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Abstract Some complex engineering structures can

be modeled as multiple beams connected through

coupling elements. When the coupling element is

elastic, it can be simplified as a mass-spring system.

The existing studies mainly concentrated on the

double-beam coupled through elastic connectors,

where the connector is simplified as the equivalent

linear stiffness element or linear mass-spring system.

Furthermore, many researches ignore rotational

boundary restraints in analyzing dynamic behavior

of the double-beam connected through elastic con-

nectors, limiting their engineering generality. Consid-

ering the above limitations, this study attempts to

employ the cubic nonlinear stiffness in the coupling

mass-spring system and study the potential application

of the mass-spring system that is nonlinear on the

vibration control of the double-beam system. Using

the variational method and the generalized Hamilto-

nian method build the corresponding system’s gov-

erning functions. Applying the Galerkin truncation

method (GTM) obtains the dynamic behavior of the

double-beam connected through a mass-spring system

that is nonlinear. According to this study, the change

of the mass-spring system that is nonlinear signifi-

cantly influences the dynamic behavior of the double-

beam system, where the complex dynamic behavior

occurs under certain parameters of the mass-spring

system that is nonlinear. Suitable parameters of the

mass-spring system that is nonlinear are good at the

vibration suppression at the boundary of the vibration

system. Furthermore, the mass-spring system that is

nonlinear can change the characteristics of the double-

beam system’s kinetic energy transfer. For the vibra-

tion model established in this work, a quasi-periodic

vibration state can be regarded as a sign of the

occurrence of the targeted energy transfer of the

double-beam connected through a mass-spring system

that is nonlinear.

Keywords Nonlinear vibration � Double-beam
structures � Mass-spring system that is nonlinear �
Elastic boundary constraints

1 Introduction

The beam structure is an important component of

many complex structures in various engineering

branches, including architectural engineering, aero-

space engineering, marine engineering, and others.

Beam structures are inevitably subjected to the

unwanted vibration introduced by the working envi-

ronment or energy equipment. The unwanted vibration

negatively affects the stability and safety of beam

structures. To suppress complex structures’ vibration,
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deeply understanding the vibration characteristics of

beam structures is indispensable.

Vibration characteristics of beam structures have

been broadly studied. Kang and Kim [1] summarized

the early studies related to Euler–Bernoulli and

Timoshenko beams, where the general boundary

constraints were considered as boundary conditions

of such beam structures. As one of the common

engineering techniques, vibration characteristics of

beams with elastic boundaries was obtained through

the Fourier series [2]. To strengthen the convenience

and applicability of the Fourier series, the improved

Fourier series was proposed [3, 4], where the deriva-

tive of such a Fourier series was continuous at the

boundary. Vibration characteristics of various beam

structures with general boundary constraints were

easily gained by employing the corresponding Fourier

series [5–10]. The corresponding studies suggest that

the boundary-smoothed Fourier series is accurate and

correct in predicting the vibration characteristics of

elastically restrained beams.

Nowadays, scholars have attempted to utilize the

beneficial influence of nonlinearity to control the

vibration level of elastic structures. According to the

installation form, the nonlinear stiffness can be applied

as nonlinear supports or nonlinear oscillators in the

vibration control of beam structures. For beams with

supporting nonlinearities, Özhan and Pakdemirli [11]

studied three-to-one internal resonances motivated by

cubic nonlinearities. Ghayesh et al. [12, 13] investi-

gated the nonlinear vibration of beams attached with

cubic nonlinear stiffness. Wang and Fang [14] and

Mao et al. [15] studied the vibration of beams attached

with supporting nonlinearity. Tang et al. [16]

exploited the phase closure principle to predict the

nonlinear characteristics of beams with nonlinear

boundaries. Ding et al. [17, 18] proposed an

adjustable nonlinear isolator. Considering the engi-

neering practice, Ding and Chen [19] employed the

adjustable nonlinear isolator in a slightly curved beam

and studied its vibration transmissibility. Zhao and Du

[20] studied the dynamic behavior of a pre-pressure

beam attached with supporting nonlinearities.

For beam structures with nonlinear oscillators,

Georgiades and Vakakis [21] studied the dynamic

responses of a linear beam attached to a nonlinear

oscillator. Such a nonlinear oscillator is defined as the

nonlinear energy sink (NES). Ahmadabadi and

Khadem [22, 23] and Kani et al. [24] investigated

vibration control and energy harvesting of the beam by

employing the NES. For beam structures with differ-

ent boundaries, Parseh et al. [25] and Kani et al. [26]

studied the robustness of NESs. Parseh et al. [27]

stable steady-state dynamic responses of a nonlinear

beam structure attached with an NES. Chen et al. [28]

exploited parallel NESs to suppress the vibration of

beam structures under the shock load. Then, the

nonlinear forced vibration control of beam structures

with an attached NES or boundary nonlinear energy

sinks was studied in Refs [29, 30]. The above

investigations suggest that a suitable utilization of

nonlinear stiffness is good for the vibration control of

beams.

On some engineering occasions, complex struc-

tures such as double-layer bridges, propulsion sys-

tems, and others can be modeled as multiple beams

connected via coupling elements. When the coupling

element is elastic, it can be simplified as a mass-spring

system. Especially in marine engineering, ship propul-

sion shafting systems typically consist of multiple

slender shafts. When studying the transverse vibration

of such a shafting system under low rotation speed,

such a slender shafting system can be simplified as

beams connected through some coupling device,

where the coupling device can be simplified as a

mass-spring system. Furthermore, the axial motion of

the shaft system is harmful to the stability of the

shafting systems. Some limiters are installed on the

shafting systems at both internal and boundary to limit

their axial motion. For the simplified double-beam

structures, Oniszczuk [31] investigated the free vibra-

tion of the double beams connected through a layer

that is elastic. Gurgoze et al. [32] and Pajand and

Hozhabrossadati [33] studied the bending vibration

characteristics of double beams connected through a

mass-spring system that was linear. Hilal [34] inves-

tigated the influence of a moving load on the dynamic

responses of a double-beam system. Li and Hua [35]

proposed a spectral finite element-based normal mode

method to predict dynamic responses of the elastically

connected double-beam. Rosa and Lippiello [36]

established the vibration analysis model of the dou-

ble-beam system joined by a Winkler-type soil, where

free vibration of such a structure with generally

restrained boundaries was studied. Zhang et al. [37],

Stojanovic et al. [38], and Kozic et al. [39] investi-

gated the vibration and buckling characteristics of a

pre-pressure double-beam. Palmeri and Adhikari [40]
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proposed a novel state-space form to predict dynamic

responses of the double-beam structure joined by an

inner viscoelastic layer. Mao [41, 42] employed the

Adomian modified decomposition method to study the

multiple-beam structure’s vibration characteristics

and forced dynamic responses. Mohammadi and

Nasirshoaibi [43] studied forced dynamic responses

of an elastically connected pre-pressure double-beam

system with a Pasternak middle layer, where the

double-beam structure was simply supported. Pisarski

et al. [44] employed multiple smart damping members

to suppress the vibration of the double-beam system.

Fei et al. [45] proposed a new method to predict the

vibration characteristics of a tensioned structure.

Agboola et al. [46] studied the influence of structural

parameters on the vibration characteristics of the

double-beam, where the double-beam is non-prismatic

and simply supported. Rahman and Lee [47] proposed

a new modified multi-level residue harmonic balance

method to predict nonlinear dynamic responses of a

double-beam structure. Lee and Wang [48] investi-

gated the transverse vibration of a double-beam

system connected through coupling elements in

experiments and theory, where the external force

was non-uniform. Chen et al. [49], Hao et al. [50],

Zhao and Asce [51], and Li et al. [52] studied vibration

characteristics of double beams with classical and

generally restrained boundary conditions. Pajand et al.

[53] first considered the double beams connected

through a three-degree-of-freedom system. Then,

natural frequencies and mode shapes were predicted

through a finite element method. Guo et al. [54]

established the vibration analysis model of an asymp-

totically reduced coupled model, which was consisting

of two inclined cables and one deck beam. The

dynamic responses, stability, and bifurcations of such

a vibration system were systematically investigated.

Stojanovic et al. [55] investigated nonlinear vibrations

and vibration transmissibility of a coupled beam-arch

bridge system, where the coupling devices presented

nonlinear characteristics and the bridge was geomet-

rically nonlinear. According to the above references,

the existing studies mainly concentrated on the

double-beam coupled through elastic connectors,

where the connector is simplified as the equivalent

linear stiffness element or linear mass-spring system.

Many researches ignore rotational boundary restraints

in analyzing dynamic behavior of the double-beam

connected through elastic connectors, limiting their

engineering generality.

Considering the above limitations and engineering

practice, this study attempts to employ the cubic

nonlinear stiffness in the coupling mass-spring system

and study the potential application of the mass-spring

system that is nonlinear on the transverse vibration of

an elastically restrained double-beam system, where

the axial motion of the double-beam system is ignored.

Using the variational method and the generalized

Hamiltonian method, the governing functions for a

double-beam connected through a mass-spring system

that is nonlinear are built. Applying the Galerkin

truncation method (GTM) obtains the dynamic behav-

ior of the double-beam connected through a mass-

spring system that is nonlinear. The influence of the

mass-spring system that is nonlinear on the transverse

vibration of an elastically restrained double-beam

system is researched.

2 Theoretical Formulations

2.1 Model Description

As illustrated in Fig. 1, the physical model of a

double-beam connected through a mass-spring system

that is nonlinear is built. Such a vibration system

consists of two beams and a mass-spring system that is

nonlinear. u1(x1,t), u2(x2,t), and uE(t) are vibration

displacements of each beam and the mass-spring

system that is nonlinear. E1, E2, q1, q2, S1, S2, I1, I2,
CB1, and CB2 are the elastic modulus, mass density,

section area, inertia moment, and external viscous

damping of each beam, respectively. To improve the

generality of the vibration analysis model, this work

studies the dynamic behavior of a double-beam

(xE2, kE2, knE2, CE2)

(xE1, kE1, knE1, CE1)
mE

kL2

KL2 KR2

x2 kR2

KL1

F1 (x1, t)
KR1

x1kL1

u1 (x1, t)

u2 (x2 , t)

Beam I

Beam II

kR1

Fig. 1 The physical model of a double-beam connected through

a mass-spring system that is nonlinear
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connected through a mass-spring system that is

nonlinear with general boundary conditions. Bound-

ary translational and rotational restraining springs are

introduced at the boundary of each beam, where kL1,

kL2, kR1, kR2, KL1, KL2, KR1, and KR2 are stiffness

coefficients of each boundary restraining spring.

Different boundary conditions (clamped boundary,

free boundary, simply support boundary, and elastic

boundary) can be simulated by setting the stiffness

coefficients of boundary restraining springs. kE1, kE2,

knE1, knE2, CE1, CE2, and mE are the linear stiffness,

nonlinear stiffness, viscous damping, and concen-

trated mass of the mass-spring system that is nonlin-

ear. xE1 and xE2 are the positions of the mass-spring

system that is nonlinear, where xE1 is the position of

the system located at Beam I and xE2 is the position of

the system located at Beam II. For this study, the

nonlinear stiffness of the mass-spring system that is

nonlinear is regarded as cubic stiffness, which can be

realized through mechanism design.

In marine engineering, the shafting system under

low rotation speed can be simplified as the double-

beam system, where the external excitation introduced

by the energy equipment typically locates on the

determined position of the shafting system. In the

vibration analysis, the corresponding external excita-

tion can be approximated as a point excitation.

Obviously, to ensure the service life of the energy

equipment, the energy equipment is usually operated

at its rated condition, which indicates that the external

excitation introduced to shafting systems is typically

periodic. Considering the above engineering situation,

the point harmonic excitation is selected as the

external excitation in this study. F1(x1,t) is the external

force subjected to Beam I and its specific expression is

defined as

F1 x1; tð Þ ¼ d x1 � L1ð ÞF1 sin xtð Þ ð1Þ

where F1 is the amplitude of the excitation force, d(.) is
the Dirac function, and x is the circular frequency of

the external excitation force.

Each beam in Fig. 1 is modeled as the Euler–

Bernoulli beam. The potential energy and kinetic

energy of the vibration system are derived as

V ¼ VBeamI þ VBeamII þ VBoundaryI þ VBoundaryII þ VE

ð2aÞ

and

T ¼ TI þ TII þ TE ð2bÞ

VBeamI and VBeamII are the potential energy of each

beam.VBI andVBII are the potential energy of boundary

restraining springs belonging to each beam. VE is the

potential energy of the mass-spring system that is

nonlinear. TI, TII, and TE are the kinetic energy of each

beam and the mass-spring system that is nonlinear.

The virtual work done by the external excitation

force is derived as

dWF ¼ dWF1 ð3Þ

dWF1 is the virtual work done by the external

excitation force on Beam I.

The virtual work done by the viscous damping is

derived as

dWC ¼ dWC1 þ dWC2 þ dWCE1 þ dWCE2 ð4Þ

dWC1 and dWC2 are the virtual work done by the

viscous damping of Beam I and Beam II. dWCE1 and

dWCE2 are the virtual work done by the viscous

damping of the mass-spring system that is nonlinear.

The specific form of each term of Eqs. (2), (3), and (4)

are listed in Appendix A.

Using the variational method and the generalized

Hamiltonian method, we can find the governing

functions for a double-beam connected through a

mass-spring system that is nonlinear, namely,

q1S1
o2u1
ot2

þ CB1
ou1
ot

þ E1I1
o4u1
ox41

þ F1 xF1; tð Þ þ d x1 � xE1ð Þ

kE1 u1 � uE tð Þ½ � þ knE1 u1 � uE tð Þ½ �3þCE1
ou1
ot

� duE tð Þ
dt

� �� �
¼ 0

ð5aÞ

q2S2
o2u2
ot2

þ CB2
ou2
ot

þ E2I2
o4u2
ox42

þ d x2 � xE2ð Þ

kE2 u2 � uE tð Þ½ � þ knE2 u2 � uE tð Þ½ �3þCE2
ou2
ot

� duE tð Þ
dt

� �� �
¼ 0

ð5bÞ

and

m
d2uE
dt2

þ CE1
duE
dt

� ou1 xE1; tð Þ
ot

� �
þ CE2

duE
dt

� ou2 xE2; tð Þ
ot

� �

þ kE1 uE � u1 xE1; tð Þ½ � þ kE2 uE � u2 xE2; tð Þ½ �
þ knE1 uE � u1 xE1; tð Þ½ �3þknE2 uE � u2 xE2; tð Þ½ �3¼ 0

ð5cÞ

Boundary conditions of the double-beam system

are derived as
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x1 ¼ 0 : kL1u1 þ E1I1
o3u1

ox31
¼ 0 ; KL1

ou1
ox1

� E1I1
o2u1
ox21

¼ 0

ð6aÞ

x1 ¼ L1 : kR1u1 � E1I1
o3u1

ox31
¼ 0 ; KR1

ou1
ox1

þ E1I1
o2u1
ox21

¼ 0 :

ð6bÞ

x2 ¼ 0 : kL2u2 þ E2I2
o3u2

ox32
¼ 0 ; KL2

ou2
ox2

� E2I2
o2u2

ox22
¼ 0

ð6cÞ

and

x2 ¼ L2 : kR2u2 � E2I2
o3u2

ox32
¼ 0 ; KR2

ou2
ox2

þ E2I2
o2u2
ox22

¼ 0 :

ð6dÞ

According to Eqs. (5a) and (5b), the nonlinear

restoring force introduced to Beam I and Beam II can

be defined as,

FN1 ¼ d x1 � xE1ð ÞknE1 u1 � uE tð Þ½ �3 ð7aÞ

and

FN2 ¼ d x2 � xE2ð ÞknE2 u2 � uE tð Þ½ �3 ð7bÞ

where FN1 is the nonlinear restoring force subjected to

Beam I and FN2 is the nonlinear restoring force

subjected to Beam II. Furthermore, for the mass-spring

system that is nonlinear, its nonlinear restoring force

(FNE) can be fined as,

FNE ¼ knE1 uE � u1 xE1; tð Þ½ �3þknE2 uE � u2 xE2; tð Þ½ �3

ð7cÞ

For the physical model established in this study, the

corresponding terms of the generalized Hamiltonian

principle are listed in Appendix B.

2.2 Solution Procedure

The governing functions of the vibration system

derived in Sect. 2.1 are solved by the GTM. In this

study, transverse vibration displacements of each

beam are expanded as

u1 x1; tð Þ ¼
XN1

i¼1

u1i x1ð Þq1i tð Þ ð8aÞ

and

u2 x2; tð Þ ¼
XN2

i¼1

u2i x2ð Þq2i tð Þ ð8bÞ

where u1i(x1) is the ith trial function of Beam I and

u2i(x2) is the ith trial function of Beam II. q1i(t) and

q2i(t) are the i
th unknown time terms of each beam.

After substituting Eq. (8) into Eqs. (5a) and (5b),

the Galerkin discretization procedure is utilized to deal

with the governing functions of each beam, namely,

Z L1

0

q1S1
o2u1
ot2

þ CB1
ou1
ot

þ E1I1
o4u1
ox41

þ F1 x1; tð Þ

þd x1 � xE1ð Þ
kE1 u1 � uE tð Þ½ � þ knE1 u1 � uE tð Þ½ �3

þ CE1
ou1
ot

� duE tð Þ
dt

� �
8><
>:

9>=
>;

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
w1m1

x1ð Þdx1 ¼ 0 ð9aÞ

and

Z L2

0

q2S2
o2u2
ot2

þ CB2
ou2
ot

þ E2I2
o4u2
ox42

þd x2 � xE2ð Þ
kE2 u2 � uE tð Þ½ � þ knE2 u2 � uE tð Þ½ �3

þ CE2
ou2
ot

� duE tð Þ
dt

� �
8><
>:

9>=
>;

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
w2m2

x2ð Þdx2 ¼ 0 ð9bÞ
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where w1i(x1) is the ith weight function of Beam I and

w2i(x2) is the ith weight function of Beam II. m1 = 1, 2,

…, M1 and m2 = 1, 2,…M2. Equation (9a) is them1th

residual function of Beam I, and Eq. (9b) is the m2th

residual function of Beam II.

In the GTM, a set of functions that satisfy boundary

conditions can be chosen as the trail and weight

functions. For the physical model established in

Sect. 3.1, mode functions of the elastically restrained

single beam without the mass-spring system that is

nonlinear exactly satisfy the corresponding boundary

conditions. Therefore, the corresponding mode func-

tions are chosen as the trail and weight functions. Such

mode functions can be accurately obtained by

employing the energy principle combined with the

boundary-smoothed Fourier series [8–10].

Equation (9) is simplified as follows,

RIm11 þ RIm12 þ RIm13 þ RIm14 þ RIm15 þ RIm16 þ RIm17 ¼ 0

ð10aÞ

and

RIIm21 þ RIIm22 þ RIIm23 þ RIIm24 þ RIIm25 þ RIIm26 ¼ 0

ð10bÞ

The specific form of each residual term in Eq. (10)

is listed in Appendix C.

To establish the matrix form of Eq. (10), Eq. (10) is

transformed as

RIm11 ¼ � RIm12 þ RIm13 þ RIm14 þ RIm15 þ RIm16 þ RIm17ð Þ
ð11aÞ

and

RIIm21 ¼ � RIIm22 þ RIIm23 þ RIIm24 þ RIIm25 þ RIIm26ð Þ
ð11bÞ

The specific form of RIm11 and RIIm21 is expanded

as

RIm11 ¼ CIm11

d2q11
dt2

þ CIm12

d2q12
dt2

þ . . .CIm1i
d2q1i
dt2

. . .þ CIm1N1

d2q1N1

dt2
ð12aÞ

and

RIIm21 ¼ CIIm21

d2q21
dt2

þ CIIm22

d2q22
dt2

þ . . .CIIm2i
d2q2i
dt2

. . .þ CIIm2N2

d2q2N2

dt2

ð12bÞ

Substituting Eq. (12) into Eq. (11), the specific

form of Eq. (11) is derived as

CIm11

d2q11
dt2

þ CIm12

d2q12
dt2

þ . . .CIm1i
d2q1i
dt2

. . .

þ CIm1N1

d2q1N1

dt2

¼ �
X7
i¼2

RIm1i ð13aÞ

and

CIIm21

d2q21
dt2

þ CIIm22

d2q22
dt2

þ . . .CIIm2i
d2q2i
dt2

. . .

þ CIIm2N2

d2q2N2

dt2

¼ �
X6
i¼2

RIIm2i

ð13bÞ

Then, the matrix form of the residual functions is

written as

CI11 . . . CI1i . . . CI1N1

. . . . . . . . . . . . . . .
CIm11 . . . CIm1i . . . CIm1N1

. . . . . . . . . . . . . . .
CIM11 . . . CIM1i . . . CIM1N1

2
66664

3
77775

d2q11
dt
. . .
d2q1i
dt2
. . .

d2q1N1

dt2

2
66666664

3
77777775

¼ �

P7
i¼2

RI1i
. . .P7

i¼2

RIm1i

. . .P7
i¼2

RIM1i

2
66666664

3
77777775

ð14aÞ

and
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CII11 . . . CII1i . . . CII1N2

. . . . . . . . . . . . . . .
CIIm21 . . . CIIm2i . . . CIIm2N2

. . . . . . . . . . . . . . .
CIM21 . . . CIIM2i . . . CIIM2N2

2
66664

3
77775

d2q21
dt2
. . .
d2q2i
dt2
. . .

d2q2N2

dt2

2
66666664

3
77777775

¼ �

P6
i¼2

RII1i
. . .P6

i¼2

RIIm2i

. . .P6
i¼2

RIIM2i

2
666666664

3
777777775
:

ð14bÞ

Substituting Eq. (8) into Eq. (5c), the specific form

of the governing function of the mass-spring system

that is nonlinear is derived as

mE
d2uE
dt2

þ CE1
duE
dt

�
XN1

i¼1

u1i xE1ð Þ dq1i tð Þ
dt

" #

þ CE2
duE
dt

�
XN2

i¼1

u2i xE2ð Þ dq2i tð Þ
dt

" #

þ kE1 uE �
XN1

i¼1

u1i xE1ð Þq1i tð Þ
" #

þ kE2 uE �
XN2

i¼1

u2i xE2ð Þq2i tð Þ
" #

þ knE1 uE �
XN1

i¼1

u1i xE1ð Þq1i tð Þ
" #3

þ knE2 uE �
XN2

i¼1

u2i xE2ð Þq2i tð Þ
" #3

¼ 0

ð15Þ

Equations (14a), (14b), and (15) compose the

residual functions of the elastically restrained dou-

ble-beam connected through amass-spring system that

is nonlinear. Such residual functions can be solved by

numerical methods. By substituting the numerical

results of Eqs. (14a), (14b), and (15) into Eq. (8),

dynamic responses at arbitrary positions of the elas-

tically restrained double-beam connected through a

mass-spring system that is nonlinear can be gained. In

the GTM, when the boundary condition changes, the

dynamic behavior of the double-beam connected

through a mass-spring system that is nonlinear under

the changed boundary can be obtained conveniently

by changing the boundary restraining springs’ stiff-

ness coefficient. Furthermore, by introducing multiple

nonlinear mass-spring systems in the double-beam

system, the vibration analysis model established in this

section can be extended to predict the dynamic

behavior of the double-beam connected through

multiple nonlinear mass-spring systems.

3 Simulation results and discussion

In this section, the correctness and stability of the

GTM in solving the residual functions are studied first.

Then, the influence of the mass-spring system that is

nonlinear on dynamic responses of the double-beam is

investigated. Furthermore, to improve the engineering

acceptance of the mass-spring system that is nonlinear,

in analyzing dynamic responses of the double-beam

system with the variation of nonlinear mass-spring

system’s parameters, synchronous change parameters

of the mass-spring system that is nonlinear.

With the prosperous study of the material field,

lightweight and high-strength materials are gradually

employed in engineering to alternative traditional

materials. Therefore, this study investigates the poten-

tial application of the mass-spring system that is

nonlinear for the double-beam system which is

manufactured by aluminum alloy. Table 1 shows the

structural parameters of the double-beam system.

Table 2 gives the parameters of the mass-spring

system that is nonlinear. Figure 2 presents the relation

between the nonlinear restoring force and displace-

ment of Beam I and Beam II, where u1, u2, and uE
change from - 0.02 to 0.02 m. It can be seen from

Fig. 2 that the nonlinear restoring force presents

nonlinearity with the variation of u1, u2, and uE.

3.1 Validation of the dynamic responses

This section investigates the correctness and stability

of the GTM in solving the residual functions estab-

lished in Sect. 2. The time-domain calculation range is

selected as 0 * 500 Te, in which Te is the period of the

external excitation force, namely,

Te ¼
2p
x

ð16Þ

401 * 500 Te is chosen as the stable calculation

results of the double-beam connected through a mass-
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spring system that is nonlinear. In the above time-

domain region, transient dynamic responses of the

vibration system have died away. The relation of the

truncation number is set as N1 = N2 = M1 = M2. In

plotting amplitude-frequency response curves of the

double-beam connected through a mass-spring system

that is nonlinear, the maximum value of the time-

domain responses of the double-beam system under

each excitation frequency is selected as the y coordi-

nate while the excitation frequency is selected as the

x coordinate.

Firstly, the harmonic balance method (HBM) and

Lagrange method (LM) are employed to verify the

correctness of the GTM in obtaining the dynamic

behavior of the double-beam connected through a

mass-spring system that is nonlinear, where a 4-term

truncation number is applied in this part. For HBM, the

time terms are set as fundamental harmonics. For LM,

the matrix equation of the double-beam connected

through a mass-spring system that is nonlinear is

established by employing the Lagrange function

combined with the energy principle. It is worth

mentioning that the GTM and LM are quite different

in establishing the matrix equation of the double-beam

system. Furthermore, the GTM and LM calculate the

dynamic behavior of the double-beam system from the

time domain while the HBM calculates it from the

frequency domain. Figure 3 presents amplitude-

Table 1 Structural parameters of beams employed in the simulation

Parameters Symbol (Unit) Value

Elastic modulus E1/E2 (Pa) 6.89 9 1010/6.89 9 1010

Mass density q1/q2 (kg/m
3) 2.8 9 103/2.8 9 103

Length L1/ L2 (m) 1/1

Section area S1/S2 (m
2) 2 9 10–4/2 9 10–4

Inertia moment I1/I2 (m
4) 1.677 9 10–9/1.677 9 10–9

Viscous damping CB1/CB2 (Ns/m) 5/5

The amplitude of the excitation F1 = 10 (N) 10

Boundary translational stiffness kL1/kL2/kR1/kR2 (N/m) 5 9 103/5 9 103/5 9 103/5 9 103

Boundary rotational stiffness KL1/KL2/KR1/KR2(Nm/rad) 103/103/103/103

Table 2 Parameters of the mass-spring system that is non-

linear employed in numerical simulation

Parameters Symbol (Unit) Value

Concentrated mass mE (kg) 0.02

Position xE1/xE2 (m) 0.7/0.7

Viscous damping CE1/CE2 (Ns/m) 5/5

Linear stiffness kE1/kE2 (N/m) 103/103

Nonlinear stiffness knE1/knE2 (N/m
3) 109/109

Fig. 2 The relation between

the nonlinear restoring force

and displacement of Beam I

and Beam II
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frequency curves of the double-beam system con-

nected through a mass-spring system that is nonlinear

under different methods. According to Fig. 3, ampli-

tude-frequency curves obtained by the above three

methods accurately match each other. Furthermore, in

order to increase the credibility of the GTM results,

Fig. 4 presents the stable time diagrams at both ends of

the double-beam system predicted by the GTM, HBM,

and LM, where the external excitation frequency is

selected as 30 Hz. From Fig. 4, stable time diagrams

predicted by the GTM, HBM, and LM match each

other well. In summary, the phenomenon in Figs. 3

and 4 verifies the correctness of the GTM in predicting

the dynamic behavior of the double-beam connected

through a mass-spring system that is nonlinear.

Secondly, the stability of the GTM in predicting

amplitude-frequency curves of the double-beam con-

nected through a mass-spring system that is nonlinear

is studied. Amplitude-frequency curves with different

truncation number are graphed in Fig. 5. According to

Fig. 5, amplitude-frequency curves stay stable as the

truncation number is 4-term, 6-term, and 8-term. In the

following study, we choose 6-term as the truncation

number of GTM.

3.2 Amplitude-frequency curves influenced

by the mass-spring system that is nonlinear

This section investigates the influence of mass-spring

system that is nonlinear on amplitude-frequency

curves. Firstly, investigate the influence of nonlinear

stiffness (knE = knE1 = knE2) on amplitude-frequency

curves. knE is selected as 0 N/m3, 109 N/m3,

2 9 109 N/m3, 3 9 109 N/m3. Amplitude-frequency

curves of the double-beam connected through a mass-

spring system that is nonlinear under different knE are

(a) x1 (b) x1 = L1

(c) x2 = 0                

= 0                

(d) x2 = L2

Fig. 3 Amplitude-

frequency curves of the

double-beam connected

through a mass-spring

system that is nonlinear

obtained through different

methods
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shown in Fig. 6. From Fig. 6, three primary resonance

regions appear in amplitude-frequency curves under

knE = 0 N/m3 while there are four primary resonance

regions in amplitude-frequency curves under 109 N/

m3, 2 9 109 N/m3, and 3 9 109 N/m3. Such a phe-

nomenon suggests that an additional resonance region

is introduced in amplitude-frequency curves due to the

mass-spring system that is nonlinear. Additionally,

amplitude-frequency curves are no longer symmetric

and peaks jump in the 2nd and 3rd resonance regions.

The increase of knE suppresses the vibration at the 3rd

primary resonance region. In the 2nd primary reso-

nance region, the complex dynamic behavior appears

with the increase of knE. The reason for such a

phenomenon is that the nonlinear restoring force of

Beam I and Beam II is proportional to the nonlinear

stiffness of the mass-spring system which is nonlinear

according to the definition of the nonlinear restoring

force. When the other parameters of the mass-spring

system that is nonlinear are determined, the nonlinear

restoring force increases with the increases of the

nonlinear mass-spring system’s nonlinear stiffness.

Furthermore, phase diagrams are graphed in Fig. 6 to

further study the complex dynamic behavior. Accord-

ing to subplots in Fig. 6, a closed curve is formed by

Poincaré points, illustrating the state of complex

dynamic behavior in Fig. 6 is quasi-periodic.

To explain the amplitude jumping phenomenon

appears in the 2nd and 3rd resonance regions in Fig. 6,

the max amplitude of the nonlinear restoring force acts

on Beam I and Beam II with the variation of the

excitation frequency is plotted in Fig. 7. From Fig. 7,

the nonlinear restoring force jumps at the 2nd and 3rd

resonance regions while the nonlinear restoring force

keeps continuous at the 1st and 4th resonance regions.

Due to the jump of the nonlinear restoring force, the

amplitude jump phenomenon appears in amplitude-

frequency response curves of the double-beam con-

nected through a mass-spring system that is nonlinear,

where the jumping frequency of the amplitude-

frequency curves is the same as the jumping frequency

in Fig. 7.

Secondly, the influence of viscous damping (CE-

= CE1 = CE2) on amplitude-frequency curves is stud-

ied, where CE is selected as 5 Ns/m, 10 Ns/m, 20 Ns/

m, and 40 Ns/m. knE is selected as 3 9 109 N/m3 and

Fig. 4 Time diagrams at both ends of the double-beam connected through a mass-spring system that is nonlinear predicted by different

methods (30 Hz)
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other parameters of the mass-spring system that is

nonlinear are the same as those in Sect. 3.1. Ampli-

tude-frequency curves of the double-beam connected

through a mass-spring system that is nonlinear under

different CE are graphed in Fig. 8. According to

Fig. 8, peaks jump at the 2nd and 3rd resonance

regions. The increase of CE is good for the vibration of

the double-beam system. In the 2nd primary resonance

region, the complex dynamic behavior appears when

CE = 5 Ns/m. The complex dynamic behavior and

amplitude-jumping phenomenon disappear with the

increase of CE. The reason for such a phenomenon is

that the nonlinear restoring force acts on Beam I and

Beam II is positively correlated with the relative

displacement at the coupling position. The increase of

CE suppresses the peak amplitude at each primary

resonance region of the double-beam system, suggest-

ing the nonlinear restoring force at primary resonance

regions decreases with the increase of CE. The same as

the analysis in Fig. 6, the vibration state of the

complex dynamic behavior in Fig. 8 is quasi-periodic.

Thirdly, the influence of concentrated mass (mE) on

amplitude-frequency curves is studied, where mE is

selected as 0.005, 0.01, 0.02, and 0.03 kg. knE is

selected as 2 9 109 N/m3 and other parameters of the

mass-spring system that is nonlinear are shown in

Table 2. Amplitude-frequency curves of the double-

beam connected through a mass-spring system that is

nonlinear under different mE are graphed in Fig. 9.

From Fig. 9, an amplitude-jumping phenomenon

occurs at the 2nd and 3rd resonance regions. The

change of mE slightly influences the resonance

regions’ peaks. In the 4th primary resonance region,

the complex dynamic behavior occurs when mE-

= 0.03 kg. The reason for the corresponding phe-

nomenon is that the influence of mE on the peak

amplitude of the primary resonance regions is non-

monotonic, suggesting the nonlinear restoring force

(a) x1 (b) x1 = L1

(c) x2 = 0                  

= 0                  

(d) x2 = L2

Fig. 5 Amplitude-

frequency curves of the

double-beam connected

through a mass-spring

system that is nonlinear with

different truncation number
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acts on Beam I and Beam II change nonmonotonic

with the increase of mE. Phase diagrams of the

corresponding dynamic behavior are graphed.

According to each subplot in Fig. 9, a closed curve

is formed by Poincaré points, suggesting the state of

complex dynamic behavior in Fig. 8 is quasi-periodic.

Fig. 6 Amplitude-

frequency curves of the

double-beam connected

through a mass-spring

system that is nonlinear

under different knE

Fig. 7 The max amplitude

of the nonlinear restoring

force acts on Beam I and

Beam II with the variation of

the excitation frequency

123

8958 Y. Zhao et al.



Fourthly, the influence of coupling position (xE-
= xE1 = xE2) on amplitude-frequency curves is stud-

ied, where xE is selected as 0.2, 0.4, 0.6, and 0.8 m. knE
is selected as 1.5 9 109 N/m3 and other parameters of

the mass-spring system that is nonlinear are shown in

Table 2. Amplitude-frequency curves of the double-

beam connected through a mass-spring system that is

nonlinear under different xE are graphed in Fig. 10.

According to Fig. 10, an amplitude-jumping phe-

nomenon occurs at the 2nd and 3rd primary resonance

regions. A suitable parameter of xE can beneficially

suppress the vibration at the boundary of the double-

beam system. Furthermore, in the 3rd primary reso-

nance region, the complex dynamic behavior occurs

when xE = 0.4 m. The reason for the corresponding

phenomenon is that the influence of xE on the peak

amplitude of the primary resonance regions is non-

monotonic, suggesting the nonlinear restoring force

acts on Beam I and Beam II change nonmonotonic

with the increase of xE. Phase diagrams of the

corresponding dynamic behavior are graphed. It can

be seen from each subplot in Fig. 10 that a closed

curve is formed by Poincaré points. The state of

complex dynamic behavior in Fig. 10 is quasi-

periodic.

To further study the double-beam system influ-

enced by the mass-spring system that is nonlinear, the

kinetic energy of the double-beam system under the

complex dynamic behavior in Figs. 6, 8, 9, and 10 are

graphed in Fig. 11. Combinations of the mass-spring

system that is nonlinear and excitation frequency are

shown in Table 3.

From Fig. 11, the kinetic energy of beams is higher

than the mass-spring system which is nonlinear. In the

time interval Ts, the kinetic energy of Beam I targeted

transfers to Beam II. For other time intervals, the

(a) x1 = 0 (b) x1 = L1

(c) x2 = 0                  (d) x2 = L2

CE = 5 Ns/m
CE = 10 Ns/m
CE = 20 Ns/m
CE = 40 Ns/m

32 Hz

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

32 Hz

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

CE = 5 Ns/m
CE = 10 Ns/m
CE = 20 Ns/m
CE = 40 Ns/m

32 Hz

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

CE = 5 Ns/m
CE = 10 Ns/m
CE = 20 Ns/m
CE = 40 Ns/m

32 Hz

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

CE = 5 Ns/m
CE = 10 Ns/m
CE = 20 Ns/m
CE = 40 Ns/m

Fig. 8 Amplitude-

frequency curves of the

double-beam connected

through a mass-spring

system that is nonlinear

under different CE
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kinetic energy of Beam II targeted transfers to Beam I.

It should be noticed that the vibration state of the

complex dynamic behavior in Figs. 6, 8, 9, and 10 is

quasi-periodic, indicating that the quasi-periodic

vibration state of the double-beam connected through

a mass-spring system that is nonlinear can be regarded

as a sign of the occurrence of the targeted energy

transfer.

3.3 Single-frequency responses influenced

by the mass-spring system that is nonlinear

This section investigates the influence of the mass-

spring system that is nonlinear on single-frequency

responses. For this section, the excitation frequency is

selected as 38 Hz and the parameters of the double-

beam system are shown in Table 1. In plotting

dynamic responses of the double-beam system with

the variation of the mass-spring system’s parameters,

the maximum value of the time-domain responses of

the double-beam system under the single excitation

frequency is selected as the y coordinate while

parameters of the mass-spring system that is nonlinear

are selected as the x coordinate.

Firstly, study the influence of nonlinear stiffness

(knE = knE1 = knE2) on single-frequency responses.

Figure 12 depicts single-frequency responses of the

double-beam with the change of knE. According to

Fig. 12, as knE ranges from 108.3 to 109.7 N/m3, the

increase of knE is good at vibration suppression at the

boundary of Beam I. Furthermore, there are two

unstable regions [109.7 N/m3, 1011.1 N/m3], [1011.8 N/

m3, 1012 N/m3] in single-frequency responses.

109.7 N/m3, 1011.1 N/m3, and 1011.8 N/m3 are defined

as the converted values of knE. Changing knE around

its converted values significantly changes the

(a) x1 = 0                  (b) x1 = L1

mE = 0.005 kg
mE = 0.01 kg
mE = 0.02 kg
mE = 0.03 kg

85 Hz

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

mE = 0.005 kg
mE = 0.01 kg
mE = 0.02 kg
mE = 0.03 kg

85 Hz

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

(c) x2 = 0                  (d) x2 = L2

mE = 0.005 kg
mE = 0.01 kg
mE = 0.02 kg
mE = 0.03 kg

85 Hz

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

mE = 0.005 kg
mE = 0.01 kg
mE = 0.02 kg
mE = 0.03 kg

85 Hz

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

Fig. 9 Amplitude-

frequency curves of the

double-beam connected

through a mass-spring

system that is nonlinear

under different mE
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vibration state of the vibration system. With the

continuous increase of knE, the variation of the

complex dynamic behavior in the single-frequency

responses of the double-beam system with the change

of knE is nonmonotonic. The reason for such a

phenomenon is that resonance regions of the

(a) x1 = 0 (b) x1 = L1

(c) x2 = 0                  (d) x2 = L2

xE = 0.2 m
xE = 0.4 m
xE = 0.6 m
xE = 0.8 m

38 Hz

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

xE = 0.2 m
xE = 0.4 m
xE = 0.6 m
xE = 0.8 m

38 Hz

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

xE = 0.2 m
xE = 0.4 m
xE = 0.6 m
xE = 0.8 m

38 Hz

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

xE = 0.2 m
xE = 0.4 m
xE = 0.6 m
xE = 0.8 m

38 Hz

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

Fig. 10 Amplitude-

frequency curves of the

double-beam connected

through a mass-spring

system that is nonlinear

under different xE

(a) Combination 1 (b) Combination 2

Beam I
Beam II
MassTS

TS TS

… …
… …

TS TS

Beam I
Beam II
MassTS

TS

… … …
… …TS TS TS

TS

Fig. 11 Kinetic energy of

the double-beam connected

through a mass-spring

system that is nonlinear
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amplitude-frequency curve shift to higher frequency

regions with the increase of knE. In the single-

frequency responses, the excitation frequency is

determined as 38 Hz, which is near the 2nd and 3rd

primary resonance region of the amplitude-frequency

response curves. In the process of increasing knE, the

2nd and 3rd primary resonance regions of the ampli-

tude-frequency response curves cross 38 Hz. In the

above process, the nonlinear restoring force acting on

Beam I and Beam II changes nonmonotonically,

causing the nonmonotonic change of the complex

dynamic behavior. Then, phase diagrams of the

unstable regions are graphed. In each subplot in

Fig. 12, a closed curve is formed by Poincaré points,

which can be concluded that the vibration state of the

unstable regions is quasi-periodic.

Secondly, study the influence of viscous damping

(CE = CE1 = CE2) on single-frequency responses. knE
is selected as 1010 N/m3 and other parameters of the

mass-spring system that is nonlinear are the same as

those in Sect. 3.1. Single-frequency responses of the

double-beam with the change of CE are graphed in

Fig. 13. According to Fig. 13, when CE in the region

[13.5 Ns/m to 52 Ns/m], the increase of CE is good at

Table 3 Combinations of the mass-spring system that is

nonlinear and excitation frequency

Combination 1 Combination 2

mE = 0.02 kg mE = 0.02 kg

xE1 = xE2 = 0.7 m xE1 = xE2 = 0.4 m

CE1 = CE2 = 5 Ns/m CE1 = CE2 = 5 Ns/m

kE1 = kE2 = 103 N/m kE1 = kE2 = 103 N/m

knE1 = knE2 = 3 9 109 N/m3 knE1 = knE2 = 1.5 9 109 N/m3

f = 32 Hz f = 38 Hz

Fig. 12 Single-frequency

responses of the double-

beam connected through a

mass-spring system that is

nonlinear with the change of

knE
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vibration suppression at the boundary of Beam II.

There is an unstable region [1 Ns/m, 13.5 Ns/m] in

single-frequency responses. 13.5 Ns/m is defined as

the converted value of CE. The vibration state of the

double-beam changes greatly when CE changes

around its converted value. After CE exceeds its

converted value, the unstable region of the double-

beam system vanishes. Furthermore, with the contin-

uous increase of CE, the variation of the complex

dynamic behavior in the single-frequency responses of

the double-beam system with the change of CE is

monotonic. The reason for such a phenomenon is that

resonance regions of the amplitude-frequency curve

shift to lower frequency regions with the increase of

CE under certain knE. In the process of increasing CE,

the 3rd primary resonance region of the amplitude-

frequency response curves monotonically crosses

38 Hz. In the above process, the nonlinear restoring

force acting on Beam I and Beam II changes

monotonically, causing the monotonic change of the

complex dynamic behavior. Phase diagrams of the

unstable region are graphed. It can be seen from

Fig. 13 that a closed curve is formed by Poincaré

points in each subplot while phase diagrams stay

stable. The above phenomenon suggests that the

vibration state of the unstable region is quasi-periodic.

Thirdly, study the influence of concentrated mass

(mE) on single-frequency response. Single-frequency

responses with the change of mE are graphed in

Fig. 14. knE is selected as 6 9 109 N/m3 and other

parameters of the mass-spring system that is nonlinear

are the same as those employed in Sect. 3.1. From

Fig. 14, when mE is in the region [0.0265 kg,

0.044 kg], the increase of mE is good at the vibration

(a) x1 = 0        (b) x1 = L1

5.5 Ns/m

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

5.5 Ns/m

u1 (mm)

v 1
(m

/s
)

Phase path
Poincare point

(c) x2 = 0                  (d) x2 = L2

5.5 Ns/m

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

5.5 Ns/m

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

Fig. 13 Single-frequency

responses of the double-

beam connected through a

mass-spring system that is

nonlinear with the change of

CE
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suppression at the boundary of the double-beam.

There are two unstable regions [0.001 kg, 0.0265 kg],

[0.044 kg, 0.05 kg] in single-frequency responses,

0.0265 kg and 0.044 kg are defined as the converted

values of mE. Changing mE around its converted

values significantly changes the state of the vibration

system. The variation of the complex dynamic

behavior in the single-frequency responses of the

double-beam system with the increase of mE is

nonmonotonic. The reason for such a phenomenon is

that the position of resonance regions of the ampli-

tude-frequency curve is influenced by mE, where the

influence of mE on the position of the primary

resonance regions is nonmonotonic. In the increase

process of increasing mE, the 3rd primary resonance

region of the amplitude-frequency response curve

crosses 38 Hzmultiple times. In the above process, the

nonlinear restoring force acting on Beam I and Beam

II changes nonmonotonically, causing the nonmono-

tonic change of the complex dynamic behavior. To

deeply study the unstable regions’ dynamic responses,

phase diagrams of the corresponding regions are

graphed. The same as the analysis in Figs. 12 and 13,

the state of unstable regions in Fig. 14 is quasi-

periodic.

Fourthly, investigate the influence of coupling

position (xE = xE1 = xE2) on single-frequency

responses. Single-frequency responses with the

change of xE are graphed in Fig. 15. knE is selected

as 2 9 109 N/m3 and other parameters of the mass-

spring system that is nonlinear are the same as those

employed in Sect. 3.1. According to Fig. 15, the

increase of xE is good at the vibration suppression at

the boundary of the double-beam when xE changes

from 0.6 to 0.9 m. Additionally, when xE ranges from

0.43 to 0.6 m, the vibration at the boundary of Beam II

(a) x1 = 0                  (b) x1 = L1

(c) x2 = 0                  (d) x2 = L2

0.0055 kg

0.048 kg

u1 (mm)

v 1
(m
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)

Phase path
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v 1
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/s
)

Phase path
Poincare point

0.0055 kg

0.048 kg
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v 1
(m

/s
)

Phase path
Poincare point
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v 1
(m

/s
)

Phase path
Poincare point
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v 2
(m

/s
)

Phase path
Poincare point
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v 2
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/s
)
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Poincare point
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v 2
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)
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Poincare point
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(m
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)

Phase path
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Fig. 14 Single-frequency

responses of the double-

beam connected through a

mass-spring system that is

nonlinear with the change of

mE

123

8964 Y. Zhao et al.



stays at a low level. An unstable region [0.37 m,

0.425 m] appears in single-frequency responses.

0.37 m and 0.425 kg are defined as the converted

values of xE. The vibration state of the double-beam

changes obviously when xE varies around its con-

verted values. The variation of the complex dynamic

behavior in the single-frequency responses of the

double-beam system with the increase of xE is

nonmonotonic. The reason for such a phenomenon is

that the position of resonance regions of the ampli-

tude-frequency curve is influenced by xE, where the

influence of xE on the position of the primary

resonance regions is nonmonotonic. In the process of

increasing xE, the 3rd primary resonance region of the

amplitude-frequency response curve crosses 38 Hz

multiple times. In the above process, the nonlinear

restoring force acting on Beam I and Beam II changes

nonmonotonically, causing the nonmonotonic change

of the complex dynamic behavior. Furthermore, phase

diagrams of the unstable regions are graphed. The

same as the analysis in Figs. 12 and 13, the unsta-

ble region’s vibration state in Fig. 15 is quasi-

periodic.

To deeply study single-frequency responses influ-

enced by the mass-spring system that is nonlinear, the

kinetic energy of the double-beam under the complex

dynamic behavior in Figs. 12, 13, 14, and 15 are

graphed in Fig. 16. Combinations of the mass-spring

system that is nonlinear are shown in Table 4.

From Fig. 16, the kinetic energy of the concen-

trated mass is lower than that of beams. Due to the

existence of the mass-spring system that is nonlinear,

(a) x1 = 0                  (b) x1 = L1

0.4 m

u1 (mm)

v 1
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/s
)

Phase path
Poincare point

0.4 m
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/s
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Phase path
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(c) x2 = 0                  (d) x2 = L2
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v 2
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/s
)

Phase path
Poincare point

0.4 m

u2 (mm)

v 2
(m

/s
)

Phase path
Poincare point

Fig. 15 Single-frequency responses of the double-beam structure connected through a mass-spring system that is nonlinear with the

change of xE
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the kinetic energy of Beam I targeted transfers to

Beam II under the time interval Ts. For other time

intervals, the kinetic energy of Beam II targeted

transfers to Beam I. Furthermore, according to the

analysis in Figs. 12, 13, 14, and 15, the vibration state

of the complex dynamic behavior is quasi-periodic.

The quasi-periodic vibration state corresponds to the

targeted energy transfer phenomenon between beams,

suggesting the quasi-periodic vibration state of the

double-beam connected through a mass-spring system

that is nonlinear can be regarded as a sign of the

occurrence of the targeted energy transfer.

4 Conclusion

In this study, the nonlinear dynamic behavior of an

elastically restrained double-beam connected through

a mass-spring system that is nonlinear is investigated.

Using the variational method and the generalized

Hamiltonian method build the corresponding system’s

governing functions. Then, applying the Galerkin

truncation method predicts the dynamic behavior of

the double-beam connected through a mass-spring

system that is nonlinear, where the harmonic balanced

method and Lagrange method are employed to verify

the correctness of the results obtained by the Galerkin

truncation method. On this basis, the influence of a

mass-spring system that is nonlinear on amplitude-

frequency curves and single-frequency responses of an

elastically restrained double-beam is investigated. For

the structural parameters and boundary conditions of

the double-beam system employed in this study, some

conclusions are made.

(1) The GTM has good stability and correctness in

predicting dynamic responses of the double-

beam connected through a mass-spring system

that is nonlinear. For this study, a 4-term

truncation number can keep the stability of the

GTM.

(2) Amplitude-frequency and single-frequency

responses of the double-beam are both signifi-

cantly influenced by changing parameters of the

mass-spring system that is nonlinear. The

amplitude jumping phenomenon and complex

dynamic behavior of the double-beam occurs

under certain parameters of the mass-spring

system that is nonlinear. Around converted

values of the mass-spring system that is nonlin-

ear, the dynamic behavior of the double-beam

can be easily changed.

(3) The complex dynamic behavior of the double-

beam system changes characteristics of the

double-beam system’s kinetic energy transfer,

where the vibration state of the double-beam

(a) Combination 1 (b) Combination 2

Beam I
Beam II
MassTS TSTS

TS TS

… …
… …

Beam I
Beam II
MassTS

TS

… … … …
TS TS

TS

Fig. 16 Kinetic energy of

the double-beam connected

through a mass-spring

system that is nonlinear

Table 4 Combinations of the mass-spring system that is

nonlinear

Combination 1 Combination 2

mE = 0.02 kg mE = 0.02 kg

xE1 = xE2 = 0.7 m xE1 = xE2 = 0.4 m

CE1 = CE2 = 5 Ns/m CE1 = CE2 = 5 Ns/m

kE1 = kE2 = 103 N/m kE1 = kE2 = 103 N/m

knE1 = knE2 = 1010.4 N/m3 knE1 = knE2 = 2 9 109 N/m3
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system’s complex dynamic behavior is quasi-

periodic. A quasi-periodic vibration state can be

regarded as a sign of the occurrence of the

targeted energy transfer of the double-beam

connected through a mass-spring system that is

nonlinear.

(4) On the whole, changing parameters of the mass-

spring system that is nonlinear can significantly

influence the dynamic behavior of the double-

beam while suitable parameters of the mass-

spring system that is nonlinear are good at

vibration suppression at the boundary of the

double-beam.
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Appendix C
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