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Abstract In this paper, a novel optimal control
scheme is established to solve the multi-player zero-
sum game (ZSG) issue of continuous-time nonlinear
systems with control constraints and unknown dynam-
ics based on the adaptive critic technology. To relax
the requirement of system dynamics, a neural network-
based identifier is applied to reconstruct the unknown
multi-player ZSG system. Then, by developing a
new nonquadratic function, the associated Hamilton-
Jacobi-Isaacs (HJI) equation of the constrained ZSG
is derived. Moreover, an adaptive critic framework is
constructed to approximate the optimal cost function.
Meanwhile, the strategy sets of optimal control and the
worst disturbance are estimated by utilizing the single-
critic network, respectively. After that, amodified critic
weight updating mechanism with experience replay
technique is introduced to relax the requirement of the
persistence of excitation condition. Theoretically, by
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employing the Lyapunov stability theorem, the uniform
ultimate boundedness stability of the ZSG system state
and the critic network weight approximation error are
proved. Finally, a representative example is simulated
to validate the efficacy of the constructed framework.
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1 Introduction

Differential game theory has emerged as an advanta-
geous instrument for theoretical and applied study in
the control field [1–4]. For complex real-world systems,
many of these consist of multiple controllers which
could be deemed as some relevant players in games [5].
When the differential game is employed to the control
issues, it essentially translates to the multi-controller
optimal control problems [6,7]. Generally, game prob-
lems are distinguished into zero-sum games (ZSGs)
[8] and non-ZSGs [9]. Furthermore, game problems
depend on solving the Hamilton-Jacobi (HJ) or the
Hamilton-Jacobi-Isaacs (HJI) equations in the optimal
control issue which are intractable or impossible to
solve [10–14]. Therefore, many scholars have shown
different approximate approaches to tackle this diffi-
culty. Specially, the adaptive dynamic programming
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(ADP) technology was introduced to address HJ or HJI
equations for varieties of game problems [15–18].

For non-ZSG issues, an off-policy scheme was
established to deal with the multi-player non-ZSG,
while the system dynamics was not required [19].
By employing an ADP-based mechanism, each player
could gain the performance index and control. Zhao et
al. [20] designed a dual actor-critic scheme. And there
is proof to verify control policies have reached theNash
equilibrium for the non-ZSG. In [21], an online ADP-
based model-free control structure was proposed to
handle the multi-player non-ZSG problem for discrete-
time unknown systems.

With regard to ZSG problems, the H∞-constrained
control issue is transformed into a two-player ZSG
problem, which pointed a key direction for H∞ control
problems [22]. After that, under the scheme of ADP, a
critic network was designed to deal with the HJI equa-
tion. In [23], the linear two-player ZSG were investi-
gated based on an adaptive online learning architecture,
whichwas utilized to approximately solve themodified
game algebraic Riccati equation via online data. Yazidi
et al. [24] developed a pioneering mechanism that is
capable of converging to the mixed Nash equilibrium
by solving two-player ZSG with incomplete informa-
tion. Different from [25], Song et al. [26] established an
only single-critic network framework to turn theweight
and solve the HJI equation without complete dynam-
ics. The aforementioned ADP-based results were only
researched for two-player ZSG problems. However,
most industrial process plants are commonly controlled
by multiple controllers. This means that the cost func-
tion designed for two-player ZSGs no longer applies
to multi-player ZSGs. Therefore, multi-player ZSGs
should attract more attention. In [27], an off-policy
framework was devised for multi-player ZSG of com-
pletely unknown systems. Therewith, the iterative cost
function, controls and disturbances were obtained. In
[28], the single-criticmechanismwas employed and the
event-based structure was developed in a multi-player
ZSG form to reduce the data transmission and com-
putation. Qiao et al. [29] extended the adaptive critic
mechanism to the problem of combining multi-player
ZSG and optimal tracking control. Then, this work pro-
vided two cases of multi-player ZSG in the simulation
stage.

Note that the most of aforementioned ADP-based
frameworks require theknownsystemdynamics,which
is difficult to achieve accurately in industrial process.

To overcome this disadvantage, system identification
algorithms based on neural networks are utilized to
reconstruct unknown system dynamics by approximate
structures [30–32]. For example, Na et al. [33] utilized
critic-based ADP and identifier network approaches by
means of system data to online address the optimal
tracking control issue. In [34], an ADP mechanism for
a two-player nonlinear ZSG was designed by utilizing
the identifier-critic network. In [35], an intelligent con-
trol mechanism was established by using the recurrent
neural network and a unique critic network, instead
of utilizing the mathematical model. Huo et al. [36]
extended the results to constrained decentralized sys-
tems by utilizing the identifier-critic mechanism.

Subsequently, in order to address the problem
caused by the persistence of excitation (PE) condition,
the experience replay (ER) scheme was designed for
nonlinear systems [37–40]. The ER scheme can effec-
tively utilize the historical and available data simul-
taneously. Under the ER framework, a novel ADP-
based approach was developed in [41] to approximate
the Nash equilibrium for multi-player non-ZSGs with
unknown drift dynamics, which also could accelerate
the convergence rate of critic network weights. In [42],
the critic network was developed with a new weight
updating rule based on the ER method for uncertain
interconnections systems. Thereafter, Zhu et al. [43]
realized the optimal control of constrained-input par-
tially unknown systems. In order to tune the critic net-
work weight, they leveraged the ER algorithm to effec-
tively use the record data. To relax the PE condition,
the ER scheme was introduced to off-policy frame-
work to address the optimal output regulation issuewith
unknown system dynamics [44].

Moreover, control constraints are considered to be
wide-spread factors in practical systems due to the
inherent physical properties of the actuators. As a
result, the system performance is likely poor or even
unstable. Thus, the developed ADP-based controller
is supposed to obtain the desired performance with
control constraints [45–49]. Accounting for control
constraints, an adaptive critic design based on ADP
was implemented for nonlinear non-ZSGs in the two-
player form [50]. Further, an actor-critic architecture
was proposed to approximately gain the Nash equi-
librium by utilizing the real-time data. In [51], the
unknown multi-player ZSG with control constraints
was considered, and the observer-critic structure was
established to tackle the HJI equation. Sun and Liu
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[52] investigated a fixed directed graph structure for
multi-agent systems with control constraints to handle
the distributed differential game tracking issue. Never-
theless, control constraints for multi-player ZSGs are
considered in only few studies. More importantly, the
ADP-based optimal control for ZSGs was also investi-
gated in [26,28,51] and [53]. However, the single-critic
network scheme was not established in [53], the con-
strained control input was not considered in [26] and
[28], and the weight updating rule with the ER technol-
ogywas not analyzed in [51]. These works promote our
research interests. Hence, this article concerns the ER-
based adaptive critic design for unknown multi-player
ZSGs with control constraints.

The innovations of this article can be listed as four
parts.
1. This paper extends the ADP-based scheme to solve

themulti-player ZSG issue for the nonlinear system.
It is appropriate for both two-player ZSG problem
and multi-player ZSG problem.

2. Additionally, by constructing a modified non-
quadratic utility function, control constraints are
considered under the multi-player ZSG situation.

3. Different from the traditional identifier-actor-critic
mechanism [54], the identifier-critic scheme for all
players is developed to solve the HJI equation,
which can further simplify the method structure and
reduce the computing cost.

4. By introducing the ER mechanism, a novel weight
tuning criterion is employed and the PE condition
is relaxed to an easy-checked rank condition [see
Remark 3], whichmeans an easy-to-execute scheme
is designed. Moreover, the uniform ultimate bound-
edness (UUB) stability of the critic network weight
estimation error and the multi-player system can be
both guaranteed.

The outline of the article is summarized as follows. In
Sect. 2, the problem description is provided. In Sect. 3,
a neural network-based identifier is established to iden-
tify the system dynamics, and the stability is proved.
Moreover, the single-critic network scheme is intro-
duced with the stability analysis. In Sect. 4, one simu-
lation example is shown. In Sect. 5, the conclusion is
presented.

2 Problem statement

Consider the multi-player nonlinear ZSG system

ẋ(t) = f (x(t))+
N∑

q=1

gq(x(t))uq(t)

+
M∑

l=1

kl(x(t))dl(t), (1)

where x ∈ R
n denotes the state; uq ∈ R

mq and
dl ∈ R

wl are the constrained control inputs and the
disturbance inputs, respectively. Note that f (x) ∈ R

n ,
gq(x) ∈ R

n×mq and kl(x) ∈ R
n×wl are assumed

unknown and Lipschitz continuous on a compact set
Ω ∈ R

n with f (0) = 0. Let x(0) = x0 be the initial
state and the system is stabilizable on Ω .

Define the cost function as

J (x0,U ,D) =
∫ ∞

0
h(x(t),U ,D)dτ, (2)

where U = {u1, . . . , uN } is the set of constrained
control inputs,

∣∣uq
∣∣ ≤ βq with βq > 0 being

the constraint bound. D = {d1, . . . , dM } is the set
of disturbance inputs, h(x(t),U ,D) = xTQx +
U (U ,D) is the utility function, and U (U ,D) =
2
∑N

q=1Rq
∫ uq
0 βqρ

−T(v/βq)dv − λ2
∑M

l=1 d
T
l dl with

λ denoting the disturbance attenuation level. Q ≥ 0
and Rq ≥ 0 are positive symmetric matrices. More-
over, ρ(·) is a monotonic bounded odd function and
we choose ρ(·) = tanh(·).

Then, the multi-player ZSG subject to (1) is defined
as

J ∗(x0) = inf
u1

inf
u2

· · · inf
uN

sup
d1

sup
d2

· · · sup
dM

J (x0,U ,D),

(3)

where J ∗(x) denotes the optimal cost function.
For themulti-playerZSG, it seeks to attain the saddle

point solution (u∗
q , d

∗
l ) to satisfy the inequalities

J (x,U ∗,D)≤J (x,U ∗,D∗)≤J (x,U ,D∗), (4)

where U ∗ = {u∗
1, u

∗
2, . . . , u

∗
N } and D∗ = {d∗

1 , d∗
2 ,

. . . , d∗
M } indicate the sets of the optimal control strate-

gies and the worst disturbance strategies, respectively.
Based on cost function (2), one has

0=h(x,U ,D)

+(∇ J (x))T

⎛

⎝f (x)+
N∑

q=1

gq(x)uq+
M∑

l=1

kl(x)dl

⎞

⎠,

(5)
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where ∇(·) � ∂(·)/∂x denotes the gradient operator.
The Hamiltonian function is constructed as

H (x,∇ J (x),U ,D)

= xTQx + 2
N∑

q=1

Rq

∫ uq

0
βqρ

−T(v/βq)dv

− λ2
M∑

l=1

dTl dl

+ (∇ J (x))T

⎛

⎝ f (x) +
N∑

q=1

gq(x)uq

+
M∑

l=1

kl(x)dl

)
. (6)

The associated HJI equation can be described as

min
U

max
D

H
(
x,∇ J ∗(x),U ,D

) = 0. (7)

Then, the optimal constrained control policy and the
worst disturbance strategy can be derived from the fol-
lowing stationary conditions

∂H (x,U ,D,∇ J ∗(x))
∂uq

=0, q=1, 2, . . . , N , (8)

∂H (x,U ,D,∇ J ∗(x))
∂dl

=0, l=1, 2, . . . , M. (9)

Therefore, the optimal control law and theworst dis-
turbance law can be obtained by

u∗
q = −βq tanh(B

∗), (10)

d∗
l = 1

2λ2
kTl ∇ J ∗, (11)

where B∗ = (1/(2βq))R−1
q gTq ∇ J ∗.

Inserting (10) and (11) into (7), we can get the HJI
equation expressed as

0 = xTQx

+ 2
N∑

q=1

(
Rq

∫ −βq tanh(B∗)

0
βq tanh

−T(v/βq)dv

)

+ 1

4λ2

M∑

l=1

(
(∇ J ∗)Tkl(x)kTl (x)∇ J ∗

)
+(∇ J ∗)T f (x)

− (∇ J ∗)T
N∑

q=1

(
gq(x)βq tanh(B

∗)
)

. (12)

Note that it is intractable to tackle equation (12).
Generally, the traditional policy iteration (PI) scheme
can be employed to overcome this bottleneck, but this
scheme depends on the system dynamics. Hence, in
the next section, the identifier-critic network frame-
work is developed which can tackle the constrained
multi-player ZSG issue without requiring the system
dynamics.

Remark 1 Obviously, this paper considers the multi-
player ZSGwith control constraints. Therefore, the tra-
ditional quadratic cost function is no longer suitable
for solving such issue. In this paper, the control con-
straint problem can be tackled by utilizing an improved
non-quadratic cost function which restricts the control
policies within the given bound.

3 Approximate solution for multi-player ZSGs

In this section, an identifier-critic framework based
on neural networks is constructed for the multi-player
ZSG problem of unknown dynamics with control con-
straints.

First, an identifier network is designed to relax the
requirement of unknown system dynamics. Then, a
single-critic network is applied and the implementation
process is also given. Finally, the stability is proved by
using the Lyapunov approach.

3.1 System identification

For themulti-playerZSGsystemdynamics is unknown,
an identifier is used to reconstruct the unknown dynam-
ics. System (1) can be reformulated by

ẋ = Sx+ωT
f ϕ f (x)+ε f (x)

+
N∑

q=1

(
ωT
gqϕgq(x)+εgq(x)

)
uq

+
M∑

l=1

(
ωT
klϕkl(x) + εkl(x)

)
dl , (13)

where S ∈ R
n×n is a designed matrix. ω f ∈ R

n×n ,
ωgq ∈ R

n×n , and ωkl ∈ R
n×n represent the ideal

weight matrices. ϕ f (·) ∈ R
n , ϕgq(·) ∈ R

n×mq ,
and ϕkl(·) ∈ R

n×wl denote the activation functions.
ε f (·) ∈ R

n , εgq(·) ∈ R
n×mq , and εkl(·) ∈ R

n×wl are
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bounded reconstruction errors. The activation functions
are picked as the tanh function and satisfy

0 ≤ ϕ(x) − ϕ(y) ≤ δ(x − y), (14)

∀x, y ∈ R and x ≥ y, δ > 0. Based on (13), the output
of the identifier network is written as

˙̂x = Sx̂ + ω̂T
f ϕ f (x̂) +

N∑

q=1

ω̂T
gqϕgq(x̂)uq

+
M∑

l=1

ω̂T
klϕkl(x̂)dl , (15)

where ω̂ f ∈ R
n×n , ω̂gq ∈ R

n×n , and ω̂kl ∈ R
n×n

denote the estimations of the corresponding ideal
weights. Moreover, the identification error is described
as

x̃ = x − x̂ . (16)

Then, the derivative of (16) can be derived as

˙̃x = ẋ − ˙̂x
= Sx̃ + ω̃T

f ϕ f (x̂) + ωT
f

(
ϕ f (x) − ϕ f (x̂)

) + ε f (x)

+
N∑

q=1

(
ω̃T
gqϕgq(x̂) + ωT

gq

(
ϕgq(x)−ϕgq(x̂)

)

+εgq(x)
)
uq

+
M∑

l=1

(
ω̃T
klϕkl(x̂) + ωT

kl

(
ϕkl(x) − ϕkl(x̂)

)

+εkl(x))dl , (17)

where ω̃ f = ω f − ω̂ f , ω̃gq = ωgq − ω̂gq , and ω̃kl =
ωkl − ω̂kl .

Assumption 1 The ideal weights are bounded as
∥∥ω f

∥∥ ≤ ω̄ f ,
∥∥ωgq

∥∥ ≤ ω̄gq , ‖ωkl‖ ≤ ω̄kl ,

where ω̄ f , ω̄gq , and ω̄kl are positive constants.

Assumption 2 The reconstruction errors ε f , εgq , and
εkl are bounded by the identification error function, that
is,

εTf ε f ≤ γ x̃T x̃, εTgqεgq ≤ γ x̃T x̃, εTklεkl ≤ γ x̃T x̃,

where γ is a constant.

Theorem 1 Consider multi-player ZSG (1) with the
system dynamics formulated by (13). The identifica-
tion error x̃ will converge to zero when t → ∞, if the
weights ω̂ f , ω̂gq , and ω̂kl are updated by

˙̂ω f = Λ f ϕ f (x̂)x̃
T,

˙̂ωgq = Λgqϕgq(x̂)uq x̃
T, q = 1, . . . , N ,

˙̂ωkl = Λklϕkl(x̂)dl x̃
T, l = 1, . . . , M, (18)

whereΛ f ,Λgq , andΛkl are symmetric positive definite
matrices.

Proof Select the Lyapunov function as

L3(t) = 1

2
x̃T x̃ + 1

2
tr

(
ω̃T

f Λ
−1
f ω̃ f

)

+
N∑

q=1

1

2
tr

(
ω̃T
gqΛ

−1
gq ω̃gq

)

+
M∑

l=1

1

2
tr

(
ω̃T
klΛ

−1
kl ω̃kl

)
. (19)

Computing the time derivative of L3(t), one has

L̇3(t)=x̃T ˙̃x+tr
(
ω̃T

f Λ
−1
f

˙̃ω f

)
+

N∑

q=1

tr
(
ω̃T
gqΛ

−1
gq

˙̃ωgq

)

+
M∑

l=1

tr
(
ω̃T
klΛ

−1
kl

˙̃ωkl

)
. (20)

Observing (18) and using − ˙̂ω f = ˙̃ω f , − ˙̂ωgq = ˙̃ωgq ,
and − ˙̂ωkl = ˙̃ωkl , we can obtain

tr
(
ω̃T

f Λ
−1
f

˙̃ω f

)
= −x̃Tω̃T

f ϕ f (x̂),

N∑

q=1

tr
(
ω̃T
gqΛ

−1
gq

˙̃ωgq

)
= −x̃T

N∑

q=1

ω̃T
gqϕgq(x̂)uq ,

M∑

l=1

tr
(
ω̃T
klΛ

−1
kl

˙̃ωkl

)
= −x̃T

M∑

l=1

ω̃T
klϕkl(x̂)dl . (21)

Then, we have

L̇3(t) = x̃TSx̃ + x̃TωT
f

(
ϕ f (x) − ϕ f (x̂)

) + x̃Tε f (x)

+ x̃T
N∑

q=1

(
ωT
gq

(
ϕgq(x)−ϕgq(x̂)

))
uq
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+ x̃T
N∑

q=1

εgq(x)uq

+ x̃T
M∑

l=1

(
ωT
kl

(
ϕkl(x) − ϕkl(x̂)

))
dl

+ x̃T
M∑

l=1

εkl(x)dl . (22)

Based on (14), we have

x̃TωT
f

(
ϕ f (x) − ϕ f (x̂)

) ≤ 1

2
x̃TωT

f ω f x̃ + 1

2
δ2 x̃T x̃,

x̃TωT
gq

(
ϕgq(x)−ϕgq(x̂)

) ≤ 1

2
x̃TωT

gqωgq x̃+1

2
δ2 x̃T x̃,

x̃TωT
kl

(
ϕkl(x) − ϕkl(x̂)

) ≤ 1

2
x̃TωT

klωkl x̃ + 1

2
δ2 x̃T x̃ .

(23)

Considering Assumption 2, one has

x̃Tε f (x) ≤ 1

2
x̃T x̃ + 1

2
γ x̃T x̃,

x̃Tεgq(x) ≤ 1

2
x̃T x̃ + 1

2
γ x̃T x̃,

x̃Tεkl(x) ≤ 1

2
x̃T x̃ + 1

2
γ x̃T x̃ . (24)

Hence, (22) can be reconstructed as

L̇3(t)

≤x̃TSx̃+1

2
x̃TωT

f ω f x̃+1

2
δ2 x̃T x̃+1

2
x̃T x̃ + 1

2
γ x̃T x̃

+ 1

2
x̃T

N∑

q=1

(uqω
T
gqωgq x̃) + 1

2
δ2

N∑

q=1

(uq x̃
T x̃)

+ (1 + γ )

2

N∑

q=1

(uq x̃
T x̃) + 1

2
x̃T

M∑

l=1

(dlω
T
klωkl x̃)

+ 1

2
δ2

M∑

l=1

(dl x̃
T x̃) + (1 + γ )

2

M∑

l=1

(dl x̃
T x̃)

= x̃TΓ x̃, (25)

where

Γ = S+1

2
ωT

f ω f +1

2

N∑

q=1

uqω
T
gqωgq+1

2

M∑

l=1

dlω
T
klωkl

+
(
1

2
+1

2
γ+1

2
δ2+ (1 + γ )

2

N∑

q=1

uq+1

2
δ2

N∑

q=1

uq

+ (1 + γ )

2

M∑

l=1

dl + 1

2
δ2

M∑

l=1

dl

)
In (26)

with In denoting the identity matrix. If S is reasonably
chosen to let Γ ≤ 0, then we have L̇3(t) ≤ 0, and
x̃(t) → 0 as t → ∞.

According to Theorem 1, the system dynamics can
be removed. Consequently, system (1) is described by

ẋ = Sx + ω̂T
f ϕ f (x) +

N∑

q=1

ω̂T
gqϕgq(x)uq

+
M∑

l=1

ω̂T
klϕkl(x)dl , (27)

��

3.2 Approximate optimal learning scheme with
single-critic network

For the implementation purpose, only a single-critic
network is constructed to deal with the HJI equation.
The optimal cost function J ∗(x) is expressed as

J ∗(x) = ωT
c ϕc(x) + εc(x), (28)

where ωc ∈ R
nc is the ideal weight, ϕc(x) ∈ R

nc is
the activation function, nc represents the number of
neurons, and εc ∈ R is the reconstruction error.

The partial derivative of (28) is derived as

∇ J ∗(x) = (∇ϕc(x))
Tωc + ∇εc(x). (29)

Then, the approximate formulation of J ∗(x) is writ-
ten as

Ĵ ∗(x) = ω̂T
c ϕc(x), (30)

where ω̂c is the estimated weight. Similarly, one has

∇ Ĵ ∗(x) = (∇ϕc(x))
Tω̂c. (31)

Utilizing the identification result and considering
(10), (11), and (29), we have

u∗
q=−βq tanh

(
1

2βq
R−1
q (ω̂T

gqϕgq)
T
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×
(
∇ϕT

c ωc+∇εc(x)
))

, (32)

d∗
l = 1

2λ2
(ω̂T

klϕkl)
T

(
∇ϕT

c ωc + ∇εc(x)
)

. (33)

In light of (31), the approximate forms of (32) and
(33) are stated as

û∗
q = −βq tanh

(
B̂

)
, (34)

d̂∗
l = 1

2λ2
(ω̂T

klϕkl)
T∇ϕT

c ω̂c, (35)

where B̂ = (1/(2βq))R−1
q (ω̂T

gqϕgq)
T∇ϕT

c ω̂c.
Noticing the identifier-critic framework, the approx-

imate Hamiltonian can be presented as

Ĥ
(
x, ω̂c, û

∗
q , d̂

∗
l

)

= xTQx+2
N∑

q=1

Rq

∫ û∗
q

0
βq tanh

−T(v/βq)dv

−λ2
M∑

l=1

ˆ(d∗
l )

T
d̂∗
l

+ω̂T
c ∇ϕc(x)

(
Sx+ω̂T

f ϕ f (x)+
N∑

q=1

ω̂T
gqϕgq(x)û

∗
q

+
M∑

l=1

ω̂T
klϕkl(x)d̂

∗
l

)
� ec. (36)

Based on the ER approach [42], we define the objec-
tive function as

Ec = 1

2

⎛

⎝eTc ec +
ZP∑

p=1

eT(tp)e(tp)

⎞

⎠ , (37)

where e(tp) = h(x(tp), û∗
q , d̂

∗
l ) + ω̂T

c φp, φp =
∇ϕc(x(tp))(Sx + ω̂T

f ϕ f (x(tp)) + ∑N
q=1 ω̂T

gqϕgq

(x(tp))û∗
q + ∑M

l=1 ω̂T
klϕkl(x(tp))d̂∗

l ), and p ∈ {1, . . . ,
ZP } is the index of the stored samples.

For the minimizing of the objective function Ec, we
construct a novel critic weight tuning law based on
gradient descent technique as follows

˙̂ωc = −αc

(
∂Ec

∂ω̂c

)

= −αcφ(φTω̂c + h(x, û∗
q , d̂

∗
l ))

Fig. 1 Structure of the ADP-based optimal control scheme. The
solid line represents the signal flow,while the dashed line denotes
the neural network back-propagating path

− αc

ZP∑

p=1

φp(φ
T
p ω̂c + h(x(tp), û

∗
q , d̂

∗
l )), (38)

where αc > 0 is the adjustable learning rate of the
critic network and φ = ∇ϕc(x)(Sx + ω̂T

f ϕ f (x) +
∑N

q=1 ω̂T
gqϕgq(x)û∗

q + ∑M
l=1 ω̂T

klϕkl(x)d̂∗
l ).

Remark 2 According to [55], the second term in (38)
tends to relax the PE condition. Differing from the PE
condition, the new condition is convenient to check
during the online learning process. That is to say, the
ER approach is effortless to implement by using the
historical system data.

Remark 3 When using the ER approach, the new con-
dition should be satisfied. Define Ξ = [ϕc(x(t1)), . . . ,
ϕc(x(tZP ))] as the historical data matrix. LetΞ contain
numerous linearly independent elements, i.e., rank(Ξ )
=nc.

Define the weight estimation error of the critic net-
work as ω̃c = ωc−ω̂c. Then, by taking the time deriva-
tive, we have

˙̃ωc=−αcφ
(
φTω̃c−εH

)
−αc

ZP∑

p=1

φp

(
φT
p ω̃c − εHp

)
,

(39)

where εH = −∇εTc (x)(Sx+ω̂T
f ϕ f (x)+∑N

q=1 ω̂T
gqϕgq

(x)û∗
q + ∑M

l=1 ω̂T
klϕkl(x)d̂∗

l ) and εHp = −∇εTc (x(tp))

(Sx + ω̂T
f ϕ f (x(tp)) + ∑N

q=1 ω̂T
gqϕgq(x(tp))û∗

q +
∑M

l=1 ω̂T
klϕkl(x(tp))d̂∗

l ) are the residual errors.
Based on the above discussion, the structure of the

ADP-based optimal control scheme is shown in Fig. 1.
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3.3 Stability analysis

In this subsection, the stability analysis of the multi-
player ZSG is presented. First, the following assump-
tion, which is used in [42,46], and [50], is provided.

Assumption 3 Denote zg , zk , and zωc as positive con-
stants. ω̂gq , ω̂kl , andωc are upper bounded as

∥∥ω̂gq
∥∥ ≤

zg ,
∥∥ω̂kl

∥∥ ≤ zk , and ‖ωc‖ ≤ zωc , respectively.

Assumption 4 Denote zεc , zεcd , zεH , and zεHp
as posi-

tive constants. εc,∇εc, εH , and εHp are upper bounded
guaranteeing ‖εc‖ ≤ zεc , ‖∇εc‖ ≤ zεcd , ‖εH‖ ≤ zεH ,
and

∥∥εHp

∥∥ ≤ zεHp
, respectively.

Assumption 5 Denote zϕc , zϕcd , zϕgq , and zϕkl as posi-
tive constants. ϕc,∇ϕc, ϕgq , and ϕkl are upper bounded
guaranteeing ‖ϕc‖ ≤ zϕc , ‖∇ϕc‖ ≤ zϕcd ,

∥∥ϕgq
∥∥ ≤

zϕgq , and ‖ϕkl‖ ≤ zϕkl , respectively.

Theorem 2 Consider multi-player ZSG (1) with the
identifier network, developed control policy (34) and
disturbance strategy (35), and single-critic network
weight tuning law (38). Then, the UUB stability of the
controlled system state and the critic weight estimation
error is ensured.

Proof Select the Lyapunov function as

L(t) = L1(t) + L2(t) = J ∗(x) + 1

2
ω̃T
c ω̃c. (40)

Calculating the time derivative of L1(t) and using
reconstructed system (27), one has

L̇1(t) = (∇ J ∗(x)
)T (

Sx + ω̂T
f ϕ f (x)

+
N∑

q=1

ω̂T
gqϕgq(x)û

∗
q +

M∑

l=1

ω̂T
klϕkl(x)d̂

∗
l

)
.

(41)

Let

�(uq) = 2
N∑

q=1

Rq

∫ uq

0
βq tanh

−T(v/βq)dv. (42)

According to [55], putting (10) in (41), one has

�
(
u∗
q

)
=βq(∇ J ∗)Tgq(x)tanh

(
B∗)

+λ2 R̄

mq∑

l=1

ln
(
1̄−tanh2

(
B∗
l

))
, (43)

where B∗ = [B∗
1 , B∗

2 , . . . , B∗
mq

]T with B∗
l ∈ R,

l = 1, 2, . . . ,mq . 1̄ is a column vector having all of its
elements equal to 1, and R̄ = [r1, . . . , rmq ] ∈ R

1×mq .
From (10)–(12) and (43), we obtain

(∇ J ∗(x))T(Sx + ω̂T
f ϕ f (x))

=−xTQx−�
(
u∗
q

)
−(∇ J ∗(x))T

N∑

q=1

ω̂T
gqϕgq(x)u

∗
q

− λ2
M∑

l=1

(d∗
l )Td∗

l , (44)

(∇ J ∗(x))T
M∑

l=1

ω̂T
klϕkl(x)d̂

∗
l = 2λ2

M∑

l=1

(d∗
l )Td̂∗

l .

(45)

Thus, (41) becomes

L̇1(t)

= −xTQx − �
(
u∗
q

)

− (∇ J ∗(x)
)T

N∑

q=1

ω̂T
gqϕgq(x)(u

∗
q − û∗

q)

− λ2
M∑

l=1

(d∗
l )T(d∗

l − 2d̂∗
l )

= −xTQx − �
(
u∗
q

)

+βq
(∇ J ∗(x)

)T
N∑

q=1

(ω̂T
gqϕgq(x)(tanh(B

∗)

−tanh(B̂))) − λ2
M∑

l=1

(d∗
l − d̂∗

l )T(d∗
l − d̂∗

l )

+ λ2
M∑

l=1

(d̂∗
l )T(d̂∗

l ). (46)

Then, utilizing (29), Assumption 3–5, and the fact
that �(u∗

q) is positive definite [55], (46) can be rewrit-
ten as

L̇1(t)≤−xTQx + 2βq(ω
T
c ∇ϕc+∇εTc )

N∑

q=1

ω̂T
gqϕgq(x)

− λ2
M∑

l=1

‖d∗
l − d̂∗

l ‖2 + λ2
M∑

l=1

‖d̂∗
l ‖2
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≤ − xTQx + 2βq zωc zϕcd

N∑

q=1

zgzϕgq

+2βq zεcd

N∑

q=1

zgzϕgq+
1

4λ2
z2ϕcd

M∑

l=1

z2k z
2
ϕkl

∥∥ω̂c
∥∥2.

(47)

Recalling ω̃c = ωc − ω̂c, we further get that

L̇1(t) ≤ − xTQx + b2 − 2b1ωcω̃c + b1 ‖ω̃c‖2
≤ − λmin(Q)‖x‖2 − b3‖ω̃c‖2 + b2, (48)

where b1 = (1/(4λ2))z2ϕcd
∑M

l=1 z
2
k z

2
ϕkl

, b2 = 2βq zωc

zϕcd
∑N

q=1 zgzϕgq +2βq zεcd
∑N

q=1 zgzϕgq +b1z2ωc
, and

b3 = (1/2)b21 − b1.
Next, considering (39), the derivative of L2(t) is

formulated as

L̇2(t)=−αcω̃
T
c φφTω̃c−αc

ZP∑

p=1

ω̃T
c φpφ

T
p ω̃c+αcω̃

T
c φεH

+ αc

ZP∑

p=1

ω̃T
c φpεHp . (49)

With the aid of theYoung’s inequality, we can derive
the last two terms of (49) as follows:

αcω̃
T
c φεH ≤ αc

2
ω̃T
c φφTω̃c + αc

2
εTHεH , (50)

αc

ZP∑

p=1

ω̃T
c φpεHp≤

αc

2

ZP∑

p=1

ω̃T
c φpφ

T
p ω̃c+αc

2

ZP∑

p=1

εTHp
εHp.

(51)

Applying Assumption 3–5 and considering (50) and
(51), (49) becomes

L̇2(t)≤−αc

2
λmin(Φ(φ, φp))‖ω̃c‖2+αc(ZP+1)

2
z2εH ,

(52)

where Φ(φ, φp) = φφT + ∑ZP
p=1 φpφ

T
p .

Combining (48) with (52), one has

L̇(t) ≤ − λmin(Q)‖x‖2 − b3‖ω̃c‖2 + b2

−αc

2
λmin(Φ(φ, φp))‖ω̃c‖2+αc(ZP + 1)

2
z2εH .

(53)

Therefore, (53) means L̇(t) < 0, whenever the fol-
lowing inequalities hold

‖x‖ >

√
2b2 + αc(ZP + 1)εH 2

2λmin(Q)
� D1 (54)

or

‖ω̃c‖ >

√
2b2 + αc(ZP + 1)εH 2

2b3 + αcλmin(Φ(φ, φp))
� D2 (55)

with 2b3 + αcλmin(Φ(φ, φp)) > 0. It implies that the
UUB stability of x and ω̃c is guaranteed. ��

4 Simulation

In this section, we deliver a simulation of amulti-player
ZSGwith constrained control inputs to demonstrate the
effectiveness of the established ADP-based identifier-
critic framework.

Consider the multi-player ZSG described as (note:
N = 2, M = 1)

ẋ = f (x) + g1(x)u1 + g2(x)u2 + k(x)d, (56)

where

f (x) =
[ −0.5x1 + 0.4x2

−0.6x1 − 0.6x2 + 0.5x2x21

]
,

g1(x) =
[

0
sin(x1)

]
, g2(x) =

[
0
2x1

]
, k(x) =

[
0
x1

]
.

The system state x = [x1, x2]T ∈ R
2 is initialized to

x0 = [0.8,−0.8]T, and u1, u2 ∈ R are the constrained
control inputs. Let Q = 5I2, R1 = R2 = I , and λ = 2.
In this case, we assume the control inputs u1 and u2 are
constrained by |u1| ≤ 0.4 and |u2| ≤ 0.8, respectively.
Then �(u1) and �(u2) defined in the utility function
are

�(u1) = 2R1

∫ u1

0
(0.4 tanh−1(v/0.4))Tdv,

�(u2) = 2R2

∫ u2

0
(0.8 tanh−1(v/0.8))Tdv,

respectively.
Aiming at study the unknown dynamics of (56), an

identifier network is built to reconstruct system dynam-
ics based on (15). In the system identification stage, the
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Fig. 2 Curves of reconstruction errors

initial weights ω̂ f , ω̂gq , and ω̂kl are chosen randomly as
ω̂ f ∈ [−1, 1], ω̂gq ∈ [−1, 1], and ω̂kl ∈ [−1, 1]. The
identifier activation function ϕ f (·), ϕgq(·), and ϕkl(·)
are selected as ϕ f (·) = ϕgq(·) = ϕkl(·) = tanh(·), and
the learning matrix S = [−1, 0; 0,−1]. The other cor-
responding parameters are designed as Λ f = Λgq =
Λkl = [1, 0.4; 0.1, 0.6].

For the proposed ADP-based approach, we select

the activation function as ϕc(x) = [x21 , x1x2, x22 ]T.
The approximate critic network weight is ω̂c =
[ω̂c1, ω̂c2, ω̂c3]T. The initial weight are randomly
selected as ω̂c ∈ [−1, 1].

We employ the ER method with recorded data to
relax the PE condition. The number of the historical
data samples for the critic network is selected as 12, i.e.,
ZP = 12. Then, the critic network learning scheme is
established for 80 swith the novel critic networkweight
tuning law, which combines the ER technique with the
standard gradient descent algorithm.

Simulation results are depicted in Figs. 2, 3, 4, 5, 6,
and 7. The convergence curves of reconstruction errors
of the neural network-based identifier are depicted in
Fig. 2. As displayed in Fig. 2, reconstruction errors
converge to a small region of origin around t = 20
s. It illustrates that the identifier network can well
reconstruct system (56). Figure3 shows the conver-
gence process of system states for the ZSG with con-
trol constraints. In Fig. 3, it can be observed that sys-
tem states finally converge to the equilibrium point
(0, 0). The convergence process of the critic network
weights is displayed in Fig. 4. From Fig. 4, we can see
that the critic network weights have stabilized after
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Fig. 3 State trajectories
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Fig. 4 Convergence curves of ω̂c

t = 20 s and their values finally converge to ω̂c =
[1.0912, 0.0725, 1.3409]T. To demonstrate the effec-
tiveness of the proposedADP-based learning approach,
we apply the method in [28] to system (56). Then,
the convergence process of the critic network weights
under the method in [28] is shown in Fig. 5. By com-
paring Figs. 4 and 5, it is obvious seen that the devel-
oped algorithm in this paper can accelerate the con-
vergence rate of the critic network weights. Then, the
converged weights are inserted into (34) and (35) to
get the approximate optimal control strategies {û∗

1, û
∗
2}

and the approximate worst disturbance strategy d̂∗ for
nonlinear ZSG (56).

Figure6 shows the trajectory of constrained control
inputs in the control process. As illustrated in Fig. 6, it
can be seen that the constrained control inputs u1 and
u2 are effectively limited by the predetermined bound∣∣uq

∣∣ ≤ βq (q = 1, 2) as expected, which indicates that
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Fig. 5 Convergence curves of ω̂c under the method in [28]
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Fig. 6 Trajectories of constrained control inputs
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Fig. 7 Trajectory of the unconstrained disturbance input

control input signals varywithin the control constraints.
It proves the effectiveness of the constrained policy.

Figure7 presents the trajectory of the unconstrained
disturbance input in the control process. Obviously, it
is proved that the disturbance input converges to an
adjustable neighborhood of the zero. Therefore, the
aforementioned simulation results confirm the effec-
tiveness of the designed ADP-based scheme with the
identifier-critic form.Meanwhile, it also shows that the
identifier-critic framework is applicable to the nonlin-
ear multi-player ZSG with constrained control inputs.

5 Conclusion

In this article, themulti-playerZSG issuewith unknown
system dynamics and control constraints is handled
by employing a novel ADP-based learning framework.
Initially, the neural network-based identifier is adopted
to rebuild the system dynamics by utilizing the sys-
tem data. Then, we define a new non-quadratic func-
tion which addresses the control constraints and obtain
the constrained HJI equation. Furthermore, a single-
critic networkmechanism is designed to approximately
solve the constrained HJI equation. Subsequently, the
novel weight tuning rule base on the ER algorithm is
constructed to approach the optimal control strategies
and the worst disturbance strategies. Hence, the tradi-
tional PEcondition is removedvia the recorded and cur-
rent data. Additionally, the UUB stability of the multi-
player system and the critic network weight approxi-
mation error is analyzed.After that, we demonstrate the
convergence and performance of the proposed scheme
through simulation studies. However, the limitation of
the proposed scheme is the reconstruction error which
inevitably introduced by using an identifier. In the con-
secutive study, how to relax the requirement of system
dynamics without reconstruction errors may be inves-
tigated.
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