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Abstract Variable coefficients (3+1)-generalized shal-
low water wave equation (GSWE) is investigated via
modified Hirota bilinear method. This method is pre-
sented for the first time. Compared with other methods,
it solves solutionwithout setting solution and calculates
transformations without making logarithmic transfor-
mations. The rational transformation is first utilized to
transform GSWE. According to homogeneous balance
principle, the relation between F and G in rational
transformation can be calculated by utilizing. Solu-
tions that included rogue wave solutions, interaction
solutions, breather solutions and so on, are obtained
and depicted graphically. Figures are given out to the
dynamic characteristics of the solution. Furthermore,
the results obtained demonstrate that this approach is
more direct, generalized, effective and holds for many
nonlinear partial differential equations.
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1 Introduction

Nonlinear issue is an interdisciplinary subject which
studies nonlinear phenomena. Research activities on
solitons theory have attracted more attention with
expanded applications in many scientific fields. There-
fore, it is very important and meaningful to consider
the solution of nonlinear partial differential equations
(NLPDEs). Recently, several effective methods have
been established, including G ′

G −expansion method [1–
5], exp-expansion method [6–10], auxiliary equation
method [8,11,12], the symmetric transformation [12,
13], Backlund transformation [14], and so on. These
methods are used to investigate integrability and differ-
ent exact solutions. But most solutions are only solitary
wave solutions. With the introduction of Hirota bilin-
ear method [15–19,24,25], linear superposition princi-
ple and perturbation method are applied to extensively
solve multi-soliton solutions, rogue wave solutions and
others. Hirota bilinear method enriches the solutions of
NLPDEs. The discovery of multi-soliton solutions via
a direct method was done by Ryogo Hirota [16], but
there are no considering rogue wave solutions and oth-
ers. The author has used bilinear derivative operators
to derive Ito equation to bilinear form, and successfully
solved multi-soliton and lump solutions [25]. How-
ever, research ofmost scholars is in constant coefficient
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NLPDEs. For comprehensive understanding the phys-
ical phenomena and features, NLPDEs with variable
coefficients have been became particularly significant.
In the literature [18], rogue wave and lump solutions
of variable coefficient B-type Kadomtsev–Petviashvili
equation have thus been calculated with Hirota bilinear
method.These solutions arousewide concern of the sci-
entists to the traveling multi-wave and play an impor-
tant role in nonlinear sciences, such as optical fiber
communications, fluid dynamics and plasma physics.

In a large number of literature, the linear super-
position principle and its extended have provided a
direct way of searching multi-soliton solutions, rogue
wave solutions and others from the bilinear equations.
But there are few research on NLPDEs with vari-
able coefficients. Therefore, this work analyzes (3+1)-
dimensional variable coefficients generalized shallow
water equation(GSWE) [15,20–22], which is used to
describe traveling wave propagation in ocean, estuary,
atmosphere and tsunami prediction.

α(t)uyt + β(t)uxxxy + γ (t)uxz + δ(t)(uxuy)x = 0,

(1)

where α(t), β(t), γ (t), δ(t) are real functions. Addi-
tionally, Eq. (1) can easily become J imbo − −Miwa
equation [16,24]

2uyt + uxxxy − 3uxz + 3uxxuy + 3uxuxy = 0, (2)

which is derived by KP equation, and if z = y, uyt =
uxt , Eq. (1) can reduce to (2+1) GSWE [21]

uyt + αuyuxx + 2αuxuxy + βuxy + γ uxxxy = 0. (3)

As we all know, bilinear formulism satisfies linear
superposition principle. And many equations can be
transformed under the transformation

u(x, y, t) = log( f (x, y, t))x & log( f (x, y, t))xx ,

where f = f (x, y, t) is assumed as follows:

f = 1 + ea1x+a2 y+a3t + · · · ,

f = (a1x + a2y + a3t)
2 + (a4x + a5y + a6t)

2,

f = ek1x+k2 y+k3t + cos(k4x + k5y + k6t)

+ cosh(k7x + k8y + k9t),

f = (a1x + a2y + a3t)
2 + (a4x + a5y + a6t)

2

+ek1x+k2 y+k3t ,

...

f = (a1x + a2y + a3t)
2 + (a4x + a5y + a6t)

2

+ sin(k1x + k2y + k3t).

whereai , k j are the complex constants, i, j = 1, 2, 3, · · ·
For instance, f composed for twopolynomial functions
is used to solve lump solutions, f composed for many
exponential functions is used inmulti-soliton solutions,
f composed for exponential, trigonometric and hyper-
bolic functions is used in breather solutions, etc. There
is a feature that f is composed for kinds of functions.

Thus, the main thought is that these functions in f
are tried to generalize as auxiliary equation function

G ′′(ζ ) = λG ′(ζ ) + μG(ζ ), (4)

which is introduced by Wang Mingliang [1] in 2008.
And its solution is

G(ζ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G1(ζ ) = (b1 sinh(
√

Δ
2 ζ )

+b2 cosh(
√

Δ
2 ζ ))e− λ

2 ζ ,Δ > 0

G2(ζ ) = (b1 sin(
√−Δ
2 ζ )

+b2 cos(
√−Δ
2 ζ ))e− λ

2 ζ ,Δ < 0

G3(ζ ) = (b1 + b2ζ )e− λ
2 ζ ,Δ = 0

(5)

where Δ = λ2 + 4μ, λ,μ, b1, b2 are the constants. In
Sect. 2, (3+1)-dimensional variable coefficients GSWE
is successfully calculated via modified Hirota bilinear
method. The solutionswill be generated from exponen-
tial, polynomial, trigonometric and hyperbolic func-
tions. Finally, some conclusions are given in Sect. 3.

2 Application for (3+1)-D variable coefficients
GSWE

For facilitating calculation, via inserting

u(x, y, z, t) = wx (x, y, z, t), (6)

into Eq. (1) and integrating it with respect to x yields,
Eq. (1) can be transformed into an equivalent form

α(t)wyt +β(t)wxxxy + γ (t)wxz

+δ(t)wxxwxy = 0. (7)

Then, substituting the rational transformation

w(x, y, z, t) = F(x, y, z, t)

G(x, y, z, t)
, (8)

into Eq. (7), and an equation about F(x, y, z, t) and
G(x, y, z, t) can be obtained

P(F,G, Ft ,Gt , Fx ,Gx , Fy,Gy, Fz,Gz, · · · ) = 0.

(9)

NextΦ andΨ selected from Eq. (9) add to zero, and
the relation between F(x, y, z, t) and G(x, y, z, t) can
be obtained. Φ and Ψ meet the following conditions.
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1. Φ is obtained by rational transformation of the
highest order linear term inEq. (7);Ψ is obtained by
rational transformation of the highest power non-
linear term in Eq. (7).

2. Φ andΨ are formed from F(x, y, z, t),G(x, y, z, t)
and their first-order differentials.

In short, via equating the coefficients of 1
G5 to zero in

Eq. (9), the relation can be obtained

F = 6β(t)Gx

δ(t)
. (10)

When Eq. (10) is substituted into Eq. (9), the bilinear
form of GSWE is calculated

1

G2 DGSWE

= 1

G2

{

−6β(t)

δ(t)

[

α(t)GtGy + γ (t)GzGx

+β(t)(−3GxyGxx + 3GxGxxy + GyGxxx )

]

+G

[

α(t)

((
6β(t)

δ(t)

)′
Gy + 6β(t)

δ(t)
Gyt

)

+6β(t)

δ(t)

(
γ (t)Gxz + β(t)Gxxxy

)
] }

= 0. (11)

According to the above in Sect. 1, auxiliary equation
function are used to generalize functions in f and to
derive solutions for Eq. (1). So the transformation (12)
and auxiliary equation(13) are introduced

G = a1g(ξ) + a6 f (η),

ξ = a2x + a3y + a4z + a5(t),

η = a7x + a8y + a9z + a10(t), (12)

g′′(ξ) = λgg
′(ξ) + μgg(ξ), f ′′(η)

= λ f f
′(η) + μ f f (η), (13)

where ai (i = 1 − 4, 6 − 9), λ f , λg, μ f , μg are real
constants, a5(t), a10(t) are real functions. In addition,
Eq. (13) is essentially Eq. (4). When the parameters
of auxiliary equation is evaluated for different values,
g(ξ), f (η) will present different function forms.

According to Eqs. (6), (8), (10), transformation (12)
and introduce auxiliary equation(13), the initial solu-
tion is obtained

u = 6γ (t)

δ(t)

[
a1a22μgg(ξ) + a6a27μ f f (η)

a1g(ξ) + a6 f (η)

+a1a22λgg′(ξ) + a6a27λ f f ′(η)

a1g(ξ) + a6 f (η)

−
(
a1a2g′(ξ) + a6a7 f ′(η)

a1g(ξ) + a6 f (η)

)2
]

. (14)

It is obvious from the initial solution that a lot of
unknowns for ai , f (η), g(ξ) are considered. So sub-
stituting transformation (12) into Eq.(11) and equating
all the coefficients of the f j gk( f ′)l(g′)m( j, k, l,m =
0, 1, 2 · · · ) term to zero, we have the following sets of
constraints:
Family-1

a1 = a1, a2 = a2, a3 = a3, a4 = a4,

a5(t) = −
∫ t

0

a2a4γ (t∗) + 4a32a3μgβ(t∗)
a3α(t∗)

dt∗,

a6 = a6, a7 = a7, a8 = a3a7
a2

, a9 = a9,

a10(t) = −
∫ t

0

a2a9γ (t∗) + 4a22a3a7μgβ(t∗)
a3α(t∗)

dt∗,

λg = 0, μg = μg, λ f = 0, μ f

= a22
a27

μg,
6β(t)

δ(t)
= a11. (15)

where a11 is integration constant. With help of the
above solved relationship and translation Eq. (12), we
have

ξ1 = a2x + a3y + a4z

−
∫ t

0

a2a4γ (t∗) + 4a32a3μgβ(t∗)
a3α(t∗)

dt∗,

η1 = a7x + a3a7
a2

y + a9z

−
∫ t

0

a2a9γ (t∗) + 4a22a3a7μgβ(t∗)
a3α(t∗)

dt∗. (16)

Since the parameters of the auxiliary equation are
unknown quantities, the solutions are considered as the
following three cases.
Case 1 If the parameters are taken as

μg > 0, μ f > 0, (17)

g(ξ1) and f (η1) are identified as hyperbolic function
because of solution of the auxiliary equation Eq. (5).
According to g(ξ1) and f (η1) considered in the previ-
ous article, the initial solution Eq. (14) and parameters
Eqs. (15), (16), these results give the soliton solution

u1 = a11a
2
2μg{1 − [a1(b2g sinh(√μgξ1)

+b1g cosh(
√

μgξ1)) + a6(b2 f sinh(
√

μ f η1)

+b1 f cosh(
√

μ f η1))]2[a1(b1g sinh(√μgξ1)

+b2g cosh(
√

μgξ1)) + a6(b1 f sinh(
√

μ f η1)
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+b2 f cosh(
√

μ f η1))]−2}. (18)

Case 2 If the parameters are taken as

μg < 0, μ f < 0, (19)

g(ξ1) and f (η1) are identified as trigonometric func-
tions by Eq. (5). According to Eq. (15), Eqs. (16) and
(14), the periodic soliton solution is analogized

u2 = a11a
2
2μg{1 + [a1(b2g sin(

√−μgξ1)

−b1g cos(
√−μgξ1)) + a6(b2 f sin(

√−μ f η1)

−b1 f cos(
√−μ f η1))]2[a1(b1g sin(

√−μgξ1)

+b2g cos(
√−μgξ1)) + a6(b1 f sin(

√−μ f η1)

+b2 f cos(
√−μ f η1))]−2}. (20)

Case 3 If the parameters are taken as

μg = μ f = 0, (21)

g(ξ1) and f (η1) are identified as polynomial functions
by Eq. (5). According to Eqs. (15), (16) and (14), the
rational soliton solution is obtained

u3 = −a11

(
a1a2b2g + a6a7b2 f

a1(b1g + b2gξ1) + a6(b1 f + b2 f η1)

)2

.

(22)

From (15), Δg and Δ f are linearly correlated, and
have the same positive and negative properties. There-
fore, f (ξ1) and g(η1) have the same function form.
The localized structures of Eqs. (18), (20) with Eq.
(22) for particular values of the parameters are shown
in Fig. 1. The 3D graph corresponding to solutions
is drawn, wherein we take a1 = a2 = a4 = a7 =
a11 = b1g = a9 = μg = b2 f = 1, b2g = 2, a3 =
a6 = b1 f = −1, α(t) = t, β(t) = γ (t) = 1 for u1,
a1 = a2 = a4 = a7 = a11 = b1g = a9 = b2 f =
1, b2g = 2, a3 = a6 = μg = b1 f = −1, α(t) =
t, β(t) = γ (t) = 1 for u2, and a1 = a2 = a4 = a7 =
a11 = b1g = 1, a6 = a9 = b2 f = 2, a3 = b1 f =
−1, b2g = 2, α(t) = t, β(t) = γ (t) = 1 for u3.
Family-2

a1 = a1, a2 = a2, a3 = a3, a4 = a4,

a5(t) = −
∫ t

0

a2a4γ (t∗) + a32a3λ
2
gβ(t∗)

a3α(t∗)
dt∗,

a6 = a6, a7 = 0, a8 = 0, a9 = a9,

a10(t) = −
∫ t

0

a2a9γ (t∗)
a3α(t∗)

dt∗,

λ f = λ f , μ f = μ f , λg = λg, μg = 0,
6β(t)

δ(t)
= a11.

(23)

And then, we have

ξ2 = a2x + a3y + a4z

−
∫ t

0

a2a4γ (t∗) + a32a3λ
2
gβ(t∗)

a3α(t∗)
dt∗,

η2 = a9z −
∫ t

0

a2a9γ (t∗)
a3α(t∗)

dt∗. (24)

Here, the solution is considered as follows.
Case 1 If the parameters is taken as

λg �= 0, λ2f + 4μ f > 0, (25)

g(ξ2) and f (η2) are identified as mixture of hyperbolic
and exponential functions through Eq. (5). According
to Eqs. (23), (24) and (14), solution is

u4 = a11

{
a1a22λ

2
g(b1g − b2g)e−λgξ2

a1[b2g ± b1g + (b2g ∓ b1g)e−λgξ2 ] + 2a6 f (η2)

−
(

a1a2λg(b1g − b2g)e−λgξ2

a1[b2g ± b1g + (b2g ∓ b1g)e−λgξ2 ] + 2a6 f (η2)

)2}

.

(26)

where

f (η2) = G1|ζ=η2,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f

= [b1 f sinh(
√

λ2f + 4μ f

2
η2)

+b2 f cosh(

√
λ2f + 4μ f

2
η2)]e− λ f

2 η2 . (27)

The 3Dgraph and contour graph corresponding to solu-
tions are drawn in Fig. 2, wherein we take a1 = a2 =
a9 = a11 = 1, a3 = a4 = −1, a6 = −2, b1g =
2b2g = 2b1 f = b2 f = λg = 2, α(t) = 1, β(t) =
cos(t), γ (t) = 1.
Case 2 If the parameters are taken as

λg �= 0, λ2f + 4μ f < 0, (28)

g(ξ2) is mixture of hyperbolic and exponential func-
tions, f (η2) is mixture of trigonometric and exponen-
tial functions. In particular, form of the solution u5 in
this case is analogous to last case. Thus, we can obtain

u5 = a11{
a1a22λ

2
g(b1g − b2g)e−λgξ2

a1[b2g ± b1g + (b2g ∓ b1g)e−λgξ2 ] + 2a6 f (η2)

−(
a1a2λg(b1g − b2g)e−λgξ2

a1[b2g ± b1g + (b2g ∓ b1g)e−λgξ2 ] + 2a6 f (η2)
)2},
(29)

whereas

f (η2) = G2|ζ=η2,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f
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Fig. 1 3D graph of u1(left),u2,u3(right)

Fig. 2 3D graph (up) and contour graph (down) of u4 at Δ f > 0(λ f = 1, μ f = 3
4 )

= [b1 f sin(
√

−λ2f − 4μ f

2
η2)

+b2 f cos(

√
−λ2f − 4μ f

2
η2)]e− λ f

2 η2 . (30)

The 3Dgraph and contour graph corresponding to solu-
tions are drawn in Fig. 3, wherein we take a1 = a2 =
a9 = a11 = 1, a3 = a4 = −1, a6 = −2, b1g =
−1, b2g = b1 f = 1, b2 f = 0, λg = 2, α(t) = β(t) =
1, γ (t) = t.

Case 3 If the parameters are taken as

λg = 0, λ2f + 4μ f > 0, (31)

g(ξ2) is polynomial function, f (η2) is mixture of
hyperbolic and exponential functions. Likewise, solu-
tion is obtained

u6 = −a11a21a
2
2b

2
2g

(a1(b1g + b2gξ2) + a6 f (η2))2
, (32)

where f (η2) = G1|ζ=η2,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f Eq.
(27). The 3D graph and contour graph corresponding
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Fig. 3 3D graph (up) and contour graph (down) of u5 at Δ f > 0(λ f = 1, μ f = 3
4 )

to solutions are drawn in Fig. 4, wherein we take a1 =
a3 = a6 = 1, a2 = a4 = a11 = −1, a9 = 2, 2b1g =
b2g = 2b1 f = b2 f = 2, λg = 0, α(t) = 1, γ (t) =
cos(t).
Case 4 If the parameters are taken as

λg = 0, λ2f + 4μ f < 0, (33)

the solution form in this case is analogous to last case.
And then, solution is obtained

u7 = −a11a21a
2
2b

2
2g

(a1(b1g + b2gξ2) + a6 f (η2))2
; (34)

whereas f (η2) = G2|ζ=η2,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f
Eq. (30). The 3D graph and contour graph correspond-
ing to solutions are drawn in Fig. 5, wherein we take
a1 = a3 = a6 = 1, a2 = a4 = a11 = −1, a9 =
2, b1g = b2g = b1 f = b2 f = 1, λg = 0, α(t) =
1, γ (t) = t.

In Family-2,Δg is non-negative, and is linearly inde-
pendent with Δ f . Therefore, there are 6 cases to con-
sider. But cases for

(I ) λg �= 0, λ2f + 4μ f = 0,

(I I ) λg = 0, λ2f + 4μ f = 0

are not shown. g(ξ2) and f (η2) are hyperbolic func-
tion and mixture of polynomial and exponential func-
tions in (I ), but are polynomial function and mixture
of hyperbolic and exponential functions in u6, so solu-
tions in case 3 and (I ) possess the similar function
form. The same is true that solution form in (I I ) is
similar to u3, because g(ξ2) and f (η2) are polyno-
mial function and its and exponential functions mixed
function. Hence, only four solutions are shown. From
the graphs, it is evident that the α(t), β(t), γ (t) influ-
ences the development of the wave. According to the
case 1 and Eq. 23, g(ξ2) and f (η2) could be changed
from mixture of hyperbolic and exponential functions
to exponential functions, so u4 is a kink wave with a
height difference in Fig. 2. u4 in influence of variable
coefficients β(t) = cos(t) has a periodic change, but its
whole direction with time t has no variation. Figures 3,
4 and 5 are rogue wave. Figures 3 and 5 have tended
to be symmetrical under the influence of γ (t) = t . In
addition, Fig. 4 is also under β(t) = cos(t) and shows
a complete periodic about x, y and time t . It is clearly
found that u6 changes dramatically from time 4 to 5.5.
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Fig. 4 3D graph (up) and contour graph (down) of u6 at Δ f > 0(λ f = 1, μ f = 15
4 )

Fig. 5 3D graph (up) and contour graph (down) of u7 at Δ f < 0(λ f = 0, μ f = −1)
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Family-3

a1 = a1, a2 = a2, a3 = 0, a4 = 0,

a5(t) = −
∫ t

0

a2a9γ (t∗) + a32a8μgβ(t∗)
a8α(t∗)

dt∗,

a6 = a6, a7 = 0, a8 = a8, a9 = a9, a10(t) = a10,

λ f = λ f , μ f = μ f , λg = 0, μg

= μg,
6β(t)

δ(t)
= a11. (35)

And then, we have

ξ3 = a3x −
∫ t

0

a2a9γ (t∗) + a32a8μgβ(t∗)
a8α(t∗)

dt∗,

η3 = a8y + a9z + a10. (36)

The solution is considered as follows.
Case 1

If the parameters are taken as

μg > 0, λ2f + 4μ f > 0, (37)

g(ξ3) is hyperbolic functions, f (η3) is mixture of
hyperbolic and exponential functions. Solution is obtained

u8 = a11a
2
2μg{
a1[b1g sinh(√μgξ3) + b2g cosh(

√
μgξ3)]

a1[b1g sinh(√μgξ3) + b2g cosh(
√

μgξ3)] + a6 f (η3)

−(
a1[b2g sinh(√μgξ3) + b1g cosh(

√
μgξ3)]

a1[b1g sinh(√μgξ3) + b2g cosh(
√

μgξ3)] + a6 f (η3)
)2};

(38)

where

f (η3) = G1|ζ=η3,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f

= [b1 f sinh(
√

λ2f + 4μ f

2
η3)

+b2 f cosh(

√
λ2f + 4μ f

2
η3)]e− λ f

2 η3 . (39)

The 3Dgraph, contour graph and 2Dgraph correspond-
ing to solutions are drawn in Fig. 6, wherein we take
a1 = a2 = a8 = a10 = a11 = 1, a6 = −1, a9 =
3, 2b1g = b2g = 2b1 f = b2 f = 2, μg = 1, α(t) =
1, β(t) = γ (t) = t .
Case 2 If the parameters is taken as

μg > 0, λ2f + 4μ f < 0, (40)

g(ξ3) is hyperbolic functions, f (η3) is mixture of
trigonometric and exponential functions. Solution is
obtained

u9 = a11a
2
2μg

{
a1[b1g sinh(√μgξ3) + b2g cosh(

√
μgξ3)]

a1[b1g sinh(√μgξ3) + b2g cosh(
√

μgξ3)] + a6 f (η3)

−
(

a1[b2g sinh(√μgξ3) + b1g cosh(
√

μgξ3)]
a1[b1g sinh(√μgξ3) + b2g cosh(

√
μgξ3)] + a6 f (η3)

)2
⎫
⎬

⎭
,

(41)

where

f (η3) = G2|ζ=η2,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f

= [b1 f sin(
√

−λ2f − 4μ f

2
η3)

+b2 f cos(

√
−λ2f − 4μ f

2
η3)]e− λ f

2 η3 . (42)

The 3Dgraph, contour graph and 2Dgraph correspond-
ing to solutions are drawn in Fig. 7, wherein we take
a1 = a2 = a8 = a10 = a11 = μg = 1, a6 = −1, a9 =
3, 2b1g = b2g = 2b1 f = b2 f = 2, α(t) = 1, β(t) =
γ (t) = t .
Case 3 If the parameters are taken as

μg < 0, λ2f + 4μ f > 0, (43)

solution is obtained

u10 = a11a
2
2μg

{
a1(b1g sin(

√−μgξ3) + b2g cos(
√−μgξ3))

a1(b1g sin(
√−μgξ3) + b2g cos(

√−μgξ3)) + a6 f (η3)

+
(

a1(−b2g sin(
√−μgξ3) + b1g cos(

√−μgξ3))

a1(b1g sin(
√−μgξ3) + b2g cos(

√−μgξ3)) + a6 f (η3)

)2
⎫
⎬

⎭
;

(44)

where f (η3) = G1|ζ=η3,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f Eq.
(39). The 3D graph, contour graph and 2D graph corre-
sponding to solutions are drawn in Fig. 8, wherein we
take a1 = a2 = a8 = a11 = 1, a6 = 5, a9 = 3, a10 =
0, 2b1g = b2g = 2b1 f = b2 f = 2, μg = −1, α(t) =
1, β(t) = γ (t) = t .
Case 4 If the parameters are taken as

μg < 0, λ2f + 4μ f < 0, (45)

solution is obtained

u11 = a11a
2
2μg

{
a1(b1g sin(

√−μgξ3) + b2g cos(
√−μgξ3))

a1(b1g sin(
√−μgξ3) + b2g cos(

√−μgξ3)) + a6 f (η3)

+
[

a1(−b2g sin(
√−μgξ3) + b1g cos(

√−μgξ3))

a1(b1g sin(
√−μgξ3) + b2g cos(

√−μgξ3)) + a6 f (η3)

]2
⎫
⎬

⎭
;

(46)
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Fig. 6 u8 at Δ f > 0(μ f = 3
4 , λ f = 1)

Fig. 7 u9 at Δ f < 0(μ f = − 5
4 , λ f = 1)

Fig. 8 u10 at Δ f > 0(μ f = 3
4 , λ f = 1)
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Fig. 9 u11 at Δ f < 0(μ f = − 5
4 , λ f = −1)

Fig. 10 u12 at Δ f < 0(μ f = −1, λ f = 2)

where f (η3) = G2|ζ=η3,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f Eq.
(42). The 3D graph, contour graph and 2D graph corre-
sponding to solutions are drawn in Fig. 9, wherein we
take a1 = a2 = a8 = a11 = 1, a6 = 5, a9 = 3, a10 =
0, 2b1g = b2g = 2b1 f = b2 f = 2, μg = −1, α(t) =
1, β(t) = γ (t) = t .
Case 5 If the parameters are taken as

μg < 0, λ2f + 4μ f = 0, (47)

solution is obtained

u12 = a11a
2
2μg

{
a1[b1g sin(

√−μgξ3) + b2g cos(
√−μgξ3)]

a1[b1g sin(
√−μgξ3) + b2g cos(

√−μgξ3)] + a6 f (η3)

+
(

a1[−b2g sin(
√−μgξ3) + b1g cos(

√−μgξ3)]
a1[b1g sin(

√−μgξ3) + b2g cos(
√−μgξ3)] + a6 f (η3)

)2
⎫
⎬

⎭
;

(48)

where

f (η3) = G3|ζ=η3,λ=λ f ,μ=μ f ,b1=b1 f ,b2=b2 f

= (b1 f + b2 f η3)e
− λ f

2 η3 . (49)

The 3Dgraph, contour graph and 2Dgraph correspond-
ing to solutions are drawn in Fig. 10, wherein we take
a1 = a2 = a8 = a11 = 1, a6 = 5, a9 = 3, a10 =
0, 2b1g = b2g = 2b1 f = b2 f = 2, μg = −1, α(t) =
β(t) = γ (t) = t .

Family-3,Δg andΔ f is linearly independent.When
Δg takes a certain value, there are three cases for Δ f .
So there are 9 cases that need to be analyzed. But cases
for

(I ) μg > 0, λ2f + 4μ f = 0,

(I I ) μg = 0, λ2f + 4μ f > 0,

(I I I ) μg = 0, λ2f + 4μ f < 0,

(I V ) μg = 0, λ2f + 4μ f = 0

are not shown. Periodic solutions, which are similar to
u6, are obtained when some parameters are set to (I )
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and (I I ); rogue wave solutions, which are similar to u7
are obtained when some parameters are set to (I I I );
soliton solutions, which are similar to u3 are obtained
when some parameters are set to (I V ). The analysis
is the same as Family-2. Therefore, only five solutions
are shown. It is obvious from the image that Fig. 7 is
rogue wave solution, and Fig. 8 is breather solution. g
and f in u8 are hyperbolic functions and mixture of
hyperbolic and exponential functions, so solution u8 is
similar to u4 and can be constructed from exponential
functions. However, there is no kink in Fig. 6. Accord-
ing to image Fig. 6 display, u8 is interaction solution
via exponential form [19]. Through 2D graph, we can
obtain the dynamic behavior of solving solution with
x, y, z, t . In Figs. 9 and 10, we have the x-periodic and
y-periodic soliton structures of solutions. The alterna-
tion of light and dark of soliton can be observed in
Fig. 9.

3 Conclusions

This work studied (3+1)-dimensional variable coeffi-
cients GSWE. Via rational transformation, the bilin-
ear formulism of Eq. (1) is determined. Thereafter, the
corresponding system of algebraic equations is con-
structed by introduced auxiliary equation. The results
obtained demonstrate that modified Hirota bilinear
method possesses the following advantages: it can deal
with the relationship between the highest order linear
term and the highest order nonlinear term; it avoids the
problems arising from setting the solution and trans-
forming the bilinear formulism; it successfully calcu-
lates a large number of solutions included rogue wave
solutions, interaction solutions, breather solutions. In
order to better understand the physical phenomena, 3D,
contour and 2D graphwere showed by choosing appro-
priate values of the parameter. Through the graph anal-
ysis of the solution, we clearly find thatα(t), β(t), γ (t)
affects the trend ofwavemovement. In particular, when
variable coefficients β(t) = cos(t), the travels of u6 is
periodic changes. Via calculation result, the variable
coefficients β(t) and δ(t) need to satisfy certain con-
ditions. This method used in this paper is reliable to
search the exact solutions of other nonlinear models.
These results provide useful information and new ideas

for the study of nonlinear problems with variable coef-
ficients.
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