can well observe from Fig. 8(i)–(k) as well
as in the corresponding contour plots 8 (m)–(o). When
m → 1, the triple-hump second-order RW reduces to
a twin second-order RW, as it is well seen in Fig. 8(l)
and the corresponding contour plot 8(p), obtained with
m = 0.999. Moreover, the distance between the two
satellite humps of the triple-hump second-order RWs
diminishes with the increasing in the values of m, but
the two satellite humps do not fuse, as it is seen from
Fig. 8(l) and 8(p).
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Fig. 8 (Color online) Double-hump (panels (a)–(d)) and triple-
hump (panels (i)–(l)) second-order rogue waves obtained with
the exact second-order RW solution (8b) with the same parame-
ters g(t), α (t) , γ (t) , and τ (t) as in Fig. 7 for g0 = 0.1, � = 1,
R0 = 15, and different values of parameterm. Parameters φ and

m are taken as follows. Panels (a)–(h): φ = 16i and m = 0.1
for (a) and (e), m = 0.5 for (b) and (f), m = 0.9 for (c) and (g),
and m = 0.999 for (d) and (h). Panels (i)–(p): φ = (i − 1) /12
and m = 0.1 for (i) and (m), m = 0.4 for (j) and (n), m = 0.7
for (k) and (o), and m = 0.999 for (l) and (p)

3.3 Time-dependent periodic trap

As our third and last example, we consider BECs
for which the strength of the time-dependent inter-
atomic interaction is periodic and is turned out to be
of form (19c), leading, as we will see in the follow-
ing, to a time-dependent periodic trap. Such param-
eter g (t) of form (19c) corresponds to a temporal
periodic modulation of the s-wave scattering length
and was used by Saito and Ueda [52] for demonstrat-
ing that a matter-wave bright soliton can be stabilized

in 2D free space by causing the strength of interac-
tions to oscillate rapidly between repulsive and attrac-
tive by using, for example, Feshbach resonance. Also,
Manikandan et al. 8b have employed the temporal peri-
odic modulation of the s-wave scattering length with
parameter of form (19c) in which cosine was used
instead of sine formanipulatingmatter roguewaves and
breathers in BECs with time-dependent periodic trap
frequency. Inserting Eq. (19c) into either Eq. (10) or
(18) leads to the following harmonic potential param-
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eter α (t) = −m�2

4
sin[�t]+m

(
1+cos2[�t]

)
(1+m sin[�t])2

, loss/gain

parameter γ (t) = −m�
4

cos[�t]
(1+m sin[�t]) when η (t) = 0

and γ (t) = −m�
2

cos[�t]
(1+m sin[�t]) − R0g0η0 (1 + m

sin [�t])2 for η (t) �= 0. Substituting Eq. (19c) into
Eq. (3a) yields

τ (t)=τ0− R0g20
2�

(
2+m2

2
�t+4m sin2

[
�

2
t

]

−m2

4
sin [2�t]

)
, (21)

where τ0 is a constant of integration. For this example,
both α (t) and γ (t) periodically change their sign.

In the first and third columns of Fig. 9 we present the
density profiles of respectively the first- and second-
order RWs and their corresponding contour plots in
respectively the second and fourth columns for the
above BEC parameters with � �= 0 and various values
of parameterm of the nonlinearity parameter g(t). Dif-
ferent plots are generated with exact first- and second-
order RW solutions (8a) and (8b). Due to the tempo-
ral periodic modulation of the s-wave scattering length
and trapping potential, we see from Fig. 9 that the RWs
propagate on a periodic background for the above forms
of g(t), α (t) , γ (t) and τ (t) with τ0 = 0. Plots of
Fig. 9 show how parameter m of the nonlinearity g(t)
modifies the behavior of the first- and second-order
RWs in BEC with periodically loss and gain of atoms.
Depending on the value of parameterm, the first-order
RWs in BECs with periodically loss and gain of atoms
can appear as (i) a Peregrine soliton as we can see from
Fig. 9(a) and (e), (ii) a first-order RWwith two intensity
humps, as it is clearly shown in Fig. 9(b) and (c) and
the corresponding contour plots, 9)(f) and (g), or (iii)
a twin first-order RW, as shown in Fig. 9(d) and (h).
Also, we can see from plot of the first panels of Fig. 9
that the wave amplitude increases with the increasing
in the values of parameter m. Fixing the value of m at
0.05, from Fig. 9(i) and the corresponding contour plot
9(m) we can see a classical second-order RW such as
the one obtained in Ref. [17] propagating on a periodic
background. By increasing the value of parameter m,
satellite humps one of which dominates other appear
around the main hump (second-order RW), as we can
see fromFig. 9(j) and (k) and the corresponding contour
plots 9(n) and (o), the amplitude of the second-order
RW decreases, while that of satellite humps increases.

At the limit m → 1, the second-order RW splits into
two first-order rogue waves, that is, the second-order
RW turns into a twin second-order RW, with satellite
humps around each of the first-order RW, as we can see
from Fig. 9(l) and (p); it is important to note that the
first-order RWwith the highest amplitude of Fig. 9(l) is
the dominant satellite hump (its evolution can be well
seen from Fig. 9(j) and (k)). Plots of Fig. 9 thus reveal
that by manipulating parameter m of the nonlinearity
g(t), BECs with periodically loss and gain of atoms
support the propagation of twin first- and second-order
RWs, the difference between a twin first-order RW and
a twin second-order RW being that each of the Pere-
grine soliton of the twin second-order RWadmits satel-
lite humps (see Fig. 9(d) and (i), or the corresponding
contour plots (h) and (p)).

It is interesting to investigate the effects of parame-
ters m and � of the nonlinearity on the triplet second-
order rogue waves in BECs with periodically gain and
loss of atoms whose wavefunctionψ (x, t) is governed
by theGP equation (1)with the above parameters g (t) ,

α (t) , and γ (t). In the top and middle panels of Fig. 10
wedepict respectively the spatiotemporal evolution and
the contour plots of triplet second-order rogue waves
obtained with the exact second-order rogue wave solu-
tion (8b) with the above parameters g(t), α (t) , and
γ (t) for τ (t) defined in Eq. (21) with τ0 = 0. As
we can clearly see from the top panels of Fig. 10, the
amplitude of each of the first-order RWs of the triplet
second-order RW increases as the value of parameterm
increases. It is well seen fromplots of themiddle panels
ofFig. 10 that the threefirst-orderRWsof the tripletRW
form a triangular pattern [17,53]. The triplet second-
order RW pattern for m = 0.1 is shown in Fig. 10(a).
Whenwe increase the value of parameterm,we observe
that (i) each of the single RWs in the triplet pattern are
kept becomes more and more localized in space and
time, (ii) the position of the main first-order RW in the
triplet (that is, the left single RW appearing as the one
with the highest amplitude, as we can clearly see from
plots of the top panels) is shifted in the −t direction
while that of symmetric (right) first-order RWs of the
triplet is shifted in the +t direction (this means that
the distance between the left single RW and the right
single RWs increases with the increase in the value of
m), and (iii) the distance between the two symmetric
single first-order RWs of the triplet decreases with the
increase in the values of parameter m. Fixing the value
of parameter m to 0.4, we display in the bottom panels
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Fig. 9 (Color online) Spatiotemporal evolution of the first-order
(first column) and the second-order (third column) and the corre-
sponding contour plots (second and fourth columns, respectively)
rogue waves in BECswith periodically loss and gain of atoms for

g (t) = g0 (1 + m sin [�]) , α (t) = −m�2

4
sin[�t]+m

(
1+cos2[�t]

)
(1+m sin[�t])2

,

γ (t) = −m�
4

cos[�t]
(1+m sin[�t]) , with τ(t) given by Eq. (21) with

τ0 = 0. Plots of the first and second columns represent the den-
sity profile and the corresponding contour plot of the first-order
RW obtained with the help of the exact first-order RW solution

(8a ) for g0 = 0.1, R0 = 9.0, � = 0.5, and four values of
m, m = 0.05 for panels (a) and (e), m = 0.4 for (b) and (f),
m = 0.7 for (c) and (g), and m = 0.999 for (d) and (h). For
generating plots of the third and fourth columns representing
the second-order RWs and the corresponding contour plots, we
have used the exact second-order RW solution (8b) for g0 = 1,
R0 = 0.8, φ = (i − 1) /20, � = 5, and four values of param-
eter m, m = 0.05 for panels (i) and (m), m = 0.55 for (j) and
(n), m = 0.7 for (k) and (o), and m = 0.99999 for (l) and (p)

of Fig. 10 the contour plots of the triplet second-order
RWs obtained with the exact solution (8b) for different
values of parameter �. The form of the triplet pattern
for� = 0.3 is depicted in Fig. 10(e).Whenwe increase
the value of �, we observe the collapse of the triplet
pattern in the periodic wave background, as it is clearly

seen from Fig. 10 (k) and (l) obtained with � = 2.0
and � = 2.0, respectively. heir sign.

Before ending this subsection, it is important to note
that the breather structures can get modified in the con-
densates when we vary parameters g0, m, and � of
the nonlinearity parameter g (t). For illustration, we
employ exact first- and second-order RW solutions (8a)
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Fig. 10 (Color online) Triplet second-order rogue wave gener-
ated with the exact second-order RW solution (8b) with g (t) =
g0 (1 + m sin [�t]) , α (t) = −m�2

4
sin[�t]+m

(
1+cos2[�t]

)
(1+m sin[�t])2

, and

γ (t) = −m�
4

cos[�t]
(1+m sin[�t]) for τ (t) given in Eq. (21) with

τ0 = 0, g0 = 0.1, φ = 16i, R0 = 45, and Top and middle

panels: � = 0.3 and four values of parameter m of the nonlin-
earity g (t) , m = 0.1 for panels (a) and (e), m = 0.4 for (b)
and (f), m = 0.7 for (c) and (g), and m = 0.999 for (d) and (h);
bottom panels: m = 0.4 and four values of �, � = 0.3 for (i),
� = 0.6 for (j), � = 2 for (k), and � = 3.0 for (l)

and (8b) to present in respectively the top and bottom
panels of Fig. 11 first-order RW and second-order RW
behaving like breather soliton (Fig. 11(a)) and three-
breather soliton Fig. 11(c) propagating on oscillating
backgrounds with time decreasing amplitude in both
the −t and +t direction. By varying the values of
parameters g0, m, and/or �, we observe the collapse
of the both breather and three-breather in the periodic
wave background, as it is well seen from Fig. 11b and
11d.

4 Manipulating matter rogue waves in coherently
coupled BECs

In this Section,we employ exact and approximate rogue
wave solutions of the GP equation (1) for investigat-
ing the manipulation of matter RWs in coherent two-

component BECs whose wavefunctions ψ1 (x, t) and
ψ2 (x, t) are governed by the coupled GP equation [54]

i
∂ψ1

∂t
+ ∂2ψ1

∂x2
+

(
g |ψ1|2 + 2g |ψ2|2

)
ψ1

−
(
αx2 + iγ

)
ψ1 + gψ2

2ψ∗
1 = 0, (22a)

i
∂ψ2

∂t
+ ∂2ψ2

∂x2
+

(
g |ψ2|2 + 2g |ψ1|2

)
ψ2

−
(
αx2 + iγ

)
ψ2 + gψ2

1ψ∗
2 = 0; (22b)

here, g = g (t) , α = α (t) , and γ = γ (t) are the
same as in Eq. (1). The quasi-one-dimensional coupled
GP equations (22a)–(22b) corresponds to cigar-shaped
BECs in which bosonic atoms with hyper fine degrees
of freedom are irradiated by a uniform electromag-
netic wave that is resonant with the energy difference
between two hyperfine states of the atoms. In this situ-
ation, space and temporal variables x and t are respec-
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Fig. 11 (Color online)
Breather solitons (a) and
three-breather solitons (c)
for m = 0.8 and � = 1,
first-order (b) and triplet
second-order (d) rogue
waves for m = � = 0.1,
generated with the exact
rogue wave solutions (8a)
and (8b) for
g(t) = g0 (1 + m sin [�t]) ,

α (t) =
−m�2

4
sin[�t]+m

(
1+cos2[�t]

)
(1+m sin[�t])2

,

γ (t) = −m�
4

cos[�t]
(1+m sin[�t]) ,

and τ (t) given in Eq. ( 21)
with τ0 = 0, R0 = 1,
g0 = 0.1, and φ = 5i/3

tivelymeasured in units of transverse harmonic oscilla-
tor length ah0 = √

h̄/2mω⊥ and 1/ω⊥, the suffix h0
denoting harmonic oscillator,m standing for the atomic
mass, and ω⊥ being the transversal frequency. In sys-
tem (22a)–(22b) g (t) , coefficient of the cubic terms
|ψ1|2 ψ1 and |ψ2|2 ψ2 is the intra-component strength,
while 2g (t) , coefficient of the cubic terms |ψ2|2 ψ1

and |ψ1|2 ψ2 is the inter-component strength; these
parameters of the nonlinear interaction are directly pro-
portional to the s-wave scattering lengths, which can be
tuned using Feshbach resonance mechanism and there-
fore can be time-varying function in general. α = α (t)
and γ = γ (t) are respectively the trap and the loss/gain
parameters. In order to employ the found exact RW
solutions of Eq. (1) for investigating matter RWs in
coherently two-component BECs, the strength of the
coherent coupling between the two components (coef-
ficient of the cubic terms ψ2

2ψ∗
1 and ψ2

1ψ∗
2 ) [55] is

taken to be the same as the intra-component strength
g (t). One of the physical significance of model (22a)–

(22b) can be realized in spin-1 BECs for which the gov-
erning equation is a set of three-component GP equa-
tions with the components ψ = (ψ+1, ψ0, ψ−1)

T =
(ψ1, ψ2, ψ1)

T corresponding to the three values of the
vertical spin projections, mF = −1, 0,+1; in this sit-
uation when ψ+1 = ψ−1 = ψ1, g (t) = −2 [56].

One can easily verify that the coupled GP equations
(22a)–(22b) can be decoupled into two independent GP
equations of form (1), namely,

i
∂u j

∂t
+ ∂2u j

∂x2
+ g

∣∣u j
∣∣2 u j −

(
αx2 + iγ

)
u j = 0,

j = 1, 2. (23)

by means of the linear transformation [54]

ψ j (x, t) = u1 (x, t) + (−1)1+ j u2 (x, t)

2
,

j = 1, 2, (24)

where u1 (x, t) and u2 (x, t) are the new order param-
eters. Under the “integrable” conditions (5) and (6),
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each of the GP equations in Eq. (23 ) admits exact
and approximate first- and second-order RW solutions
found in Sect. 2. In the following, we restrict ourselves
(without loss of generation) to the use of exact first- and
second-order RW solutions (8a) and (8b). In these solu-
tions, we denote by R j the control parameter (that is,
we replace R0 by R j ) and by φ j the solution parameter
associated with the analytic function u j (x, t) , j = 1,
2. Using the linear transformation (24) and the exact
RW solutions (8a) and (8b) of the GP equation (1),
exact rogue wave solutions of the coupled GP equation
(22a)–(22b) are found to be the superposition of either
(i) first-order RW (F–F) solutions, (ii) second-order (S–
S) RW solutions, and (iii) first-order and second-order
(F–S–F) RW solutions [F–S–F means either F–S or S–
F]. These superpositionswill result in various nonlinear
coherent structures. Denoting for example

F I
j (ξ, τ ) = 4 (1 − 4iτ) , GI

j (ξ, τ ) = 1 + 16τ 2

+ (2ξ − 1)2 ,

F I I
j (ξ, τ ) = F (ξ, τ ) ,

GI I
j (ξ, τ ) = G (ξ, τ ) , ξ =

√
R j

2
xg (t) ,

where in ξ and F (ξ, τ ) andG (ξ, τ ) given respectively
by Eqs. (26a) and (26b), R0 and φ are replaced by
respectively R j and φ j , Eq. (24) leads to

ψ j (x, t) = 1

2
√
g

[√
R1 + (−1)1+ j

√
R2

−√
R1

F I
1 (ξ, τ )

GI
1 (ξ, τ )

+ (−1) j
√
R2

F I
2 (ξ, τ )

GI
2 (ξ, τ )

]

exp
[
i f (t) x2 − 2iτ

]
, (25a)

ψ j (x, t) = 1

2
√
g

[√
R1 + (−1)1+ j

√
R2

+√
R1

F I I
1 (ξ, τ )

GI I
1 (ξ, τ )

+ (−1)1+ j
√
R2

F I I
2 (ξ, τ )

GI I
2 (ξ, τ )

]

× exp
[
i f (t) x2 − 2iτ

]
, (25b)

ψ j (x, t) = 1

2
√
g

[√
R1 + (−1)1+ j

√
R2

−√
R1

F I
1 (ξ, τ )

GI
1 (ξ, τ )

+ (−1)1+ j
√
R2

F I I
2 (ξ, τ )

GI I
2 (ξ, τ )

]

× exp
[
i f (t) x2 − 2iτ

]
, (25c)

ψ j (x, t) = 1

2
√
g

[√
R1 + (−1)1+ j

√
R2

+√
R1

F I I
1 (ξ, τ )

GI I
1 (ξ, τ )

+ (−1) j
√
R2

F I
2 (ξ, τ )

GI
2 (ξ, τ )

]

× exp
[
i f (t) x2 − 2iτ

]
, (25d)

Equations (25a), (25b), (25c), and (25d) correspond
respectively to the superposition of two first-order (F–
F), two second-order (S–S), one first- and one second-
order (F–S), and one second- and one first-order (S–
F) rogue wave solutions of the coupled GP equations
(22a )–(22b). Here, τ = τ (t) is a solution of the dif-
ferential equation (3a). Using these solutions (25a)–
(25d ), we can study analytically the propagation of
composite RWs in two-component BECs described by
system (22a)–(22b). As typical examples, we focus
on coherently coupled BECs with inter-component
strength g (t) given in Eqs. (19a)–(19c). The corre-
sponding potential parameter α (t) and the gain/loss
parameter γ (t) can be easily found with the use of Eq.
(10). In order to facilitate the understanding of dynam-
ics of superposed nonlinear rogue waves in coherently
two-component BECs governed by Eqs. (22a)–(22b),
we briefly discuss in the following some of these non-
trivial nonlinear waves.

Examples of the evolution of the typical compos-
ite rogue waves are displayed in Fig. 12 for time-
independent trap potential (first and second rows) and
temporal periodic modulation of the s-wave scatter-
ing length (third and fourth rows). The first, second,
third, and fourth columns represent the contour plots of
respectively the first-first, second-second, first-second,
and second-first rogue waves propagating in the coher-
ently two componentBECswhen the gain/loss of atoms
is taken into account. The composite F–F RWs in the
case of BECs in time-independent trap potential appear
in the form of first-order RWs with either one inten-
sity hump or two intensity humps as we can see from
Fig. 12 (a) and (b), propagating on a time increasing
background; for BECs with temporal periodic modula-
tion of the s-wave scattering length, the composite F–F
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Fig. 12 (Color online) Contour plots showing the evolution
of typical composite rogue waves in coherently coupled BECs
whose wavefunctions are governed by the coupled GP equations
(22a)–(22b) for exponential growing intra-component strength
g (t) = g0 exp [λt] [first and second rows] and temporal periodic
intra-component strength g (t) = g0 (1 + m cos [�t]) [third and
fourth rows], with g0 = 0.1 and λ = 0.14142. First and second
rows: R1 = 0.2 and R2 = 4 for panels (a) and (b) and R1 = 0.2

and R2 = 3 for (c)–(h). Third and fourth rows: R1 = 0.05,
R2 = 0.12, m = 0.9, � = 0.5 for panels (i) and (j), R1 = 0.1,
R2 = 0.12, m = 0.9, � = 0.4, φ1 = φ2 = (i − 1) /30
for (k)–(n), R1 = 0.1, R2 = 0.12, m = 0.5, � = 0.3,
φ1 = φ2 = (i − 1) /3 for (o) and (p). The composite F–F, S–S,
F–S, and S-F rogue waves are obtained with the use of exact
composite rogue wave solutions (25a), (25b), (25c), and (25d),
respectively. Also, we have taken τ0 = 0.

RWs behave like one- or two-breather solitons propa-
gating on oscillating background (Fig. 12 (i) and (j)). It
is seen from Fig. 12(c) and (d) that the composite S–S
RWs for BECs in time-independent trap behave either
twin second-order RWs with satellite humps or triplet
second-order RWs; for BECs with periodically gain
and loss of atoms, the composite S–S RWs, as we can
see from Fig. 12(k) and (l), behave like either one- or
two-breather solitons which get less and less localized
in time, propagating on an oscillating background. The
composite F–S rogue waves shown in the third column

(Fig. 12 (e), (f), (m), and (n)) have the same behavior as
the composite F-F RWs displayed in the first column,
except that for BECs in periodic potential, the com-
posite F–S RWs have the feature of breather solitons.
Analyzing the fourth column [Fig. 12 (g), (h), (o), and
(p)], we can see that the composite S-F RWs behave
like either twin or triplet second-order RWs for BECs
with time-independent trap potential, as it is clearly
seen from plots 12 (g) and (h); for BECs with period-
ically gain and loss of atoms, the composite S–F RWs
behave like either three-breather or two-breather soli-
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Fig. 13 (Color online) Superposition of two triplet second-
order rogue waves generated with the inter-component strength
g (t) = g0 (1 + m cos [�t]) for g0 = 0.1 and theS–S roguewave
solution (25b) with φ1 = φ2 = 16i . Different plots are obtained
as follows: First and second rows: Fixing m = 01, � = 0.3,
and R1 = 45, the control parameter R2 is varied as R2 = 0 for
panels (a) and (b) and the corresponding contour plots (c) and
(d), R2 = 15 for (e) and (f) and the corresponding contour plots

(g) and (h), and R2 = 25 for (i) and (j) and the corresponding
contour plots (k) and (l). Third and fourth rows: Fixing R1 = 25,
R2 = 45,m = 0.4, parameter� of the inter-component strength
g (t) is varied as � = 0.6 for panels (m) and (n) and the corre-
sponding contour plots (o) and (p),� = 2 for (q) and (r) and the
corresponding contour plots (s) and (t), and � = 6 for (u) and
(v) and the corresponding contour plots (w) and (x)

tons getting more and more localized in both space and
time, as we can see from Figs. 12 (o) and (p).

It is interesting to investigate the effects of the con-
trol parameters R1 and R2, and the intra-component
strength g (t) on the composite rogue waves in coher-
ently coupled BECs described by Eqs. (22a) and (22b).
Without loss of generality, we focus on coherently cou-
pledBECswith the temporal periodicmodulationof the
s-wave scattering lengthwith inter-component strength
g (t) = g0 (1 + m cos [�t]), and study the effects of
the control parameters R1 and R2 and parameter �

of the nonlinearity parameter on the composite rogue
waves in BECs system under consideration. First and
second rows and third and fourth rows of Fig. 13 show
the effects of respectively control parameters R1 and
R2 and parameter � of the nonlinearity strength on the
evolution of triplet second-order rogue waves in coher-
ently two-component BECs whose wavefunctions are
governed by the GP equations (22a) and (22b). Here,

we superimpose two triplet second-order RWs of the
form (8b) with φ1 = φ2 = 16i . First, we keep the value
of the control parameter R1 to 45 and vary parameter
R2. The resultant structure is showed in the first and
second rows of Fig. 13 in terms of the density profiles
|ψ1 (x, t)|2 and |ψ2 (x, t)|2. Figure13 (a) and (b) and
the corresponding contour plots 13 (c) and (d) obtained
with R2 = 0 are the same and represent triplet second-
order RWs propagating on an oscillating background.
After superposing two triplet second-order RWs with
different values of control parameter, we obtain a spe-
cial nonlinear coherent structure, as shown inFig. 13 (e)
and (f) with the corresponding contour plots 13 (g) and
(h) obtained with R1 = 45 and R2 = 15 and Fig. 13 (i)
and (j) with the corresponding contour plots 13 (k) and
(l) generated with R1 = 45 and R2 = 25. As we can
see from Fig. 13 (c) and (i) with the corresponding con-
tour plots 13 (g) and (k), component ψ1 (x, t) leads to
sextuplet rogue waves which appear as the superposi-
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Fig. 14 (Color online) Superposition of one second-order and
one first-order (S–F) rogue waves with different control parame-
ters: R1 = 15 and R2 = 7.5 for panels (a)–(d) and R1 = 7.5 and
R2 = 15 for (e)–(h). Different plots are obtained with the inter-

component strength g (t) = g0 (1 + m tanh [�t]) and the exact
rogue wave solution (25d) with φ = 16i . Different parameters
are given in the text

tion of one bright and one dark triplet rogue waves. For
R1 = 45 and either R2 = 15 or R2 = 25, the nonlinear
waves associated with componentψ1 (x, t) behave like
bright sextuplet rogue waves, as we can well observe
from Fig. 13 (f) and (j) and the corresponding contour
plots 13 (h) and (l). It is also seen from plots of the first
and second rows of Fig. 13 that the amplitude of the
composite rogue waves increases with the increasing
in the values of R2. Moreover, first-order of sextuplet
rogue waves shown in Fig. 13 (e)–(l) get closer as we
increase the value of R2. The same nonlinear coherent
structure is observed when we keep the value of R2 to
45 and vary R1. Secondly, we superimpose two triplet
second-order rogue waves with the control parameters
R1 = 25 and R2 = 45, keep the parameter m of the
nonlinearity parameter to 0.4, and vary parameter �.
The resultant structure is the collapse of rogue wave
multiplets (roguewavewithmulti-peaks) inmulti-peak
periodic waves embedded on oscillating backgrounds.
This is depicted in the third and fourth rows of Fig. 8b.

Before ending this Section, it is important to note,
as we can see from plots of Fig. 14, that interchanging
the values of R1 and R2 in the composite rogue waves
may lead to a new coherent structure. Plots of Fig. 14

are obtained with the nonlinearity parameter (19b) for
g0 = 0.1, m = 0.8, and � = 1.

5 Conclusion

In this work, we have employed a modified lens-
type transformation to find the “integrable”conditions
for the quasi-one-dimensional GP equation with time-
varying interatomic interaction in an external trapwhen
the gain/loss of condensate atoms is taken into account.
Under these “integrable” conditions, we have used the
general N-th order roguewave solutions of a cubicNLS
equation proposed by Ohta and Yang [46] to construct
exact and approximate first- and second-order RW
solutionswith two control parameters andwith/without
free parameters for the GP equation (1). These RW
solutions depend explicitly on only the nonlinearity
strength g (t) . Using these exact and approximate
first- and second-order RW solutions, we have investi-
gated the manipulation of matter rogue waves in one-
component BECs and studied the superposed rogue
waves of coherently two-component BECs when the
loss/gain of the condensate atoms is taken into consid-
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eration.We have considered in our analysis three differ-
ent forms of strength g (t) of the two-body interatomic
interaction: (i) an exponential growing/decaying non-
linearity g (t) leading to a time-independent harmonic
potential, (ii), a kink-like nonlinearity g (t) leading to a
time-varying non-monotonous harmonic trap, and (iii)
periodicallymodulated nonlinearity leading to conden-
sates with periodically loss and gain of atoms. For each
of the considered s-wave scattering length, we studied
in detail the characteristics of the built RW solutions in
the context of BEC system with loss/gain of atoms. We
have showed how the solution parameters and param-
eter g (t) of the two-body interatomic interaction can
be used for manipulating first- and second-order matter
rogue waves in BECs with gain/loss of atoms.

Furthermore, we ha applied the found rogue wave
solutions to a pair of GP equations which describes
the dynamics of matter waves in coherently two-
component BECs in the presence of loss/gain of atoms.
This procedure has allowed to investigate families of
diversely controllable superposed rogue waves such as
the superposition of two first-order (F–F) RWs, two
second-order (S–S) RWs, one first- and one second-
order (F–S) RWS, and one second- and one first-order
(S–F) RWs. These superposed RWs lead to a variety of
interesting coherent structures. We have showed these
coherent structuresmay be affected by different param-
eters of the intra-component strength g (t). A system-
atic computational study of found superposed struc-
tures and the formation of modulation instability is a
future problem.

It is important to point out that equation (7) is a
modified version of the NLS equation and therefore is
a classic nonlinear physical model for wave envelopes.
It admits a variety of exact solutions including N-
soliton solutions, first- and higher-order breathers and
RW solutions. Deploying these solutions of Eq. (7)
for the construction of other exact and approximate
solutions of the GP equation (1), and therefore exact
and approximate solutions of the coupled GP equations
(22a)–(22b), one can uncover a much wider coherent
structures relating to more exotic superposed waves
in coherently two-component BECs with loss/gain of
atoms.
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Appendix: (Analytical expressions for F (ξ, τ) and
G (ξ, τ) appearing in Eq. (8b))

Polynomials F (ξ, τ ) andG (ξ, τ )used in the definition
of the second-order RW solution (8b) are given as

F (ξ, τ ) = 24
[(

3ξ − 6ξ2 + 4ξ3 − 2ξ4 − 48τ 2

+48ξτ 2 − 48ξ2τ 2 − 160τ 4
)

+iτ
(
−12 + 12ξ − 16ξ3 + 8ξ4 + 32τ 2

−64ξτ 2 + 64ξ2τ 2 + 128τ 4
)

+ 6φ
(
1−2ξ+ξ2−4iτ+4iξτ−4τ 2

)

+6φ1

(
−ξ2 + 4iξτ + 4τ 2

)]
, (26a)

G (ξ, τ ) = 9 − 36ξ + 72ξ2 − 72ξ3 + 72ξ4 − 48ξ5

+16ξ6 + 1024τ 6 + 144φφ

+96τ 2
(
3 + 3ξ − 4ξ3 + 2ξ4

)

+384τ 4
(
5−2ξ + 2ξ2

)

+24
(
φ+φ

) (
3ξ2−2ξ3−12τ 2+24ξτ 2

)

+48i
(
φ−φ

)
τ

(
3+6ξ−6ξ2+8τ 2

)
,

(26b)

where φ is an arbitrary complex number with complex
conjugate φ. Computing F and G for φ = −1/12, we
find pagination

F (ξ, τ ) = 9 − 18 (2ξ − 1)2 − 3 (2ξ − 1)4 − 864τ 2

−3840τ 4 − 288τ 2 (2ξ − 1)2

+iτ
[
−180−72 (2ξ−1)2 +12 (2ξ−1)4
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+384τ 2+3072τ 4+384τ 2 (2ξ−1)2
]
, (27)

G (ξ, τ ) = τ 2
[
288 + 1728τ 2 + 1024τ 4

+192τ 2 (2ξ−1)2 +24
(
2ξ2−2ξ−1

)2]

+1

4

[
9+27 (2ξ−1)2 +3 (2ξ−1)4 + (2ξ−1)6

]
.

(28)
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