Nonlinear Dyn (2023) 111:10617-10627
https://doi.org/10.1007/s11071-023-08382-1

®

Check for
updates

ORIGINAL PAPER

Generation mechanisms of strange nonchaotic attractors
and multistable dynamics in a class of nonlinear economic

systems

Gaolei Li - Jicheng Duan - Denghui Li -
Na Wang

Received: 24 November 2022 / Accepted: 27 February 2023 / Published online: 9 March 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract In this paper, we study strange nonchaotic
attractors (SNAs) and multistable dynamics in a class
of nonlinear economic systems. For quasiperiodically
forced case, the generation and evolution mechanisms
of SNAs are discussed. The fractal, Heagy—Hammel,
torus doubling, and intermittency routes to SNAs are
identified. The Lyapunov exponent, phase-sensitive
function and power spectrum are used to character-
ize the dynamical and geometrical properties of SNAs.
Moreover, when multistable phenomenon occur in
the system, the boundaries of the basin of attraction
may become intertwined, which leads to the economic
unpredictability in the long run.
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1 Introduction

Inrecent years, chaotic dynamics has made many appli-
cations in the field of economics. Benhabib and Day
[1] first introduced the chaotic dynamics theory into
economics. They showed that sequences of rational
choices can be erratic when preferences depend on
experience. Puu [2] used Cournot’s duopoly theory to
study the nonlinear dynamical behavior of two compet-
ing firms in the market. Under the assumption of isoe-
lastic demand and constant unit production cost, the
model shows repeated periodic and chaotic motions.
Chiarella [3] considered the generalized nonlinear sup-
ply function in the traditional cobweb model and
proved that there exists a route from period-doubling
bifurcation to chaos in the locally unstable region. Mat-
sumoto [4] investigated that it is better for the whole
economy to fluctuate in chaos than to be stable in the
long run.

The unemployment-inflation correlation is one of
the most important correlations in economics. Phillips
[5] reported his observations of rising wages and unem-
ployment in 1958. As the first person to notice this, he
pointed out that there is not only a correlation between
inflation and unemployment, but also a negative corre-
lation. In a sense, with the increase in wages, the unem-
ployment rate will decline. In addition, inflation and
unemployment can affect financial markets because it
raises the level of uncertainty, which means an increase
in financial market turbulence [6]. Hence, the dynam-
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ical behaviors of inflation and unemployment models
are a problem worth studying.

In order to further explore the dynamical proper-
ties of a system, one usually applies external exci-
tations, and these external excitations will make the
system exhibit abundant dynamical phenomena [7-9],
such as phase locking, attractor crises, and quasiperi-
odic motion. SNAs usually appear in some systems
with quasiperiodically forced excitation [10-13]. On
the one hand, this class of attractors exhibits the dynam-
ical properties of regular attractors, that is, they are non-
chaotic in the dynamics, since the maximum Lyapunov
exponent is nonpositive. On the other hand, SNAs also
show the geometric characteristics of chaotic attractors,
that is, they have geometric fractal structure.

Over the years, SNAs have been widely studied
experimentally and numerically in different dynami-
cal systems. Pikovky and Feudal et al. [14] first pro-
posed the method of rational number approximate fre-
quency and phase sensitivity function to characterize
the strangeness of SNAs. Ding et al. [15] studied a
class of quasiperiodic excitation systems, in which the
parameter region of SNAs has fractal structure, which
lies between two critical curves, one of which marks the
transition from quasiperiodic attractors to SNAs. The
other marks the transition from SNAs to chaotic attrac-
tors. Romeiras et al. [16] identified SNAs with two-
frequency quasiperiodic forcing in the damped pendu-
lum equation and experimentally observed that SNAs
have power spectral characteristics with different fre-
quencies. Zhang et al. [17] proved that SNAs exist in
the FHN neuron model under weak noise disturbance.
Prasad et al. [18] found that SNAs can be generated by
the collision of an invariant curve with itself. Venkate-
san et al. [19] showed very many types of routes into
chaos through SNAs in a straightforward quasiperiodic
forcing cubic map and distinguished between the two
classes of attractors by the phase diagram and finite
time Lyapunov exponents. In particular, Linder et al.
[20] used data collected by the Kepler space telescope
to find strange nonchaotic stars, which further showed
that strange nonchaotic phenomena are real in nature.

As a special type of attractor, many experts have
devoted to the investigation of irregular dynamical tran-
sitions and mechanisms of SNAs. Several mechanisms
and routes for forming SNAs are described in the lit-
erature, such as fractal route [21], torus collision route
[22], intermittency route [23,24], bubbling route [25],
and blowout bifurcation route [26]. The above litera-
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ture provides further reference for other routes [27-30]
to form SNAs. In additional, a number of mathemat-
ically rigorous results [31-34] on the topic of SNAs
have been reported in recent years.

We are interested in the dynamical behaviors of the
unemployment-inflation system [35] under quasiperi-
odically forced excitations. The paper is organized as
follows. In Sect. 2, we briefly describe a nonlinear eco-
nomic system and introduce the phase sensitivity. Then,
the generation mechanisms of SNAs are discussed in
Sect. 3. The nonchaotic and strange properties of SNAs
are analyzed via phase-sensitive function and power
spectrum in Sect.4. In Sec.5, we uncover a dynami-
cal phenomenon in which a 1T quasiperiodic attractor
and 3T quasiperiodic attractor coexist in the system
and obtain the basin of attraction of these coexisting
attractors. The main results are summarized in Sect. 6.

2 Nonlinear economic system

The unemployment and inflation rate are important fac-
tors that affect social stability and economic devel-
opment. The dynamical analysis of unemployment
and inflation models can deeply understand the cur-
rent economic state and propose reasonable policies
[36-38]. The unemployment rate refers to the propor-
tion of surplus labor force in the whole labor force.
Under the condition of high unemployment rate, the
economy will have a downward trend. Inflation rate
refers to the increase in average price in a contin-
uous period, and consumer price index is generally
used to describe inflation. There are many economic
theories about inflation and unemployment. Among
them, the more authoritative and effective theory is
Phillips curve, which establishes a functional relation-
ship between inflation rate and unemployment rate.
Taking into account the influence of other relevant fac-
tors, we apply a small perturbation to the system of
equations for the Phillips curve, and the form of the
system is obtained as follows.

Xnp1 = (X0 4+ ¢ (B1 4 ae™ + (a — D)xy))
(1 +ecoszy),

ynt1 = (=b (m — (B1 + ae™") — axn) + yn)
(1+ecoszy,),

Zn+1 = Zn + w(mod2m). (D)

where a, b, ¢, m, w, 1, and B, are the system parame-
ters. In order to better understand the dynamical behav-
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iors of the nonlinear economic system, we take ¢, b, and
¢ as the control variables, and fixa = 1, m =2, w =
(v/5—1)/2, B = —2.5,and B> = 20 in what follows.

Chaos in dynamical systems is characterized by its
sensitive dependence on initial conditions, which is
often called “butterfly effect.” The sensitive depen-
dence on small perturbations or initial conditions can be
described by the Lyapunov exponent. In addition, the
Lyapunov exponent can also show the average stretch-
ing or compression rate of each point in the moving
orbit for a long time, which can describe the overall
properties of the dynamics. Take a two-dimensional
map as an example:

Xn+1 = f (xXu, On), )
On4+1 = 6y + 2mrw(mod2r).

According to the definition of Lyapunov exponent,
we have

In | § 12 18f (s 60
X 9
A= lim ——! — [im —Zln‘# . 3)
n—o0 n n—>oonk:O Xy

If the Lyapunov exponent is nonpositive, then the sys-
tem is nonchaotic, which means that there is no sensi-
tive dependence on the initial conditions.

The characterization of strange properties (geomet-
ric fractal structure) of SNAs is a difficult problem.
Pikovsky and Feudel [14] proposed that strange and
nonstrange attractors can be distinguished by tht phase
sensitivity. From the map (2), we get the recurrence
relation:
0Xn11 dxy
W:fﬁ (Xn, On) + fx (xn,en)%- “4)
Equation (4) can be further written as

0xy _ Of (xXn—1,0n-1) of (xp—2,0h—2) Of (Xu—1,0n—1)

a0 30,1 30,2 0Xp—1
of (xn=3,6n—3) 9f (xn—1,0p—1) Of (Xn—2,6h—2)
00,3 0x,—1 0xy—2
af (xn—4, On—4) 0f (Xn—1, On—1)
06,4 0Xp—1
af (xn—2, 0n—2) Of (Xn—3, Oh—3) .. (5)
0x,-2 0x,-3

Accordingto Eq. (2), the equation dx,, /96, = 0x,,/06k
= 0Jx,,/06p holds for any positive integer m and k.
Therefore, the subscript of 6 can be omitted and d.x,, /36
can be called “derivative of variable with respect to
phase.” Hence, Eq. (5) can be rewritten as:

0xXN

N
w0 = Zfo (*k—1, Ok—1) Rn—k (X, Ok)
k=1

10619
dxg
R ,600) —, 6
+Rn (x0, 60) 9 (6)
where
M—1
Ryt s Om) = [ | fe Gt Omg) - (7
i=0

and Ry = 1. The SNAs are nonchaotic, that is, the
Lyapunov exponent X is nonpositive. For sufficiently
large n, the value of R, is very small, so as long as
n = N is large enough, the derivative value can be
approximated by

N
—£~M=;ﬁm+@nm%mﬁy®

Therefore, the strange properties of the attractor can be
verified in terms of whether Sy is bounded or not. To
better characterize the strangeness of SNAs using this
method, consider

yn(x,0) =max|[S,|, (0 <n < N). ©)

If the value of yu increases with the number of itera-
tions N, this means that |Sy | tends to infinity, namely,
the derivative of the state variable with respect to the
phase is not a bounded value. Therefore, with the help
of Eq.(9), the strange properties of the attractor can
be verified. With the increase in the number of itera-
tions, the growth rate of Sy can represent the strange
degree of the attractor, which gives a quantitative index
of strangeness. Next, take m initial points (xq, fp) at
random and compute the minimum value of yy (x, 6)

ermigly;;,(x,e)(i =1,2,3...m). (10)
X,

can more accurately determine whether the attractor is
nonsmooth. In the process of calculation, if the attrac-
tor is nonsmooth, ¥ will increase as N increases.
Assuming that this function increases by a power law
as N - oo

NV ~ N, (11)

where the exponent u is a quantitative characteristic of
the strangeness of the attractor, which is called “phase
sensitivity exponent.” If u =~ 0, then the attractor is
regular. while p # 0, the value of the derivative of the
state variable with respect to the phase increases with
the increase in the number of iterations, and Sy tends
to infinity, so that the attractor is strange (nonsmooth).
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3 Generation mechanisms of SNAs

In this section, we describe four routes for generating
SNAs from quasiperiodic attractors and further discuss
the generation mechanism of these SNAs.

3.1 The fractal route

The attractors get gradually wrinkled without any
interaction with nearby periodic orbits in the fractal
routes. The generation mechanism of such SNAs was
described by Kaneko as early as 1984, but he did not
refer to the emerging new invariant sets as SNAs. In
contrast to other mechanisms for generating SNAs, this
mechanism is difficult to relate to a precise bifurcation
phenomenon. The fractal routes only change the struc-
ture of attractors gradually, and the number of attractors
does not change obviously.

Let us fix the parameter ¢ = 0.75,& = 0.05 and
increase the value of b. For b = 1.35, there are two
smooth branches in the phase diagram, which indicates
that the system (1) is in a doubled torus state denoted
as 2T (see Fig. la). As b is decreased further to 1.4,
the 2T quasiperiodic attractor gets increasingly wrin-
kled and irregular, but the attractor remain continuous
as shown in Fig. 1b. When b = 1.409, the attractor
becomes extremely wrinkled and appears some discon-
tinuous regions (see Fig. 1c). At such values, the attrac-
tor is strange, and the maximum Lyapunov exponent of
the system is negative (Apax = — 0.0441 (see Fig. 2a)).
Thus, the 2T quasiperiodic attractor transforms into an
SNA. For b = 1.412, the SNA eventually evolved into
a chaotic attractor (Fig. 1d) with a fractal structure and
positive maximum Lyapunov exponen ( Amax = 0.0149
(see Fig.2b)). Generally speaking, in the process of
the attractor evolution, an SNA appears only after a
smooth quasiperiodic attractor produces the wrinkle-
like geometry. Therefore, the wrinkling phenomenon
can be regarded as a “prelude” to the generation of
SNAs from fractal routes.

3.2 The Heagy—Hammel route
As the change of control parameters, two stable curve
and unstable invariant curves collide, the stable invari-

ant curves will lose stability, from a quasiperiodic
attractor to an SNA, this route is known as Heagy—
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Hammel route. This mechanism may be closely related
to homoclinic bifurcation.

To better illustrate the transition in the system (1),
let ¢ = 0.4,¢ = 0.02 and b is to be taken as con-
trol parameter. For b = 1.15, there are four smooth
invariant curves in the phase diagram, namely, a 4T
quasiperiodic attractor (see Fig.3a). As b is increased
to 1.163, the 4T quasiperiodic attractor appears wrin-
kled and the distance between adjacent invariant curves
starts to shrink (see Fig.3b). As b increases further to
1.16575, the two adjacent stable invariant curves (blue
lines) collide with the unstable invariant curve (red
dashed lines), which causes the stable invariant curves
become locally nonsmooth (see Fig.3c). As b contin-
ues to increase to 1.166, the 4T quasiperiodic attractor
evolves into an SNA (see Fig.3d). Under this param-
eters, the maximum Lyapunov exponen of the system
(1) is —0.0177, so it can be verified that the attrac-
tor is nonchaotic (see Fig.4). We find that the collision
between the stable 4T quasiperiodic attractor and the
unstable 2T quasiperiodic attractor leads to the creation
of the SNA, and the attractor is discontinuous along the
z-axis, which also further illustrates strangeness of the
attractor.

3.3 The torus-doubling route

The torus-doubling route is that the torus-doubling
bifurcation is interrupted by a subharmonic bifurcation,
and the torus attractor loses stability and evolves into
an SNA. The torus-doubling bifurcation and period-
doubling bifurcation have similarities and differences.
The differences are as follows: (1) the dimension of
attractor is different. (2) When period-doubling bifur-
cation occurs in a system, the Lyapunov exponent is
equal to zero in one direction. When a torus-doubling
bifurcation occurs, the Lyapunov exponent is equal to
zero in two directions. (3) Period-doubling bifurcation
is a typical route to chaos, and torus-doubling bifur-
cation may lead first to an SNA and then to a chaotic
attractor, which is a typical route to SNAs.

In order to illustrate the transformation of torus-
doubling route to SNAs, we can draw the phase dia-
grams in the (x, y) plane for ¢ = 0.75,¢ = 0.001.
For b = 1.07, a 1T quasiperiodic attractor occurs in
the (x,y) plane (see Fig.5a). As the value of b is
decreased b = 1.35, the 1T quasiperiodic attractor
evolves into a 2T quasiperiodic attractor, which is gen-
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Fig.1 Forc =0.75,¢ = 0.05, 3 35
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erated by the torus-doubling bifurcation (see Fig. 5b).
As the value of b is decreased 1.4, the 2T quasiperiodic
attractor again undergoes the torus doubling bifurcation
and the corresponding period-4 quasiperiodic orbit is
denoted as 4T (see Fig.5c). In the generic case, the
torus-doubling phenomena can continue to occur until
a critical point is reached, beyond which the system
will exhibit chaotic motion. However, in the present
case, the torus-doubling phenomenon no longer occurs,
instead the 8T quasiperiodic attractor becomes wrin-
kled and loses smoothness, which is shown in Fig. 5e.

This is because the 8T quasiperiodic attractor collides
with its unstable parent torus. For the attractor exhib-
ited in Fig. Se, the corresponding to the maximum Lya-
punov exponent remains negative (Apax = — 0.0041)
(see Fig.6a). Therefore, the system is in the strange
nonchaotic state for b = 1.43305. It is worth noting
that the interval (1.43, 1.43305) is selected as the can-
didate interval for the existence of SNAs. In the next
section, we will further verify that this interval is cor-
responding to SNAs through phase sensitivity function

@ Springer
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Fig.3 Forc =0.4,¢ =0.02, 35
the phase diagram in the

(z, y) plane 5 \_/\— \ W
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Fig. 4 Forc = 0.4,e = 0.02 and b = 1.166, the maximum
Lyapunov exponent

and power spectrum. Finally, the SNA evolves into a
chaotic attractor with b = 1.44 (see Fig. 5%).

@ Springer

(d) b=1.166

3.4 The type-I intermittency route

In type-I intermittency routes, the torus is eventually
replaced by a strange nonchaotic attractor through the
saddle-node bifurcation. When the Floquet multiplier
of unperturbed system passes through the unit cir-
cle, the attractor loses stability and the phenomenon
is called “type-I intermittency.” Saddle-node bifurca-
tion is a necessary but not sufficient condition for type-I
intermittency occurrence. Another necessary condition
for type-Iintermittency occurrence is that the orbit must
repeatedly enter the neighborhood of the original peri-
odic orbit.

In order to describe SNAs in terms of torus inter-
mittency, let us fix the parameters ¢ = 0.75,¢ =
0.00314 and b varies from 1.42 to 1.43. For b =
1.42, a 4T quasiperiodic attractor with four smooth
branches appears in the (6, x) plane (see Fig.7a). As
b is increased to 1.43, the 4T quasiperiodic attrac-
tor suddenly appears many disordered points near the
orbit, which are the characteristics of type-I intermit-
tency (see Fig.7c and d). From the enlarged figure in
Fig.7d, it can be observed that the attractor has the geo-



Generation mechanisms of strange nonchaotic attractors

10623

Fig.5 Forc =0.75,& = 0.001, 3
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Fig.8 Forc =0.75,¢ = 0.00314, and b = 1.43, the maximum
Lyapunov exponent

metric fractal structure, and the attractor is no longer
smooth. Therefore, the attractor is strange. The non-
chaotic property is represented by the maximum Lya-
punov exponent Amax = — 0.0358 (see Fig. 8).
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4 Determining the strange properties of SNAs

In Sect.2, we introduce the phase sensitivity function
to verify the strange properties of SNAs. Here we take
the SNA generated by the torus-doubling route as an
example (Fig. 5e) to describe the strange properties
of this attractor. The phase sensitivity exponent  and
the maximum derivative value TV of the state variable
with respect to the phase z are calculated. For b = 1.4,
the phase sensitivity exponent u = 0 and the value of
7V tends to a small bounded value as the number of
iterations increases, which means the attractor is reg-
ular (see Fig.9a). In sharp contrast, for b = 1.43305,
the phase sensitivity exponent u = 2.3561 and the
value of 7V tends to infinity as the number of iterations
increases; namely, the attractor is strange; see Fig. 9b.

The power spectrum (Fourier amplitude spectrum)
corresponding to periodic attractors or quasiperiodic
attractors is discrete, and the discrete power spectrum
has some §-peaks. The power spectrum correspond-
ing to the chaotic attractor is continuous and has no
5-peaks. However, SNAs usually appear in the tran-
sition region from quasiperiodic attractors to chaotic
attractors, the power spectrum corresponding to SNAs
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Fig. 9 For ¢ = 0.75, ¢ = 0.001, the phase sensitivity functions

is a special spectrum between discrete and continuous.
This particular spectrum is called singular continuous
spectrum, which exhibits a combination of continuous
and discrete components, and has many §-peaks [39].
We take the Fourier transform of the time series {x,} at
frequency w as {x,} at frequency w as

N
X(w,N) = Zx,,eﬂ””w. (12)
n=1
Hence, the power spectrum of the attractor is defined
as [40]

P, = lim |S(w, N)/N|?, (13)
N—oo

Therefore, we can use singular continuous spectrum
to examine strange properties of the attractor. For the
SNA shown in Fig. 5e, The power spectrum is continu-
ous with many 8-peaks, indicating that the attractor is
strange (see Fig. 10).

5 Multistable analysis

In complex dynamical systems coexistence of attrac-
tors is called multistability or multistable dynamics.
The final state of multistable systems is closely related
to the choice of initial conditions. Small changes in ini-
tial conditions may lead to changes in attractor types.
In this section we extend our analysis to determin-
ing basins of attraction in parameter space. For the sys-
tem parameters ¢ = 0.75,& = 0.01 and b = 0.75, a

1012
10 ‘ |
108 1
b=1.43305
. 108 }
’_r
1041 !
T pu=2.3561
102 ’_/If/ E
7/—f/’
10° -
10° 10" 102 10° 10* 10°
N
(b) b= 1.43305
1010

W

Fig.10 Forc = 0.75,& = 0.001, and b = 1.43305, the singular
continuous spectrum

1T quasiperiodic attractor and 3T quasiperiodic attrac-
tor coexist in the system under different initial val-
ues (2.5,3.5,0) and (2, 2, 0), as shown in Fig. 11. The
attracting domain corresponding to the 1T quasiperi-
odic attractor is green region and the attracting domain
corresponding to white 3T quasiperiodic attractor is
red region. The blue region is infeasible region (see
Fig. 12). The attracting domain of the 3T quasiperiodic
attractor is nested within the 1T quasiperiodic attractor,
and the coexisting basins of attraction are highly inter-
twined implying that small uncertainties in the specifi-
cation of the parameters result in qualitatively different
types of behavior.
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3.5 . 7
3
25]
R NI
2 —
15
1
0 1 2 3 4

Fig. 11 For ¢ = 0.75,¢ = 0.01 and b = 1.07, the coexistence
of 1T and 3T quasiperiodic attractors for different initial values

Fig. 12 For ¢ = 0.75,¢ = 0.0l and b = 1.07, the attract-
ing domain corresponding to the 1T quasiperiodic attractor is
green region and the attracting domain corresponding to white
3T quasiperiodic attractor is red region. The blue region is infea-
sible region. (Color figure online)

6 Conclusions

In this work, the dynamics of a class of nonlinear
economic systems under quasiperiodic excitation is
considered. We identify four types of transitions to
strange nonchaotic attractors as the system parame-
ters are varied: fractal route, Heagy—Hammel route,
torus-doubling route, and intermittent route. The meth-
ods used to numerical investigations are maximal Lya-
punov exponent, Fourier spectrum, and phase sensitiv-
ity function. In additional, a novel dynamical behav-
ior that the 1T quasiperiodic attractor coexists with 3T
quasiperiodic attractors is uncovered. In such cases,
basin of attraction is also obtained to better understand
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the long-term unpredictability of the economic system.
The results of this work offer ideas for the study of
strange nonchaotic dynamics in other systems as well
as provide support for the economic theory and policy
research.
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