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Abstract In this paper, the spatial discrete Hirota
equation is investigated by Darboux–Bäcklund trans-
formation. Firstly, the pseudopotential of the spatial
discrete Hirota equation is proposed for the first time,
from which a Darboux–Bäcklund transformation is
constructed. Comparing it with the corresponding one-
fold Darboux transformation, we find that they are
equivalent because there is no difference except for
a constant times. We believe that this equivalence
may hold universal if these two transformations are
all derived from the same discrete spectral problem
and using the similar technique in the references. Sec-
ondly, starting from vanishing and plane wave back-
grounds, a variety of nonlinear wave solutions, includ-
ing bell-shaped one-soliton, three types of breathers,
W-shaped soliton, periodic solution and rogue wave
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are given, and the relevant dynamical properties and
evolutions are illustrated by plotting figures. The rela-
tionship between parameters and solutions’ structures
is studied in detail, and the related method and tech-
nique can also be extended to other nonlinear integrable
equations. Finally, we show that the continuum limit of
breather and roguewave solutions of the spatial discrete
Hirota equation yields the counterparts of the Hirota
equation. The results in this paper might be useful for
understanding some physical phenomena in nonlinear
optics.

Keywords Spatial discrete Hirota equation ·
Darboux–Bäcklund transformation · Soliton ·
Breather · Rogue wave · Continuum limit

1 Introduction

The Hirota equation introduced in [1] has the form:

iντ = γ (νxx + 2|ν|2ν) + iα(νxxx + 6|ν|2νx), (1)

where the complex function ν = ν(x, τ ) denotes the
wave envelopes, the subscripts represent partial differ-
entiation to τ and x , the parameters γ and α are real
positive constants and i = √−1 stands for imaginary
unit. Equation (1) is a typical integrable system in soli-
ton theory and it has attracted a great deal of attention
because of its physical applications in the vortexmotion
and the nonlinear optics [2]. For Eq. (1), the inverse
scattering transform and Darboux transformation were
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performed and N -soliton solutions, rogue wave solu-
tions and gauge equivalence were generated and sys-
tematically studied [3–7]. By means of the Ablowitz–
Ladik’s formulation, Porsezian and Lakshmanan [8]
constructed the integrable semi-discrete Hirota equa-
tion
iun,t = γ (un+1 − 2un + un−1 + |un|2(un+1 + un−1))

+iα((1 + |un|2)(un+1 − un−1)), (2)

which yields to the Hirota equation (1) in the contin-
uum limit and can be regarded as an integrable semi-
discretizations of Eq. (1). Many excellent and mean-
ingful results related to Eq. (2) have been obtained. For
instance, bright and dark soliton solutions were gen-
erated based on the Hirota bilinear method [9,10] and
Darboux transformation [11], and rogue waves were
given in [12,13]. However, one can check that these
discrete solutions of the semi-discrete Hirota equation
(2) does not converge to the solutions of the Hirota
equation (1). Because of this reason, the following spa-
tial discrete Hirota equation was proposed and investi-
gated [14]

un,t = α(1 + |un |2)[un+2 − un−2 + 2un−1 − 2un+1

+ u∗
n(u

2
n+1 − u2n−1) − |un−1|2un−2 + |un+1|2un+2

+ un(u
∗
n−1un+1 − u∗

n+1un−1)]
− βi(1 + |un |2)(un+1 + un−1) + 2βiun,

(3)

where un = u(n, t) is a complex-valued function of
discrete space variable n and time variable t , un,t =
d
dt un and ∗ denotes the complex conjugate. In [14], the
authors showed that the Lax pair, Darboux transforma-
tion and soliton solutions for the spatial discrete Hirota
equation (3) yield to the corresponding results for the
Hirota equation (1). The higher-order rogue wave solu-
tions, which display triangular patterns and pentagons
with different peaks, were investigated in [15]. By the
Darboux transformation method, the positon solutions
and breather solutions of equation (3) were constructed
in [16]. Interestingly, the newLax pair of the spatial dis-
crete Hirota equation (3) was proposed in [17], from
which the Darboux transformation, soliton solution,
rogue wave solution, breather solution, the continuous
limits and gauge equivalent structure were studied.

To describe and understand the physical phenom-
ena simulated by the discrete integrable equations, it
is significant to obtain and investigate their explicit
exact solutions, especially soliton, breather and rogue
wave solutions. Several effective and skillful methods
for constructing explicit solutions have been proposed

and developed, such as the inverse scattering method
[18], theHirotamethod [19–21], the algebra-geometric
method [22], the discrete Jacobi sub-equation method
[23], the Darboux transformation [24–32] and the
Darboux–Bäcklund transformation [33–35]. Among
these existing methods, the Darboux–Bäcklund trans-
formation has turned out to be one of efficient skills
to obtain soliton solutions. Recently, the pseudopoten-
tial of the Ablowitz–Ladik lattice and semi-discrete
Hirota equation (2) were proposed, from which the
Darboux–Bäcklund transformation of the equations
were established and various localized nonlinear wave
solutions were given [36,37]. Pseudopotential is an
another effective technique to construct the Darboux–
Bäcklund transformation, compared with the Darboux
transformation, it can avoid complex matrix calcula-
tions for us.

To thebest of our knowledge, theDarboux–Bäcklund
transformation based on the pseudopotential for the
spatial discrete Hirota equation (3) has not been
reported before; the relationship between parameters
and solutions’ structures in Eq. (3) has not been inves-
tigated due to its complexity; the continuum limit of
breather solution and rogue wave solution of equa-
tion (3) corresponding to the Lax pair (4) have not
been studied. These three aspects are what we focus
in this paper. The rest of this paper is organized as
follows. In Sect. 2, the Darboux–Bäcklund transforma-
tion is constructed by using the pseudopotential, and
the comparison between it and the one-fold Darboux
transformation is performed. In Sect. 3, various types
of nonlinear wave solutions are given and the relation-
ship between parameters and solutions’ structures is
discussed in detail. In Sect. 4, the continuum limit of
breather solution and roguewave solution related to the
Lax pair (4) is investigated. Some remarks and sum-
mary are presented in the last section.

2 Darboux–Bäcklund transformation of the spatial
discrete Hirota equation

In this section, wewill focus on theDarboux–Bäcklund
transformation for the spatial discrete Hirota equation
(3). FromRef. [14], we know the Lax pair of the spatial
discrete Hirota equation (3) is given by

Eφn = Unφn, φn,t = Vnφn, (4)

where E is the shift operator defined by Eφn = φn+1,
φn = (φn,1, φn,2)

T is vector eigenfunction, T denotes
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the transpose of the vector or matrix and λ ∈ C stands
for the spectral parameter which is independent on the
time t . The matrices Un and Vn have the following
forms:

Un =
(

λ un
−u∗

n λ−1

)
,

Vn = α

(
An(λ, λ−1, un) Bn(λ, λ−1, un)

−Bn(λ
−1, λ, u∗

n) An(λ
−1, λ, u∗

n)

)

+βi

(
Cn(λ, λ−1, un) Dn(λ, λ−1, un)
Dn(λ

−1, λ, u∗
n) −Cn(λ

−1, λ, u∗
n)

)
,

where

An(λ, λ−1, un) = 1

2
(λ4 − λ−4)

− λ2 + λ−2 + λ2unu
∗
n−1

− λ−2un−1u
∗
n − 2unu

∗
n−1 + (unu

∗
n−1)

2

+ (1 + |un−1|2)unu∗
n−2 + (1 + |un|2)un+1u

∗
n−1,

Bn(λ, λ−1, un) = λ3un + λ−3un−1

+ λ−1[(1 + |un−1|2)un−2 + u2n−1u
∗
n − 2un−1],

Cn(λ, λ−1, un) = −unu
∗
n−1 − 1

2
(λ − λ−1)2,

Dn(λ, λ−1, un) = −unλ + un−1λ
−1.

One can directly verify that the discrete zero curvature
condition Un,t = Vn+1Un − UnVn of the Lax pair (4)
gives rise to the spatial discrete Hirota equation (3).

To construct the Darboux–Bäcklund transformation
for the spatial discreteHirota equation (3),we introduce
the variable

	n = φn,1

φn,2
, (5)

which is called as the pseudopotential of equation (3).
Using (4), we obtain

	n+1 = λ(un + λ	n)

1 − λu∗
n	n

,

	n,t = −An	
2
n + Bn	n + Cn, (6)

where

An = −αBn(λ
−1, λ, u∗

n) + βi Dn(λ
−1, λ, u∗

n),

Cn = αBn(λ, λ−1, un) + βi Dn(λ, λ−1, un),

Bn = α
(
An(λ, λ−1, un) − An(λ

−1, λ, u∗
n)

)

+ βi
(
Cn(λ, λ−1, un) + Cn(λ

−1, λ, u∗
n)

)
.

Taking the conjugate of both sides of the first equation
in (6) and solving the equations related to un and u∗

n ,
we get

un = λλ∗2	n	
∗
n	n+1 − λ	n	n+1	

∗
n+1 + λ∗	n+1 − λ2λ∗	n

λλ∗(1 − 	n	∗
n	n+1	

∗
n+1)

.

(7)

Inserting (7) into the second equation of (6), through
a complicated computation,we derive a equationwhich
is made up of 	n−2, 	n−1, 	n , 	n+1, 	n+2 and λ with-
out variables un−2, un−1, un, un+1, this equation is so
tedious that we omit it for brevity. With the help of
Maple, we can verify that this equation is invariant
under the transformations of 	n−2 → 	n−2, 	n−1 →
	n−1, 	n → 	n , 	n+1 → 	n+1, 	n+2 → 	n+2,
λ → λ∗−1. In other words, there exists new variable ũn
satisfying the same form of Eqs. (6) when λ → λ∗−1,
in which ũn is considered as the new solution of equa-
tion (3). From the first equation of (6) and (7), using
the transformation λ → λ∗−1, the relation between the
old solution un and new solution ũn can be derived as

ũn = λλ∗ + 	n	
∗
n

1 + λλ∗	n	∗
n
un + (λ2λ∗2 − 1)	n

λ∗(1 + λλ∗	n	∗
n)

. (8)

which is called as the Darboux–Bäcklund transforma-
tion of Eq. (3). Based on (8), we can iterate the old
solutions un to get new ones ũn . It should be remarked
that if the resulting solution is taken as the new starting
point, and use the Darboux–Bäcklund transformation
(8) once again, then another new solutions of equation
(3) can be obtained. This process can be done continu-
ously. Therefore,we can generate a sequence of explicit
solutions for the spatial discrete Hirota equation (3).

In [14], by means of the Lax pair (4), the one-fold
Darboux transformation related to Eq. (3) was given

ũn = λ

λ∗

(
λλ∗ + 	n	

∗
n

1 + λλ∗	n	∗
n
un + (λ2λ∗2 − 1)	n

λ∗(1 + λλ∗	n	∗
n)

)
.

(9)

Comparing the transformation (8) with (9), we find
there is no difference except for a constant times.Notic-
ing

∣∣ λ
λ∗

∣∣ = 1, so we consider these two transformations
are equivalent. Moreover, we believe the equivalence
may hold universal if the two transformations are all
derived from the same discrete spectral problem and
using the similar methods and techniques employed in
literatures [36,37] and [14,38], respectively. To illus-
trate this fact, we establish the Darboux–Bäcklund
transformation of the generalized discrete Hirota equa-
tion studied in [13] and the discrete complex mKdV
equation proposed in [39]. Comparing with the one-
fold Darboux transformations obtained in [13,39], we
observe that they remain equivalent.
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In [17], by using the other newLax pair, the one-fold
Darboux transformation related to Eq. (3) was derived

ũn = λ2(1 + 	n	
∗
n)

1 + λ2λ∗2	n	∗
n
un + λ2(λ2λ∗2 − 1)	n

λ∗2(1 + λ2λ∗2	n	∗
n)

,

which is not equivalent with the transformation (8).
Therefore, the explicit solutions we obtain in this paper
may be different from the ones given in [17].

Although the transformations (8) and (9) are equiv-
alent, the relationship between parameters and solu-
tions’ structures in Eq. (3) has not been studied due to
its complexity. On the other hand, the continuum limit
of the breather and rogue wave solutions of Eq. (3) cor-
responding to the Lax pair (4) has not been reported
before. These two parts are what we focus on in the
following two sections.

3 Soliton, breather and rogue wave of the spatial
discrete Hirota equation

In this section,we are going to give soliton, breather and
rogue wave for the spatial discrete Hirota equation (3)
by using the obtained Darboux–Bäcklund transforma-
tion (8) from vanishing and plane wave backgrounds,
respectively. To figure out the different collision pro-
cess of solitarywaves and the corresponding dynamical
properties, we assume that n is a continuous variable
from −∞ to +∞ when we plot figures.

3.1 Soliton

Substituting the trivial solution un = 0 into the Lax
pair (4) and solving the related spectral equation, we
obtain

φn,1 = λneχ(λ)t , φn,2 = λ−ne−χ(λ)t , (10)

where χ(λ) = α( 12 (λ
4 −λ−4)+λ−2 −λ2)− 1

2βi(λ−
λ−1)2. Let λ = ea+ib, where a, b are real constants.
Then we rewrite (10) as

φn,1 = eZR+iZI , φn,2 = e−ZR−iZI , (11)

where ZR and ZI are the associate real and imaginary
parts and given by

ZR = an + {α[cos(4b) sinh(4a) − 2 cos(2b) sinh(2a)]
+ β[sin(2b) sinh(2a)]}t,

ZI = bn + {α[sin(4b) cosh(4a) − 2 sin(2b) cosh(2a)]

− β[cos(2b) cosh(2a)] + β}t.

From (11), the pseudopotential (5) of the spatial dis-
crete Hirota equation (3) is derived as

	n = e2ZR+2iZI . (12)

Thus, by using the Darboux–Bäcklund transformation
(8) with (12), a one-soliton solution of the spatial dis-
crete Hirota equation (3) is obtained

ũn = λ(|λ|2 − |λ|−2)e2iZI

2|λ| sech(2ZR + ln |λ|). (13)

The solution (13) is the same as one obtained in
[14], except for the amplitude. However, we mainly
pay attention to some physical quantities related to
solution (13) and investigate the relationship between
the structure of solution (13) and the parameters α, β,
λ. From (13), some important physical quantities such
as amplitude, width, wave number, velocity, primary
phase and energy are listed in Table 1, in which the
energy of |ũn| is defined by E|ũn | = ∫ +∞

−∞ |ũn|2dn.
Based on the Table 1, we find these physical quantities
are invariant once the parameters are determined,which
means the shape, amplitude, wave-length and direction
of the solution |ũn| don’t change during the propaga-
tion and it is much stable. It is easily seen that this one-
soliton solution |ũn| of (13) is nonsingular and displays
the evolution structure of bell-shaped one-soliton for
arbitrary parameters α, β, λ (λ �= 0,±1,±i). When
the parameters α = 0.3, β = 0.2, λ = 0.2 + 0.8i,
the corresponding evolution plots are shown in Fig. 1,
from which we know that |ũn| admits bell-shaped one-
soliton structure and its shape and amplitude keep
invariant during the propagation.

3.2 Breather

Three types of breathers,W-shaped soliton andperiodic
solution to the spatial discreteHirota equation (3) based
on the Darboux–Bäcklund transformation (8) will be
presented in this subsection. For this purpose, take a
nonzero seed solution-plane wave solution

un = ceizn , (14)

where c is a real-valued constant and called as the
amplitude of the plane wave, zn = kn + ωt , k is
wave number and ω is dispersion relation read as
ω = 2β − 2β(1 + c2) cos(k) + 4α(1 + c2)[(3c2 +
1) cos(k) − 1] sin(k). For the plane wave solution (14)
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Table 1 Physical quantities of one-soliton solution |ũn | in (13)

Soliton Amplitude Width Wave number Velocity Primary phase Energy

|ũn |
∣∣∣ λ(|λ|2−|λ|−2)

2|λ|
∣∣∣ 1

2a 2a ν
2a ln |λ|

∣∣∣ λ2(|λ|2−|λ|−2)2

8|λ|2a
∣∣∣

ν = α[cos(4b) sinh(4a) − 2 cos(2b) sinh(2a)] + β[sin(2b) sinh(2a)]

Fig. 1 a Bell-shaped one-soliton |ũn | in (13) with parameters
α = 0.3, β = 0.2, λ = 0.2 + 0.8i

related to the Lax pair (4), breather and rogue wave
solutions and their continuum limits for the spatial dis-
crete Hirota equation (3) have not been studied, which
is the main content of our study in the following.

For the sake of brevity, we introduce a gauge trans-
formation related to the initial solution (14)

φ̃n = Tφn =
⎛
⎝ e− i

2 zn 0

0 e
i
2 zn

⎞
⎠ φn,

under this gauge transformation, we map the variable
coefficient Lax pair (4) to the constant coefficient Lax
pair,

E φ̃n = Ũnφ̃n, φ̃n,t = Ṽnφ̃n, (15)

where

Ũn =
(

λ c
−c λ−1

)
,

Ṽn =
(− i

2ω + αA1 + βiA2 αcA3 + βicA4

−αcB3 + βicB4
i
2ω + αB1 − βiB2

)
,

with

A1 = 1

2
(λ4 − λ−4) − λ2 + λ−2 + (λ2 − 2)c2eik

− λ−2c2e−ik + (3c2 + 2)c2e2ik ,

A2 = −c2eik − 1

2
(λ − λ−1)2,

A3 = λ3 + λ−3e−ik + λ[(1 + 2c2)eik − 2]
+ λ−1[(1 + 2c2)e−2ik − 2e−ik ],

A4 = −λ + λ−1e−ik ,

B1 = 1

2
(λ−4 − λ4) − λ−2 + λ2

+ (λ−2 − 2)c2e−ik − λ2c2eik + (3c2 + 2)c2e−2ik ,

B2 = −c2e−ik − 1

2
(λ − λ−1)2,

B3 = λ−3 + λ3eik + λ−1[(1 + 2c2)e−ik − 2]
+ λ[(1 + 2c2)e2ik − 2eik ], B4 = −λ−1 + λeik .

Solving the corresponding spectral equation related to
the Lax pair (15), we obtain

φ̃n =
(

φ̃n,1

φ̃n,2

)
=

(
C1τ

n
1 e

ρ1t + C2τ
n
2 e

ρ2t

C1
τ1−λ
c τ n1 e

ρ1t + C2
τ2−λ
c τ n2 e

ρ2t

)
,

where C1, C2 are arbitrary constants and

τ1 = 1

2
(λ + λ−1 +

√
λ2 + λ−2 − 4c2 − 2),

ρ1 = − i

2
ω + αA1 + βiA2 + (αA3 + βiA4)(τ1 − λ),

τ2 = 1

2
(λ + λ−1 −

√
λ2 + λ−2 − 4c2 − 2),

ρ2 = − i

2
ω + αA1 + βiA2 + (αA3 + βiA4)(τ2 − λ).

Then, the general solution of the Lax pair (4) associated
with the initial solution (14) can be given by

φn = T−1φ̃n

=
(

(C1τ
n
1 e

ρ1t + C2τ
n
2 e

ρ2t )e
i
2 zn

(C1
τ1−λ
c τ n1 e

ρ1t + C2
τ2−λ
c τ n2 e

ρ2t )e− i
2 zn

)
. (16)

With the help of (16), the pseudopotential (5) of the
spatial discrete Hirota equation (3) is derived as

	n = C1τ
n
1 e

ρ1t + C2τ
n
2 e

ρ2t

C1
τ1−λ
c τ n1 e

ρ1t + C2
τ2−λ
c τ n2 e

ρ2t
eizn . (17)
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Let

μ1 = τ1√
c2 + 1

, μ2 = τ2√
c2 + 1

, η1 = τ1 − λ

c
,

η2 = τ2 − λ

c
, � = (αA3 + βiA4)√

λ2 + λ−2 − 4c2 − 2.

Then, we can equivalently denote (17) as

	n = C1μ
n
1e

�t + C2μ
n
2e

−�t

C1η1μ
n
1e

�t + C2η2μ
n
2e

−�t
eizn . (18)

Since μ1μ2 = 1, η1η2 = 1, we rewrite

μ1 = eκ1+iκ2 , μ2 = e−(κ1+iκ2),

η1 = eα1+iα2 , η2 = e−(α1+iα2), � = ω1 + iω2,

(19)

where κi , αi and ωi (i = 1, 2) are the corresponding
real and imaginary parts, respectively.Noticing thatC1,
C2 in (18) are arbitrary constants, whose roles are only
to change the phase of the nonlinear wave. For the sake
of simplicity, we choose C1 = 1, C2 = −1. Thus, by
(18) and (19), the pseudopotential of the spatial discrete
Hirota equation (3) is constructed as

	n = eθ1+iθ2 − e−(θ1+iθ2)

eθ1+iθ2+α1+iα2 − e−(θ1+iθ2+α1+iα2)
eizn , (20)

where

θ1 = κ1n + ω1t, θ2 = κ2n + ω2t.

From (20), we have

	n = sinh(θ1) cos(θ2) + i cosh(θ1) sin(θ2)

sinh(θ1 + α1) cos(θ2 + α2) + i cosh(θ1 + α1) sin(θ2 + α2)
eizn , (21)

and

	n	
∗
n = cosh(2θ1) − cos(2θ2)

cosh(2θ1 + 2α1) − cos(2θ2 + 2α2)
. (22)

Therefore, by using the Darboux–Bäcklund transfor-
mation (8) with (21) and (22), the nonlinear wave solu-
tion of the spatial discrete Hirota equation (3) is given
by

ũn = |λ|2 + cosh(2θ1)−cos(2θ2)
cosh(2θ1+2α1)−cos(2θ2+2α2)

+ |λ|4−1
cλ∗

sinh(θ1) cos(θ2)+i cosh(θ1) sin(θ2)
sinh(θ1+α1) cos(θ2+α2)+i cosh(θ1+α1) sin(θ2+α2)

1 + |λ|2 cosh(2θ1)−cos(2θ2)
cosh(2θ1+2α1)−cos(2θ2+2α2)

ceizn . (23)

Obviously, the periodicity of the nonlinear wave
solution (23) is mainly affected by θ2. When κ1 = 0,

κ2 �= 0, θ1 is independent of space variable n and θ2
is periodic with respect to n, so solution (23) is peri-
odic in the n direction; while ω1 = 0, ω2 �= 0, θ1 is
independent of time variable t and θ2 is periodic with
respect to t , then solution (23) becomes periodic in the
t direction.

By choosing different parametersλ, c,α,β and k, the
distinct wave structures can be obtained from (23). In
what follows,we proceed to give three types of breather
solutions,W-shaped soliton solution and periodic solu-
tion for the spatial discrete Hirota equation (3) and
illustrate their dynamical properties and propagation
process by plotting figures. Meanwhile, the relation-
ship between parameters and breathers’ structures will
be studied in detail.

Firstly, we will investigate the case where λ is real.
We are going to discuss solution (23) for two cases
under the condition λ2 + λ−2 − 4c2 − 2 �= 0, the case
of λ2+λ−2−4c2−2 = 0 will be discussed in the next
subsection. For the sake of convenience, we define the
four sets related to the real parameters c, α, β and k:

�1 =
{
λ ∈ R : λ < −c −

√
c2 + 1,

c −
√
c2 + 1 < λ < −c +

√
c2 + 1, λ > c +

√
c2 + 1

}
,

�1 =
{
λ ∈ R : α[λ(λ2 − 2) + λ−1 cos(k)(λ−2 − 2)

+ (1+2c2)(λ cos(k)+λ−1 cos(2k))]+βλ−1 sin(k)=0
}
,

�2 =
{
λ ∈ R : −c −

√
c2 + 1 < λ < c −

√
c2 + 1,

− c +
√
c2 + 1 < λ < c +

√
c2 + 1

}
,

�2 =
{
λ ∈ R : α[−λ−1 sin(k)(λ−2 − 2)

+ (1 + 2c2)(λ sin(k) − λ−1 sin(2k))]
+ β(−λ + λ−1 cos(k)) = 0

}
.
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Fig. 2 aTime-periodicKuznetsov–Mabreather |ũn | in (23)with
parameters λ = 2.8950, c = 0.5, α = 0.1, β = 5.0, k = 4.0;
b W-shaped soliton |ũn | in (23) with parameters λ = 0.3552,

c = 0.5, α = 0.1, β = 0.01, k = 0.01; c Spatiotemporally
periodic breather |ũn | in (23) with parameters λ = 2.8, c = 1.0,
α = 0.01, β = 0.2, k = 2.8

Table 2 The relationship between parameter λ and solutions’ structures in (23)

λ κ1, κ2 ω1, ω2 θ1 θ2 |ũn |
λ ∈ �1

⋂
�1 κ1 �= 0, κ2 = 0 ω1 = 0, ω2 �= 0 θ1 = κ1n θ2 = ω2t KM

λ ∈ �1
⋂

�2 κ1 �= 0, κ2 = 0 ω1 �= 0, ω2 = 0 θ1 = κ1n + ω1t θ2 = 0 WS

λ ∈ �1 ∩ CR(�1 ∪ �2) κ1 �= 0, κ2 = 0 ω1 �= 0, ω2 �= 0 θ1 = κ1n + ω1t θ2 = ω2t SB

The KM, WS and SB denote the time-periodic Kuznetsov–Ma breather, W-shaped soliton and spatiotemporally periodic breather,
respectively

Case 1: λ ∈ �1. For real parameters c, α, β and k,
we know that μ1, μ2 in (19) are real when λ ∈ �1.
Meanwhile, we notice that the expression 	n in (18)
are the same whether μ1 > 0, μ2 > 0 or μ1 < 0,
μ2 < 0. Without loss of generality, we suppose that
μ1 > 0, μ2 > 0. Then, we conclude that κ1 �= 0,
κ2 = 0 when λ ∈ �1. In this case, each component of
� in (18) can be split into real and imaginary parts as

� = ω1 + iω2,

where

ω1 = {α[λ(λ2 − 2) + λ−1 cos(k)(λ−2 − 2)

+ (1 + 2c2)(λ cos(k) + λ−1 cos(2k))]
+ βλ−1 sin(k)}

√
λ2 + λ−2 − 4c2 − 2,

ω2 = {α[−λ−1 sin(k)(λ−2 − 2) + (1 + 2c2)(λ sin(k)

− λ−1 sin(2k))] + β(−λ + λ−1 cos(k))}√
λ2 + λ−2 − 4c2 − 2.

When λ ∈ �1
⋂

�1, we can verify that κ1 �= 0,
κ2 = 0, ω1 = 0, ω2 �= 0, that is θ1 = κ1n and θ2 =

ω2t , the nonlinear wave solution (23) is localized in
the n direction and periodic in the t direction, which
can be considered as the time-periodic Kuznetsov–Ma
breather, the amplitude distribution and evolution states
corresponding different n under the condition of λ =
2.8950, c = 0.5, α = 0.1, β = 5.0, k = 4.0 are
illustrated in Fig. 2a. When λ ∈ �1

⋂
�2, it is easy

to verify that κ1 �= 0, κ2 = 0, ω1 �= 0, ω2 = 0, that
is θ1 = κ1n + ω1t and θ2 = 0, the nonlinear wave
solution (23) is localized both in the n and t direction,
the W-shaped soliton solution can be obtained from
(23), the evolution and density contour of this type by
choosing parameters λ = 0.3552, c = 0.5, α = 0.1,
β = 0.01, k = 0.01 are showed in Fig. 2b. When λ ∈
�1

⋂
CR(�1

⋃
�2), we have κ1 �= 0, κ2 = 0, ω1 �=

0, ω2 �= 0, that is θ1 = κ1n + ω1t and θ2 = ω2t ,
the nonlinear wave solution (23) is localized both in
the n and t direction, we can get the spatiotemporally
periodic breather solution from (23),which is displayed
in Fig. 2c by choosing parameters λ = 2.8, c = 1.0,
α = 0.01, β = 0.2, k = 2.8. Comparing with Fig. 2a
and c, we can observe the effect of ω1 to the structure
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10400 F.-C. Fan et al.

Fig. 3 a Space-periodic Akhmediev breather |ũn | in (23) with
parameters λ = 1.7238, c = 1.0, α = 0.1, β = 1.0, k = 3.0;
b Periodic solution |ũn | in (23) with parameters λ = 0.9928,

c = 1.0, α = 0.1, β = 2.0, k = 6.0; c Space-periodic Akhme-
diev breather |ũn | in (23) with parameters λ = 1.4, c = 1.0,
α = 0.1, β = 1.5, k = 1.0

of breather. From Fig. 2b and c, we can show the effect
of ω2 to the structure of solution. Based on the above
facts, we conclude the relationship between parameter
λ and solutions’ structures as presented in Table 2.

Case 2: λ ∈ �2. For real parameters c, α, β and k,
we find that μ1, μ2 are imaginary and |μ1| = |μ2| =
1 when λ ∈ �2, so κ1 = 0, κ2 �= 0. Meanwhile,
each component of � in (18) can be split into real and
imaginary parts as

� = ω1 + iω2,

where

ω1 = −{α[−λ−1 sin(k)(λ−2 − 2)

+ (1 + 2c2)(λ sin(k) − λ−1 sin(2k))]
+ β(−λ + λ−1 cos(k))}

√
−λ2 − λ−2 + 4c2 + 2,

ω2 = {α[λ(λ2 − 2) + λ−1 cos(k)(λ−2 − 2)

+ (1 + 2c2)(λ cos(k) + λ−1 cos(2k))]
+ βλ−1 sin(k)}

√
−λ2 − λ−2 + 4c2 + 2.

When λ ∈ �2
⋂

�1, it is easy to verify that κ1 = 0,
κ2 �= 0,ω1 �= 0,ω2 = 0, that is θ1 = ω1t and θ2 = κ2n,
the nonlinear wave solution (23) is localized in the t
direction and periodic in the n direction, which can be
regarded as the space-periodicAkhmediev breather, the
amplitude distribution and evolution states correspond-
ing different n under the condition of λ = 1.7238,
c = 1.0, α = 0.1, β = 1.0, k = 3.0 are displayed in
Fig. 3a. When λ ∈ �2

⋂
�2, we have κ1 = 0, κ2 �= 0,

ω1 = 0, ω2 �= 0, then θ1 = 0 and θ2 = κ2n + ω2t ,
the nonlinear wave solution (23) is periodic both in

the n and t direction, from (23) we can obtain the peri-
odic solution,which is illustrated in Fig. 3b by choosing
parameters λ = 0.9928, c = 1.0, α = 0.1, β = 2.0,
k = 6.0. When λ ∈ �2

⋂
CR(�1

⋃
�2), we can ver-

ify that κ1 = 0, κ2 �= 0, ω1 �= 0, ω2 �= 0, that is
θ1 = ω1t and θ2 = κ2n + ω2t , the nonlinear wave
solution (23) is localized in the t direction and peri-
odic in the n direction, the space-periodic Akhmediev
breather solution can be obtained from (23), which is
displayed in Fig. 3c by choosing parameters λ = 1.4,
c = 1.0, α = 0.1, β = 1.5, k = 1.0. In this case,
we obtain two types of the space-periodic Akhmediev
breathers as showed in Fig. 3a and c, respectively, from
which we can understand the effect of ω2 to the struc-
ture of breathers. Comparing with Fig. 3b and c, we
can show the effect of ω1 to the structure of solution.
Based on the above facts, we conclude the relationship
between parameter λ and structures of solutions given
in Table 3.

Secondly, we investigate the case where λ is imag-
inary. In this case, for real parameters c, α, β and k,
we are hard to choose appropriate parameters λ so that
μ1, μ2 and � in (18) can be split into real and imagi-
nary parts as above, which makes it challenging for us
to accurately analyse the relationship between param-
eters and breathers’ structures. By experimenting with
a large number of parameters, we find that we can
onlyobtain the spatiotemporally periodic breather solu-
tions when λ is imaginary. For instance, when choosing
λ = 1.5i, c = 1.0, α = 0.4, β = 0.01, k = 0.1 and
λ = 2.0 − 1.2i, c = 1.0, α = 0.01, β = 0.1, k = 0.1,
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Table 3 The relationship between parameter λ and solutions’ structures in (23)

λ κ1, κ2 ω1, ω2 θ1 θ2 |ũn |
λ ∈ �2

⋂
�1 κ1 = 0, κ2 �= 0 ω1 �= 0, ω2 = 0 θ1 = ω1t , θ2 = κ2n AB

λ ∈ �2
⋂

�2 κ1 = 0, κ2 �= 0 ω1 = 0, ω2 �= 0 θ1 = 0 θ2 = κ2n + ω2t PS

λ ∈ �2 ∩ CR(�1 ∪ �2) κ1 = 0, κ2 �= 0 ω1 �= 0, ω2 �= 0 θ1 = ω1t θ2 = κ2n + ω2t AB

The AB, PS denote the space-periodic Akhmediev breather and periodic solution, respectively

the corresponding spatiotemporally periodic breather
solutions are showed in Fig. 4a and b, respectively.

3.3 Rogue wave

The rogue wave solution has the peculiarity of being
localized both in the n and t directions and can be con-
structed from the breather by considering the limit tech-
nique in the mathematical point of view. To establish
the rogue wave solution for the spatial discrete Hirota
equation (3), we take λ2 + λ−2 − 4c2 − 2 = 0, i.e.,
λ = σ1c + σ2

√
c2 + 1 (σ1 = ±1, σ2 = ±1), and

choose C1 = 1, C2 = −1 in (17). In this special case,
the pseudopotential of the spatial discrete Hirota equa-
tion (3) can be derived as

	n = −σ1(
1 + σ2

√
c2 + 1

σ1cn + 2σ1σ2c
√
c2 + 1χ t − σ2

√
c2 + 1

)
eizn , (24)

where χ is given by replacing λ in αA3 + βiA4 with
σ1c+σ2

√
c2 + 1. For the sake of greater clarity, choos-

ing parameters α = 1
10 , β = 5, c = 3

4 , k = 0,
σ1 = 1, σ2 = 1 and substituting (24) into the Darboux–
Bäcklund transformation (8), the discrete rogue wave
solution of the spatial discrete Hirota equation (3) is
derived as

ũn = −3

4

(
1 + 4608000it − 409600

147456n2 + 311040nt + 13124025t2 − 98304n − 103680t + 81920

)
e− 45i

8 t , (25)

from which we know the maximum value of |ũn| is
63
16 at the point (n, t) = ( 13 , 0), the minimum of |ũn| is
always zero and |ũn| → 3

4 (background) as n, t → ∞.
Thus,we obtain |ũn|max=5.25|ũn|n,t→∞. The profile of
the rogue wave solution (25) is showed in Fig. 4c, from
whichwefind it crowds around thepoint (n, t) = ( 13 , 0)
and holds one peakon and two depression points, the
peak amplitude is at least five times the background.

Through a direct calculation, we generate the conser-
vation result

∫ +∞
−∞

(|ũn|2 − 9
16

)
dn = 0, which means

that the roguewave is formed from the flat background.
Based on the facts in the Sects. 3.2 and 3.3, we con-

clude that when λ2+λ−2−4c2−2 �= 0, we are able to
obtain the time-periodicKuznetsov–Mabreather, pace-
periodic Akhmediev breather, spatiotemporally peri-
odic breather, W-shaped soliton solution and periodic
solution for the spatial discrete Hirota equation (3),
while λ2 + λ−2 − 4c2 − 2 = 0, we can construct the
rogue wave solution.

4 Continuum limit of the breather and rogue wave
solutions

As we know, the relationship between discrete inte-
grable systems and its relevant continuous counterparts
is always quite significant. In [14], the authors showed
that the Lax pair, Darboux transformation and soliton
solutions of the spatial discreteHirota equation (3) con-
verge to the corresponding results of the Hirota equa-
tion (1). However, the continuum limit of the breather
solution and rogue wave solution of Eq. (3) related to
theLax pair (4) has not been investigated,which iswhat
we focus on in this section.

Based on the results in [14], we know the spatial
discreteHirota equation (3) leads to theHirota equation

(1) under the transformation

un = δv(x, τ ), x = nδ, τ = 2δ3t, β = 2γ δ.

(26)

For the sake of constructing the continuum limit of the
breather solution and rogue wave solution, we define

λ = eμδ = 1 + δμ + 1

2
δ2μ2 + 1

6
δ3μ3 + o(δ3), (27)
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Fig. 4 aThe spatiotemporally periodic breather |ũn | in (23)with
parameters λ = 1.5i, c = 1.0, α = 0.4, β = 0.01, k = 0.1; b
The spatiotemporally periodic breather |ũn | in (23) with param-

eters and λ = 2.0 − 1.2i, c = 1.0, α = 0.01, β = 0.1, k = 0.1;
c The rogue wave |ũn | in (25) with parameters α = 1

10 , β = 5,
c = 3

4 , k = 0, σ1 = 1, σ2 = 1

where μ is a constant spectral parameter. We suppose
that the continuum limit of 	n is 	. Then, by a direct
analysis of the Darboux–Bäcklund transformation (8),
we obtain the relation between ũn and ṽ:

ũn = δṽ + o(δ), (28)

where

ṽ = v + 2(μ + μ∗)	
1 + 		∗ ,

which is nothing but the one-fold Darboux transforma-
tion of the Hirota equation (1) given in [40].

In what follows, we are going to construct the con-
tinuum limit of the breather solution (23). Setting

c = cδ, k = kδ, (29)

where c and k are real constants. Then, the leading term
of the plane wave solution (14) is given

v = cei(kx+ωτ), ω = γ (k2 − 2c2) + αk(6c2 − k2),(30)

which is just a plane wave solution of the Hirota equa-
tion (1). Notice that τ j ( j = 1, 2) in (16) admits the
equation

τ 2j − (λ + λ−1)τ j + c2 + 1 = 0. (31)

Let τ j = er j δ and using (27) and (29), the leading term
of characteristic Eq. (31) yields continuous counterpart

r2j − μ2 + c2 = 0. (32)

Choosing C1 = 1, C2 = −1 in (17) and using (26),
(27) and (29), we construct the continuum limit of 	n

as

	 = er1x+[(α(4μ2−k2+2c2)+γ k)+2iμ(αk−γ )]r1τ − er2x+[(α(4μ2−k2+2c2)+γ k)+2iμ(αk−γ )]r2τ
r1−μ
c er1x+[(α(4μ2−k2+2c2)+γ k)+2iμ(αk−γ )]r1τ − r2−μ

c er2x+[(α(4μ2−k2+2c2)+γ k)+2iμ(αk−γ )]r2τ e
i(kx+ωτ), (33)

where r1, r2 are obtained from (32), i.e. r1 = √
μ2 − c2

and r2 = −√
μ2 − c2. We can verify r1−μ

c
r2−μ
c = 1,

so we define r1−μ
c = eα2+iβ2 , r2−μ

c = e−(α2+iβ2). Let
r1 = κ1 + iκ2, [(α(4μ2 − k2 + 2c2) + γ k) + 2iμ(αk−
γ )]r1 = ω1 + iω2, then r2 = −(κ1 + iκ2), [(α(4μ2 −
k2 + 2c2) + γ k) + 2iμ(αk − γ )]r2 = −(ω1 + iω2).
Here, αi, κi and ωi (i = 1, 2) are the corresponding
real and imaginary parts, respectively. Based on these
facts, we can write (33) as

	 = eθ1+iθ2 − e−(θ1+iθ2)

eθ1+iθ2+α1+iα2 − e−(θ1+iθ2+α1+iα2)
ei(kx+ω) (34)

where

θ1 = κ1x + ω1τ, θ2 = κ2x + ω2τ.

Substituting (34) into (28), by a complicated computa-
tion, the breather solution of the Hirota equation (1) is
derived
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Table 4 The relationship between parameter μ and solutions’ structures in (35)

μ κ1, κ2 ω1, ω2 θ1 θ2 |ṽ|
μ ∈ �1

⋂
�1 κ1 �= 0, κ2 = 0 ω1 = 0, ω2 �= 0 θ1 = κ1x θ2 = ω2τ KM

μ ∈ �1
⋂

�2 κ1 �= 0, κ2 = 0 ω1 �= 0, ω2 = 0 θ1 = κ1x + ω1τ θ2 = 0 WS

μ ∈ �1 ∩ CR(�1 ∪ �2) κ1 �= 0, κ2 = 0 ω1 �= 0, ω2 �= 0 θ1 = κ1x + ω1τ θ2 = ω2τ SB

μ ∈ �2
⋂

�1 κ1 = 0, κ2 �= 0 ω1 �= 0, ω2 = 0 θ1 = ω1τ , θ2 = κ2x AB

μ ∈ �2
⋂

�2 κ1 = 0, κ2 �= 0 ω1 = 0, ω2 �= 0 θ1 = 0 θ2 = κ2x + ω2τ PS

μ ∈ �2 ∩ CR(�1 ∪ �2) κ1 = 0, κ2 �= 0 ω1 �= 0, ω2 �= 0 θ1 = ω1τ θ2 = κ2x + ω2τ AB

The KM, WS, SB, AB, PS denote the time-periodic Kuznetsov–Ma breather, W-shaped soliton, spatiotemporally periodic breather,
space-periodic Akhmediev breather and periodic solution

ṽ =
⎛
⎝1 +

2(μ+μ∗)
c

sinh(θ1) cos(θ2)+i cosh(θ1) sin(θ2)
sinh(θ1+α1) cos(θ2+α2)+i cosh(θ1+α1) sin(θ2+α2)

1 + cosh(2θ1)−cos(2θ2)
cosh(2θ1+2α1)−cos(2θ2+2α2)

⎞
⎠ cei(kx+ω). (35)

Obviously, the periodicity of solution (35) is mainly
effected by θ2. In a similar way as in the Sect. 3.2,
we can get the time-periodic Kuznetsov–Ma breather,
space-periodic Akhmediev breather, spatiotemporally
periodic breather, W-shaped soliton and periodic solu-
tion for the Hirota equation (1). For the real parameters
α, γ , c and k, we define the following four sets:

�1 = {μ ∈ R : μ < −|c|, μ > |c|} ,

�1 =
{
μ ∈ R : α(4μ2 − k2 + 2c2) + γ k = 0

}
,

�2 = {μ ∈ R : −|c| < μ < |c|} ,

�2 = {μ ∈ R : μ(αk − γ ) = 0} .

Then, the relationship between parameters and solu-
tions’ structures in (35) for Eq. (1) is provided in
Table 4.

Next, we are going to construct the continuum limit
of the rogue wave solution from (24) with k = 0. By
virtue of (26), (27) and (29), we obtain the correspond-
ing continuum limit of 	n in (24) as

	 = −σ1

(
1 + σ2

σ1cx + 4σ1σ2c2(3ασ2c − iγ σ1)τ − σ2

)
e−2iγ c2τ .

(36)

Inserting (36) into (28), through a tedious calculation,
the rogue wave solution of the Hirota equation (1) is
obtained

ṽ = −
(
1 + 16c2γ iτ − 2

32c4(9α2c2 + γ 2)τ 2 + 2c2x2 + 48αc4τ x − 2σ1cx − 24ασ1c3τ + 1

)
ce−2iγ c2τ . (37)

As well known, different seed solutions to the same
equationmay lead to different new ones. Notice that the
seed solution (30) is different from one in [40], so the
breather solution (35) and the rogue wave solution (37)
of Eq. (1) may be different from the ones given in [40].
Further, we can conclude that when μ2 − c2 �= 0, we
are able to obtain the breather solutions for the Hirota
equation (1), while μ2 − c2 = 0, we can construct the
rogue wave solution.

5 Conclusions

In this paper, the pseudopotential of the spatial dis-
crete Hirota equation (3) is proposed for the first time,
from which a Darboux–Bäcklund transformation (8) is
constructed. Comparing it with the one-fold Darboux
transformation obtained in [14], we find they are equiv-
alent because there is nodifference except for a constant
times. And we believe this equivalence may hold uni-
versal if these two transformations are all derived from
the same discrete spectral problem and using the sim-
ilar technique in literatures [14] and [36,37], respec-
tively. Various types of nonlinear wave solutions of
Eq. (3), including bell-shaped one-soliton, three types
of breathers, W-shaped soliton, periodic solution and
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roguewave are given by using the obtained transforma-
tion (8), their evolutions and dynamical properties are
illustrated graphically. Some important physical quan-
tities such as amplitude, width, wave number, veloc-
ity, primary phase and energy of the bell-shaped one-
soliton |ũn| in (13) are listed in Table 1. Based on the
nonlinear wave solution (23), the relationship between
parameter λ and solutions’ structures is presented in
Tables 2 and 3. Finally, we show the continuum limit of
breather and roguewave solutions of the spatial discrete
Hirota equation (3) yields the counterparts of theHirota
equation (1), and the relationship between parameter
μ and solutions’ structures is provided in Table 4. The
method and technique used in this paper can also be
applied to some other nonlinear integrable equations.
The results in this papermight be useful for understand-
ing some physical phenomena in nonlinear optics.
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