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Abstract Describing the longwaves in shallowwater,
a generalizedBroer-Kaup-Kupershmidt system is inves-
tigated in this paper. With respect to the horizontal
velocity of the water wave and the height of the water
surface, we use symbolic computation to build up
(A) a scaling transformation, (B) a set of the hetero-
Bäcklund transformations, from that generalized sys-
tem to a known linear partial differential equation, as
well as (C) two sets of the similarity reductions, each
of which from that generalized system to a known ordi-
nary differential equation. Our results depend on all the
shallow-water coefficients for that generalized system.

Keywords Shallow water · Long waves · Generalized
Broer-Kaup-Kupershmidt system · Scaling transfor-
mation · Hetero-Bäcklund transformations · Similarity
reductions · Symbolic computation

X.-Y. Gao (B) · Y.-J. Guo (B)· W.-R. Shan (B)
State Key Laboratory of Information Photonics and Optical
Communications, and School of Science, Beijing
University of Posts and Telecommunications, Beijing
100876, China
e-mail: xin_yi_gao@163.com

Y.-J. Guo
e-mail: yongerguo@bupt.edu.cn

W.-R. Shan
e-mail: shwr@bupt.edu.cn

1 Introduction

Being attractive, many researchers are now paying
attention to the shallow water waves [1–15]. For exam-
ple, Ref. [1], a recent paper in Nonlinear Dyn., has pre-
sented some multi-soliton solutions of a generalized
Broer-Kaup system for the shallow water waves.

In this paper, we plan to investigate a generalized
Broer-Kaup-Kupershmidt system, which describes,
e.g., the long waves in shallow water, i.e.,

ut =
(

−αux + β

2
u2 + βv

)
x

+ γ ux , (1a)

vt = (αvx + βuv)x + γ vx , (1b)

with the real differentiable functions v(x, t) and u(x, t)
denoting, e.g., the horizontal velocity of thewater wave
and the height of the water surface, respectively, x and
t implying, e.g., the scaled space and time variables,
α, β �= 0 and γ as the real constants, while the sub-
scripts being the partial derivatives. Shallow-water spe-
cial cases of System (1) have been seen:

• for the long waves in the shallow water, a Broer-
Kaup-Kupershmidt system,

ut − uxx + 2vx + 2uux = 0 , (2a)

vt + vxx + 2 (uv)x = 0 , (2b)

when γ = 0, β = −2 and α = −1, with t and x
being the scaled time and space variables, v(x, t)
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representing the horizontal velocity of the water
wave while u(x, t) meaning the height of the water
surface [15];

• for the diffusion-involved shallow water waves, a
generalized Broer-Kaup system,

ut =
(

−αux + 1

2
u2 + v

)
x

, (3a)

vt = (αvx + uv)x , (3b)

when γ = 0 and β = 1, with t meaning the
time variable, x indicating the propagation direc-
tion, v(x, t) relevant to both thewave profile and the
tangential fluid velocity at the surface while u(x, t)
representing the tangential fluid velocity at the sur-
face [16–18];

• for the long waves in the shallow water, a classical
dispersiveless long-wave system, i.e.,

ut + uux + vx = 0 , (4a)

vt + (uv)x = 0 , (4b)

when α = γ = 0 and β = −1, with u(x, t)
meaning the tangential fluid velocity at the surface,
v(x, t) representing the wave profile, x denoting
the propagation direction, while t being the time
variable [17,18] (and references therein);

• for the long waves in the shallow water, a Broer-
Kaup system, i.e.,

ut + 1

2
uxx − vx − uux = 0 , (5a)

vt − 1

2
vxx − (uv)x = 0 , (5b)

when α = 1
2 , β = 1 and γ = 0, with u(x, t) stand-

ing for the scaled wave horizontal velocity, while
v(x, t) related to the wave height and wave hori-
zontal velocity [19,20] (and references therein);

• for the dispersion water waves in the shallowwater,
a generalized Broer-Kaup system [21] (and refer-
ences therein), i.e.,

ut = −α
(
ux − u2 − 2v

)
x

+ γ ux , (6a)

vt = α (vx + 2uv)x + γ vx , (6b)

when β = 2α;

• for the dispersion water waves in the shallowwater,
a Broer-Kaup system [21] (and references therein),
i.e.,

ut =
(
−ux + u2 + 2v

)
x

, (7a)

vt = (vx + 2uv)x , (7b)

when α = 1, β = 2 and γ = 0.

However, to our knowledge, for System (1), there
have been no scaling-transformation work, Bäcklund-
transformation work and similarity-reduction work
published as yet. Hereby, for System (1), we employ
symbolic computation [22–28], to construct a scaling
transformation, a set of the hetero-Bäcklund transfor-
mations and two sets of the similarity reductions.

2 Scaling and hetero-Bäcklund transformations
for System (1)

Similar to those in Refs. [29,30], we work out a scaling
transformation:

α → ρ0α , β → ρ0β , γ → ρ−1γ , x → ρ1x ,

t → ρ2t , u → ρ−1u , v → ρ−2v , (8)

in which ρ stands for a positive constant.
Next, on the score of Scaling Transformation (8),

assuming that1

u(x, t) = ζ1wx (x, t) + ζ2,

v(x, t) = ζ3wxx (x, t), (9)

making use of symbolic computation, integrating Eq.
(1a) oncewith respect to x with the integration function
equal to zero and making a choice of

βζ3 − αζ1 = β

2
ζ 2
1 , (10)

we obtain

Yt (w) − β

2
ζ1Y2x (w) − (βζ2 + γ ) Yx (w) = 0 , (11)

with ζ1 �= 0, ζ2 and ζ3 �= 0 as three real constants, the
Bell polynomials reported by Refs. [31,32] as

1 similar to those in Refs. [29,30]
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Ymx,nt (w)

≡ Ym,n(w0,0, · · · , w0,n, · · · , wm,0, · · · , wm,n)

= e−w∂mx ∂nt e
w,

w(x, t) meaning a C∞ function of x and t , wk,l =
∂kx ∂

l
tw, k = 0, · · · ,m, l = 0, · · · , n, while m and n

representing two non-negative integers.
Similarly,weuse symbolic computation andAssump-

tions (9), integrate Eq. (1b) twice in relation to x with
the integration functions equal to zero and choose

α = β

2
ζ1 , (12)

so as to find

Yt (w) − αY2x (w) − (βζ2 + γ ) Yx (w) = 0 , (13)

which is the same as Expression (11).
Then, the assumption,

w(x, t) = ln [h(x, t)] , (14)

helps us simplify System (1) into a linear partial differ-
ential equation, i.e.,

ht (x, t)−αhxx (x, t)−(βζ2 + γ ) hx (x, t)=0, (15)

with h(x, t) representing a positive differentiable func-
tion.

Thinking about all the above together, under the con-
straint

α �= 0 , (16)

for System (1), we construct one set of the hetero-
Bäcklund transformations, i.e.,

u(x, t) = 2α

β

hx (x, t)

h(x, t)
+ ζ2 , (17a)

v(x, t) = 4α2

β2

[
hxx (x, t)

h(x, t)
− hx (x, t)2

h(x, t)2

]
, (17b)

ht (x, t) − αhxx (x, t) − (βζ2 + γ ) hx (x, t) = 0 .

(17c)

We note that

• Eqs. (17) are one set of the hetero-Bäcklund
transformations, which could couple the solutions
h(x, t) of Eq. (17c) and the solutions u(x, t) and
v(x, t) of System (1);

• Eq. (17c) is an already-investigated linear partial
differential equation, as seen in Refs. [33,34];

• Hetero-Bäcklund Transformations (17) are related
to γ , β and α, the shallow-water coefficients for
System (1), under Constraint (16);

• the above work is on the long waves in the shallow
water, concerning the wave profile and tangential
fluid velocity at the surface.

3 Similarity reductions for System (1)

Making use of symbolic computation and substituting
the assumptions,2

u(x, t) = θ(x, t) + ω(x, t)p[z(x, t)] , (18a)

v(x, t) = δ(x, t) + κ(x, t)q[z(x, t)] , (18b)

into System (1) result in

p′′αωz2x − pp′βω2zx − p2βωωx − q ′βκzx − qβκx

+ p′ [ωzt + α (2ωx zx + ωzxx ) − γωzx − βωθ zx
]

+ p
[
ωt + αωxx − β (ωθx + ωxθ) − γωx

]
+ θt + αθxx − βδx − βθθx − γ θx = 0 , (19a)

− q ′′ακz2x − (
p′q + pq ′) βωκzx − pqβ (ωκx + ωxκ)

+ q ′ [κzt − α (2κx zx + κzxx ) − γ κzx − βθκzx
]

+ q
[
κt − ακxx − β (θκx + θxκ) − γ κx

]
− p′βδωzx − pβ (δxω + δωx ) + δt − αδxx

− β (θδx + θxδ) − γ δx = 0 , (19b)

with z(x, t) �= 0, κ(x, t) �= 0, δ(x, t), ω(x, t) �= 0
and θ(x, t) meaning the to-be-determined differen-
tiable real functions with zx zt �= 0, the prime sign
standing the differentiation on z, while q(z) and p(z)
denoting for two differentiable non-zero real functions
of z.

ConsideringEqs. (19) as a couple of the ordinary dif-
ferential equations (ODEs) concerning q(z) and p(z),
one might require the ratios of the coefficients of dif-
ferent derivatives/powers of q(z) and p(z) to merely
represent certain functions of z.

The coefficients of p′′ in Eq. (19a) and q ′′ in
Eq. (19b), as the normalizing coefficients in Eqs. (19),
respectively, come to

�1(z)αωz2x = −βω2zx , (20a)

�2(z)αωz2x = −βωωx , (20b)

�3(z)αωz2x = −βκzx , (20c)

�4(z)αωz2x = −βκx , (20d)

2 similar to those in Refs. [35–41]
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�5(z)αωz2x = ωzt + α (2ωx zx + ωzxx ) − γωzx − βωθ zx ,

(20e)

�6(z)αωz2x = ωt + αωxx − β (ωθx + ωxθ) − γωx , (20f)

�7(z)αωz2x = θt + αθxx − βδx − βθθx − γ θx , (20g)

and

− 1(z)ακz2x = −βωκzx , (21a)

− 2(z)ακz2x = −β (ωκx + ωxκ) , (21b)

− 3(z)ακz2x = −βδωzx , (21c)

− 4(z)ακz2x = κzt − α (2κx zx + κzxx ) − γ κzx − βθκzx ,

(21d)

− 5(z)ακz2x = −β (δxω + δωx ) , (21e)

− 6(z)ακz2x = κt − ακxx − β (θκx + θxκ) − γ κx , (21f)

− 7(z)ακz2x = δt − αδxx − β (θδx + θxδ) − γ δx , (21g)

with �i (z)’s (i=1, · · · , 7) and  j (z)’s ( j=1, · · · , 7)
meaning certain real to-be-determined functions of z
only.

On account of the remarks in Ref. [35], each set of
θ(x, t), ω(x, t), δ(x, t), κ(x, t) and z(x, t) can turn to,
at least, a similarity reduction.

Ground on the second freedom in Remark 3 in Ref.
[35],3 Eqs. (20a), (20c) and (21a) give rise to

ω(x, t) = ±α

β
zx , κ(x, t) = ∓α2

β2 z
2
x ,

�1(z) = ∓1, �3(z) = 1 , 1(z) = ±1 , (22)

according to the first freedom in Remark 3 in Ref. [35],
Eq. (20b) indicates

z(x, t) = λ1x + λ2t + λ3 , �2(z) = 0 , (23)

and then Eqs. (20d) and (21b) bring about

�4(z) = 2(z) = 0 , (24)

in which λ1 �= 0, λ2 �= 0 and λ3 mean the real con-
stants.

Because the first freedom in Remark 3 in Ref. [35]
makes us transform Eqs. (21c) and (21d) into

δ(x, t) = 0 , θ(x, t) = λ2 − γ λ1

βλ1
,

3(z) = 4(z) = 0 , (25)

3 There exist three freedoms in Remark 3, as seen in Ref. [35].

Eqs. (20e),(20f), (20g), (21e), (21f) and (21g) come to

�6(z)=�5(z)=�7(z)=5(z)=6(z)=7(z)=0 . (26)

Since System (1) can be simplified to the following
ODEs:

p′′ ∓ pp′ + q ′ = 0 , (27a)

q ′′ ± (
p′q + pq ′) = 0 , (27b)

integrating ODEs (27) once with respect to z, sepa-
rately, we are capable of transforming ODEs (27) into
a single ODE, i.e.,

p′′ − 1

2
p3 ∓ φ1 p + φ2 = 0 , (28)

based on

q = −p′ ± 1

2
p2 + φ1 , (29)

with φ1 and φ2 representing two real constants of inte-
gration.

Taking into consideration all the above in this sec-
tion, under Constraint (16), we build up the following
two sets of the similarity reductions for System (1):

u(x, t) = λ2 − γ λ1

βλ1
± α

β
λ1 p[z(x, t)] , (30a)

v(x, t)=±α2

β2 λ21

{
p′[z(x, t)] ∓ 1

2
p[z(x, t)]2−φ1

}
,

(30b)

z(x, t) = λ1x + λ2t + λ3 , (30c)

p′′ − 1

2
p3 ∓ φ1 p + φ2 = 0 . (30d)

Each of ODEs (30d), as a known ODE, has been pre-
sented in Refs. [42,43]. The reason for the appearance
of two sets of Similarity Reductions (30) is that the “±”
signs present.

As for the long waves in the shallow water, with
respect to the wave profile and tangential fluid velocity
at the surface, under Constraint (16), Similarity Reduc-
tions (30) are dependent on α, β and γ , the shallow-
water coefficients for System (1).

4 Conclusions

People are studying hard the shallow water waves. For
example, a recent paper in Nonlinear Dyn., Ref. [1],
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has presented a generalized Broer-Kaup system for the
shallow water waves.

In this paper, we have investigated System (1), a
generalized Broer-Kaup-Kupershmidt system for the
long waves in shallow water. Concerning the horizon-
tal velocity of the water wave as well as the height of
the water surface, we have symbolically computed4 the
following:

• Scaling Transformation (8) and Hetero-Bäcklund
Transformations (17), fromSystem (1) to an already-
investigated linear partial differential equation,
under Constraint (16);

• Similarity Reductions (30), each of which from
System (1) to a knownODE, under Constraint (16).

We have found the reason for the appearance of two
sets of Similarity Reductions (30), i.e., the presence of
the “±” signs.

Both Hetero-Bäcklund Transformations (17) and
Similarity Reductions (30) have been seen to be depen-
dent on α, β and γ , the shallow-water coefficients for
System (1).
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