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Abstract In this paper, we systematically study the
integrability and data-driven solutions of the nonlo-
cal mKdV equation. The infinite conservation laws
of the nonlocal mKdV equation and the correspond-
ing infinite conservation quantities are given through
Riccti equation. The data-driven solutions of the zero
boundary for the nonlocal mKdV equation are stud-
ied by using the multilayer physical information neural
network algorithm, which include kink soliton, com-
plex soliton, bright-bright soliton and the interaction
between soliton and kink-type. For the data-driven
solutions with nonzero boundary, we study kink, dark,
anti-dark and rational solution. Bymeans of image sim-
ulation, the relevant dynamic behavior and error analy-
sis of these solutions are given. In addition, we discuss
the inverse problem of the integrable nonlocal mKdV
equation by applying the physics-informed neural net-
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work algorithm to discover the parameters of the non-
linear terms of the equation.
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1 Introduction

In recent years, due to the wide application of non-
local equations in various aspects, it has attracted
the attention of many scholars [1–3]. The most clas-
sical nonlocal equation was the nonlocal nonlinear
Schrödinger(NNLS) equation proposed by Ablowitz
and Musslimani in 2013 [2]. And the most impor-
tant parity-time(PT) symmetry in nonlocal equations
was introduced into AKNS system for the first time.
Later, many scholars have studied this equation at vari-
ous levels [4–8]. Then, many other nonlocal equations
were proposed and studied, such as nonlocal Davey-
Stewartson equation [9], nonlocal derivative nonlinear
Schrödinger equation [10], nonlocal Hirota [11,12],
nonlocal KdV [13] and so on. Recently, a nonlocal
modified KdV(mKdV) was proposed

uxxx + ut + 6uu(−x,−t)ux = 0, (1)

which also called reverse-space-time mKdV equa-
tion. In physical applications, the nonlocal mKdV has
shifted parity and delayed time reversal symmetry,
which is related to Alice Bob system [14]. In fact, the
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nonlocal mKdV equation has been widely discussed
by scholars. For example, the inverse scattering trans-
form of the nonlocal mKdV equation was given in Ref.
[15,16]. The soliton solution of the nonlocal mKdV
equation was solved through Darboux transformation
[17]. TheDbar dressingmethod for the nonlocalmKdV
equationwas shown inRef. [18]. The long-time asymp-
totic behavior of the nonlocal mKdV equation with
decaying initial data was studied by using Deift-Zhou
steepest descent method [19].

Conservation law is universal in applied mathemat-
ics [20]. It reflects a phenomenon that some physical
quantities do not change with time. In soliton theory,
conservation law plays an important role in discussing
the integrability of soliton equations. The existence of
infinitely many conservation laws is closely related to
the existence of soliton equations. In fact, most non-
linear development equations with soliton solutions
have infinitely many conservation laws. Therefore, for
a soliton system, finding its infinite conservation laws
has important practical and theoretical significance for
proving the integrability of the system. Since Miura,
Gardner and Kruskal discovered that the KdV equa-
tion has an infinite conservation laws [21], a series
of methods have been developed to construct the (1
+ 1)-dimensional integrable system, some of which are
no longer in use due to their limitations. For instance,
through the scattering problem and the gradual expan-
sion of the scattering quantity a(λ) can yield an end-
less number of conserved quantities [22], but it can-
not be used to build the conservation rule, hence, this
method is currently of little use in application areas.
In the study of infinite conservation laws, Wadati et
al. have made considerable contributions. Generally
speaking, the infinite conservation law of a continuous
system can be obtained through the following ways:
Lax pair, Bäcklund transform, formal solution of eigen-
function and trace identity, etc. [23–26].Although there
are many ways to obtain infinite conservation laws, the
final result is the same. This variety of methods and
the consistency of results can be seen as an external
manifestation of integrability.

In fact, there are many ways to investigate the
integrability of a partial differential equation, such
as Liuville integrable, Painlevé test, inverse scatter-
ing integrable, Lax integrable, Hirota bilinear, solvable
potential and quantum inverse scattering integrable.
Among them, the Painlevé test is a method proposed
by Weiss, Tabor and Carnevale [27]. Many nonlinear

partial differential equations can be verified by this
method, and the scope of application is very wide. A
large number of subsequent scholars have done a lot
of work in this area to verify the effectiveness of the
method [28,29]. Especially, Wazwaz has extended this
method to higher-dimensional equations and has also
obtained good results [30,31]. Then, a more important
goal is to accurately solve the nonlinear partial dif-
ferential equations. These solutions have very impor-
tant practical significance in nonlinear physical sys-
tems such as nonlinear optics, biophysics, plasmas,
cold atoms and Bose-Einstein condensate systems, and
they are usually called nonlinear waves. According to
physical properties and dynamic characteristics, soli-
tarywave, lump, breather and roguewave are four kinds
of common nonlinear waves. Solitary waves have sta-
bility and particle properties, and all integrable equa-
tions have soliton solutions that reflect the general non-
linear phenomena in nature. The most classical soliton
solutions, including bright soliton solutions, dark soli-
ton solutions, kink solutions, and anti-kink solutions,
have been widely studied for their dynamic behavior
and numerical simulation solutions [32–34]. Compared
with the solitary wave solution, the lump solution is
a special type of rational function solution, which has
localization in all directions of space [35]. Breather and
rogue waves are two kinds of typical nonlinear struc-
tures with obvious instability localized on the plane
wave background [36,37]. In real life, there are a large
number of nonlinear waves interacting with each other.
It is of great significance to study the mechanism of
their occurrence and the physical parameters controlled
by the main interaction. In the process of interaction,
there will be many local excited state phenomena.
Therefore, it is very important to discuss the inelastic
interaction between solitary waves of nonlinear partial
differential equations and other nonlinear waves in the
physical background, which can provide a theoretical
tool for studying the relevant dynamic behavior.

Machine learning is the mainstreammethod to solve
many AI problems at this stage. As an independent
direction, it is developing at a high speed. As a form
of machine learning, deep learning trains models with
multiple hidden layers between input and output. In
general, deep learning means using deep neural net-
works. Deep neural network has the advantages of
fast computing speed and high accuracy and has been
widely used in natural language processing [42], face
recognition [38], speech recognition [41] and other
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fields [39,40]. Recently, a new physical information
neural network (PINN) is proposed by the mathemat-
ical physics system based on the multilayer network
of deep learning mode, which is proved to be suit-
able for dealing with forward problems and highly ill
inverse problems. The approximate solution of the con-
trol equation and the parameters of the control equation
are found from the trainingdata [43].And thenumerical
findings demonstrate that high-dimensional network
tasks can be successfully completed using the PINN
approach with fewer data sets. This training neural net-
work is a supervised learning task to solve some non-
linear partial differential equations that follow the laws
of physics. Then, the PINN method is used to generate
data-driven solutions to reveal the dynamic behavior
of nonlinear partial differential equations under physi-
cal constraints, which has attracted wide attention from
many scholars. Chen’s team has built many data-driven
solutions of nonlinear partial differential equations
using the PINN approach during the last two years,
including soliton solutions [44,45], breather solutions
[46], rational solution [47], roguewave [46,48], higher-
order breatherwaves [49]and rogue periodicwave [50].
In particular, Lin and Chen add the properties of inte-
grable systems such as conserved quantities and Miura
transform to the training network and propose a two-
stage PINN method and find new local wave solutions
[51,52]. In addition, other scholars also obtained some
important results of data-driven solutions for nonlinear
partial differential equations using PINN method [53–
57]. In particular, Dai’s team extended PINN to non-
integrable equations and used PINN to predict multi-
polar soliton solutions of the saturated nonlinear frac-
tional Schrödinger equation [58]. As far as we know,
the application of PINN to nonlocal equations has been
rarely studied.

In this paper, we will derive the Ricatti equation
from the x part of the Lax pair for the nonlocal mKdV
equation and construct the conservation law using the
compatibility condition. The infinite conservation laws
and infinite conserved quantities are obtained from the
solution of Ricatti equation. Besides, we add the non-
local term to the classical PINN to simulate the data-
driven solutions of the nonlocal mKdV equation under
zero boundary and nonzero boundary conditions and
give the error analysis. At the same time, we use the
PINN of the nonlocal term to discover the parameter
of the nonlocal mKdV.

The structure of this paper is as follows. In Sect. 2,
wemainly study the integrability of the nonlocalmKdV
equation and obtain its infinite conservation laws by
using the Riccti equation. In Sect. 3, the composition
of PINN is introduced. Then, we use PINN to study the
data-driven solutions under zero boundary conditions
and give its dynamic behavior in Sect. 4. In Sect. 5, we
learn the data-driven solutions of the nonzero boundary
of the nonlocal mKdV equation and its dynamic behav-
ior. In Sect. 6, the inverse problem is learned based on
PINN, which mainly studies the nonlinear coefficients
for the nonlocal mKdV equation, while adding differ-
ent noises to the network. The conclusion is given in
Sect. 7.

2 Conservation laws for the nonlocal mKdV
equation

The nonlocal mKdV Eq. (1) has the following Lax pair

Φx = MΦ, M = M(x, t; λ) := iλσ3 +U,

Φt = NΦ, N = N (x, t; λ)

:=
[
4λ2 − 2u(x, t)u(−x,−t)

]
M − 2iλσ3Ux

+ [Ux ,U ] −Uxx ,

(2)

where Φ is the matrix eigenfunction, λ is the spectral
parameter and

σ3 =
[
1 0
0 −1

]
, U (x, t) =

[
0 u(x, t)

−u(−x,−t) 0

]
.

For the solution of Lax pair Eq. (2) written in the form
of vector Φ = (φ1, φ2)

T , the following function is
introduced

Γ = φ2

φ1
,

we can put it into Eq. (2) and get

(lnφ1)x = iλ + uΓ,

(lnφ1)t = 4iλ3 − 2iuu(−x,−t)λ − uxu(−x,−t)

− ux (−x,−t)u + (4λ2u − 2u2u(−x,−t)

− 2iλux − uxx )Γ.

The derivatives of x and t of the above two equations
are as follows

(uΓ )t = (−2iuu(−x,−t)λ

−uxu(−x,−t) − ux (−x,−t)u

+(4λ2u − 2u2u(−x,−t) − 2iλux − uxx )Γ )x . (3)

123



8400 J. Zhu, Y. Chen

In addition, combining the Lax pair equation, we can
get the Riccti equation and conservation law equation
about Γ

Γx = −u(−x,−t) − 2iλΓ − uΓ 2,

Γt = −4λ2u(−x,−t) + 2uu2(−x,−t)

+ 2iλux (−x,−t) + uxx (−x,−t) + AΓ − BΓ 2,

where

A = −8iλ3 + 4iλuu(−x,−t) + 2uxu(−x,−t)

+2uux (−x,−t), B = 4λ2u − 2u2u(−x,−t)

−2iλux − uxx .

The function Γ is expanded in the following series

Γ (x, t, λ) =
∞∑
n=1

Γ (n)(x, t, λ)

(2iλ)n

and collects the coefficient of the same power of λ to
obtain the following formula

Γ (1) = −u(−x,−t), Γ (2) = −ux (−x,−t),

Γ (3) = −uxx (−x,−t) − uu2(−x,−t),

Γ (4) = uxu
2(−x,−t) − 4uu(−x,−t)ux (−x,−t)

− uxxx (−x,−t),

Γ (2n) = −Γ (2n−1)
x − 2u

∑
l+k=2n−1

Γ (l)Γ (k),

Γ (2n+1) = −Γ (2n)
x − u

(
Γ (n)2 + 2

∑
l+k=2n

Γ (l)Γ (k)

)
.

Thus, we can write several conservation laws for the
nonlocal mKdV equation as

(−uu(−x,−t))t = (3u2u2(−x,−t) + uxxu(−x,−t)

+uuxx (−x,−t) + uxux (−x,−t))x ,

(uux (−x,−t))t = (−6u2ux (−x,−t)u(−x,−t)

−uxuxx (−x,−t) − uxxux (−x,−t)

−uuxxx (−x,−t))x ,

(−uuxx (−x,−t) − u2u2(−x,−t))t

= (−4u2u(−x,−t)uxx (−x,−t)

&quad + 4u3u3(−x,−t) + uxxuxx (−x,−t)

−u2xu
2(−x,−t) − 2uuxu(−x,−t)ux (−x,−t)

+uuxxu
2(−x,−t)

−2uuxu(−x,−t)ux (−x,−t)

+uxuxxx (−x,−t) + 5u2u2x (−x,−t)

+uu4x (−x,−t))x ,

. . . ,

(uΓ (n))t = ((−2u2u(−x,−t) − uxx )Γ
(n)

−uxΓ
(n+1) − uΓ (n+2))x .

At the same time, the corresponding conserved quan-
tities can also be obtained as

I1 =
∫ +∞

−∞
−uu(−x,−t)dx,

I2 =
∫ +∞

−∞
−uux (−x,−t)dx,

I3 =
∫ +∞

−∞
(uuxx (−x,−t) − u2u2(−x,−t))dx,

. . . ,

In =
∫ +∞

−∞
uΓ (n)dt.

(4)

The above proves the integrability of the nonlocal
mKdV equation. Next, we will apply PINN to the inte-
grable nonlinear equation to obtain its data-driven solu-
tions.

3 The PINN deep learning method

In this part, we will introduce the PINN deep learning
method for partial differential equation. Generally, the
(1+1)-dimensional nonlinear partial differential equa-
tion has the following form

ut + N [u] = 0, x ∈ [x0, x1], t ∈ [t0, t1] (5)

where u is a function of x and t , N [·] is a nonlinear
differential operator in space, which generally contains
high-order dispersion terms and nonlinear terms. Then,
the following equation can be defined by the left part
of Eq. (5)

f := ut + N [u], (6)

and a deep neural network is used to approximate u.
Here, without losing generality, we first consider a neu-
ral network with depth H , which is composed of an
input layer, H − 1 hidden layers and an output layer.
And the hth hidden layer is composed of Nh neurons,
and then, the output xh−1 of the previous layer after
the action of the activation function σ is taken as the
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input of the next hidden layer. This process is formed
through the following radiation transformation

xh = σ
(
Λh

(
xh−1

))
= σ

(
whxh−1 + bh

)
,

where wh ∈ R
Nh×Nh−1 and bh ∈ R

Nh are the weights
and deviations of the hth layer. Usually, we initialize
the bias term to zero, the weight is initialized by Xavier
initialization, and the activation function is selected as
tanh function. After layer upon layer operation, a neu-
ral network can be obtained as

u
(
x0,Θ

)
= (ΛH ◦ σ ◦ ΛH−1 ◦ · · · ◦ σ ◦ Λ1)

(
x0

)
,

where the operator “◦′′ is the composition operator, and

Θ = {
wh,bh

}H
h=1 represents the parameters that can

be learned in the network. The core of the neural net-
work is to constantly update the weights and deviations
so that the solution u of the partial differential equation
satisfies Eq. (6) and minimizes f . And the neural net-
work f and the network representing u have the same
parameters, and these shared parameters can be learned
by minimizing the mean square error loss

Loss1 = Lossu + Loss f , (7)

where

Lossu = 1

Nu

Nu∑
i=1

|u(xiu, t
i
u) − ui |2, (8)

Loss f = 1

N f

N f∑
j=1

| f (x j
f , t

j
f )|2, (9)

{xiu, t iu, ui }Nu
i=1 is the sampled initial and boundary value

training data ofu(x, t). Similarly, the collocation points

for f (x, t) are marked by {x j
f , t

j
f }

N f
j=1. The loss func-

tion (7) contains the losses of initial boundary value
data and the losses of networks (5) at a finite set of
collocation points.

Further, if the solution of the partial differential
equation is complex, we can write the solution of the
final form as u = p + iq. Thus, Eq. (7) can be divided
into two equations with real part and imaginary part, as
follows

pt + N [p] = 0, (10)

qt + N [q] = 0. (11)

Then, the physics-informedneural networks f p(x, t)
and fq(x, t) can be defined as

f p := pt + N [p], (12)

fq := qt + N [q], (13)

where p(x, t;w, b), q(x, t;w, b) are the latent func-
tion of the deep neural network with the weight param-
eter w and bias parameter b, which can be used to
approximate the exact complex-valued solution u(x, t)
of objective equations. This form is reasonable, and in
Ref. [59], the network f p(x, t), fq(x, t) can be found
under the automatic differentiation mechanism.

Similarly, there is also a loss function in this net-
work, and its form is more complex. We can set it to
the following form

Loss
′
1 = Lossp + Lossq + Loss f p + Loss fq , (14)

where

Lossp = 1

Np

Np∑
i=1

|p(xip, t ip) − pi |2,

Lossq = 1

Nq

Nq∑
i=1

|q(xiq , t
i
q) − qi |2, (15)

and

Loss f p = 1

N fp

N f p∑
j=1

| f p(x j
f , t

j
f )|2,

Loss fq = 1

N fq

N fq∑
j=1

| fq(x j
f , t

j
f )|2, (16)

where {xip, t ip, pi }Np
i=1 and {xiq , t iq , qi }Nq

i=1 are the sam-
pled initial and boundary value training data of u(x, t).
Similarly, the collocation points for f p(x, t) and

fq(x, t) are marked by {x j
f , t

j
f }

N fp
j=1 and {x j

f , t
j
f }

N fq
j=1.

For the loss function (14), the first two terms try to
make the learned solution close to the exact solution
when approaching the initial value and boundary value
data, and the last two terms make the hidden functions
p and q meet Eqs. (12) and (13).
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4 Soliton solutions of the nonlocal mKdV equation
under zero boundary condition

In this part, we mainly use the neural network method
to obtain the simulation solution of the nonlocal mKdV
equation under the zero boundary condition, as well as
its dynamic behavior and error analysis. We consider
the nonlocal mKdV equation with Dirichlet boundary
conditions, which is given by the following formula:

⎧
⎨
⎩
uxxx + ut + 6uu(−x,−t)ux = 0, x ∈ [x0, x1], t ∈ [t0, t1],
u(x, t0) = u0(x),
u(x0, t) = u1(t), u(x1, t) = u2(t),

(17)

where x0, x1 represent the boundary of x , and t0, t1
represent the start and end times of time t . The u0(x)
defines the initial condition.

In order to better understand the PINN method, we
give the flow diagram of the nonlocal mKdV equa-
tion according to Sect. 3. It can be seen from Fig. 1
that compared with the classical network diagram of
the local equation, the nonlocal term is added to the
NN part, which makes more functions output and more
complex training. Then, the relevant physical informa-
tion is supplemented, and the loss function is evaluated
by NN and the residual of the control equation given
in combination with the relevant physical information.
Then, theweightw and the deviationb are continuously
updated tominimize the loss function to less than a cer-
tain tolerance ε until the specified maximum number
of iterations is reached.

Next, we will use PINN to simulate the 1-soliton
and 2-soliton solutions of the nonlocal mKdV equa-
tion, including kink solution, complex solution and
their interactions. At the same time, the simulated solu-
tions are compared with the accurate solutions.

4.1 1-soliton solution

In Ref. [17], the method of Darboux transformation is
used to obtain the kink solution form of the nonlocal
mKdV:

u(x, t) = −2ν

1 + e−2ν(x−4ν2t)
,

when ν = −1, a kink solution is generated,

u(x, t) = 2

1 + e2x−8t , (18)

which is a real solution. Therefore, according to Eq.
(6), the PINN f (x, t) can be constructed as

f := uxxx + ut + 6uu(−x,−t)ux , (19)

where we choose [-4,4] as the boundary of x and t ,
so we can give the initial and boundary information as
follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0(x) = u(x,−4) = 2
1+e2x+32 ,

u1(t) = u(−4, t) = 2
1+e−8−8t ,

u2(t) = u(4, t) = 2
1+e8−8t .

(20)

To get a better simulation effect, we divide x into 512
points in the interval and 200 points in the time inter-
val. That is to say, the interval is divided into 512×200
points. Nu = 100 points are randomly selected in the
initial boundary data set, and the internal N f = 10000
points are sampled by the Latin hypercube sampling
method [60]. Here, we construct a feedforward neural
network with six layers and 40 neurons in each hid-
den layer. By adjusting all the learnable parameters of
the neural network and the loss function, we success-
fully learn the 1-soliton solution u(x, t). The relative
L2 error of the final PINN model is 2.583821e− 04 in
about 84.7319s, and the number of iterations is 346.

Figure2a and b shows the density plots of the
exact solution and the learning solution, the error den-
sity plots and three wave propagation plots at dif-
ferent times, respectively. We can find that the error
between the learning solution and the accurate solu-
tion is very small. Figure2c and d displays the three-
dimensional motion and loss curves, respectively. As
shown in Fig. 2d, the loss curve is relatively smooth,
which implies that the integrable deep learning method
is very effective and stable.

In addition, the complex soliton solution of the non-
local mKdV equation was given by the Hirota direct
method in Ref. [61], which can be expressed as

u(x, t) = (1 + 3
2 i)e

i x+i t

1 + e(1+ 3
2 i)x−( 14+ 3

8 i)t
. (21)

In this case, we set u = p + iq, then the construction
of PINN needs to divide the real part and the imaginary
part of the equation reference Eqs.(12) and (13),
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Fig. 1 (Color online) The PINN scheme solving the nonlocal mKdV equation, where ũ = u(−x,−t), p̃ = p(−x,−t) and q̃ =
q(−x,−t)

f p := pxxx + pt + 6pp(−x,−t)px

− 6q(−x,−t)qx p

− 6p(−x,−t)qqx − 6qq(−x,−t)px , (22)

fq := qxxx + qt − 6qq(−x,−t)qx

+ 6pp(−x,−t)qx

+ 6ppxq(−x,−t) + 6p(−x,−t)qpx . (23)

noindent Let [x0, x1] and [t0, t1] in Eq.(17) be
[−5, 5] and [− 1

100 ,
1

100 ], respectively. We select the
complex soliton solution at t = − 1

100 as the initial
condition

u0(x) = u(x,− 1

100
) = (1 + 3

2 i)e
i x− 1

100 i

1 + e(1+ 3
2 i)x+ 1

400+ 3
800 i

. (24)

With the help of LHS, Nu = 100 collocation points and
N f = 5000 collocation points are randomly selected at
the boundary and inside, respectively, to obtain train-
ing data and put them into a network with six hid-
den layers and 40 neurons. Finally, we successfully
learned the complex soliton solution, and the train-
ing solution and accurate solution achieved a L2 error
of 5.639394e−04. The whole training process take
743.5638s, with 10,414 iterations. In Fig. 3, we not
only give the density and error diagrams of the exact

solution and the training solution, but also show the
differences between the two solutions at different time
stages. It can be seen fromFig. 3b that they are very con-
sistent. In addition, we also give the three-dimensional
graph of the training solution and the loss function
graph in the iteration process in graphs (c) and (d).

4.2 2-soliton solution

In this subsection, wemainly simulate two soliton solu-
tions, including bright-bright soliton and soliton kink
interaction solutions.As shown inRef. [61], the general
formula of the 2-soliton solution is

u(x, t) = F

G
, (25)

where

F =
a1a2

(
f1e(1+k+l)x−(k3+l3+1)t + f2e

(
3
2 +k

)
x−

(
k3+ 9

8

)
t
)

l − 1
2

+ f3e−t+x + f4e−k3 t+kx

1 − k
,

G=1

+ g1e(1+l)x−(l3+1)t+g2e
3
2 x− 9

8 t+g3e(k+l)x−(k3+l3)t+g4e(k+ 1
2 )x−(k3+ 1

8 )t

(1 − k)(l − 1
2 )

+a1a2b1b2e
( 3
2 +k+l)x−(k3+l3+ 9

8 )t ,
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Fig. 2 (Color online) The 1-soliton solution u(x, t) for the nonlocal mKdV equation: a The density plot and the error density diagram;
b The wave propagation plot at three different times; c The three-dimensional plot; d The loss curve figure

f1 = 3

2
(k + 1

2
)b1, f2 = (1 + l)(k + l)b2,

f3 = 3

2
a1(1 + l), f4 = a2(k + 1

2
)(k + l),

g1 = 3

2
a1b1(k + l), g2 = a1b2(1 + l)(k + 1

2
),

g3 = a2b1(k + 1

2
)(1 + l), g4 = 3

2
a2b2(k + l).

When k = 1
2 , l = 1, a1 = a2 = b1 = b2 = 1, Eq. (25)

can be reduced to

u(x, t)

= 6ex−t + 3e
1
2 x− 1

8 t + 3e
5
2 x− 17

8 t + 6e2x− 5
4 t

1 + 9e2x−2t + 16e
3
2 x−9

8 t+9ex− 1
4 t+e3x− 9

4 t
,

(26)
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Fig. 3 (Color online) The complex soliton solution u(x, t) for the nonlocal mKdV equation: a The density plot and the error density
diagram; b The wave propagation plot at three different times; c The three-dimensional plot; d The loss curve figure

which is a non-singular 2-soliton solution. Let [x0, x1]
and [t0, t1] in Eq. (17) be [−15, 15], the corresponding
initial condition is given by

u0(x) = u(x,−15)

= 6ex+15 + 3e
1
2 x+ 15

8 + 3e
5
2 x+ 255

8 + 6e2x+ 75
4

1 + 9e2x+30 + 16e
3
2 x+ 135

8 + 9ex+ 15
4 + e3x+ 135

4

.

(27)

123



8406 J. Zhu, Y. Chen

We select the same configuration points as the 1-
soliton solution and use theLHSmethod to obtain train-
ing data sets, then we input these training data sets into
the depth network of nine hidden layers, each of which
has 40 neurons. We have successfully learned the 2-
soliton solution. Compared with the exact solution, its
L2-norm error is 5.937731e−02. The whole training
time is 162.7119s, and the number of iterations is 1715.
What needs to be noted here is not that more configura-
tion points or more training network layers will lead to
better results. Through experiments, we choose deeper
network layers, and the results will be worse. The L2-
norm error will become 2.027299e−01. The training
time is 155.5235s, and the number of iterations is 1402.
The training results are shown in Fig. 4, including the
density diagram, error dynamics diagram, propagation
diagram at different times, three-dimensional diagram
and loss curve diagram of learning 2-soliton solution
and accurate 2-soliton solution. It can be seen that the
results are quite satisfactory.

When k = 0, l = 2, a1 = a2 = b1 = b2 = −1, Eq.
(25) can be reduced to

u(x, t)

= − 1 + 9
2 e

x−t + 1
2 e

3x−9t + 4e
3
2 x− 9

8 t

1 + 2e3x−9t + e
3
2 x− 9

8 t + e−8t+2x + 2e
1
2 x− 1

8 t+e
7
2 x− 73

8 t
,

(28)

which represents interaction of soliton and kink-type
wave. The Dirichlet boundary x and t of Eq. (28) are
[-10,10] and [-15,15], respectively. The initial training
condition is

u(x, t)

= − 1+ 9
2 e

x+15+ 1
2 e

3x+135+4e
3
2 x+ 135

8

1 + 2e3x+135+e
3
2 x+ 135

8 +e2x+120+2e
1
2 x+ 15

8 +e
7
2 x+ 1095

8

.

(29)

Select the same configuration points as above to obtain
training data, and put them into a six-layer neural
network with each 40 neurons. The solution of soli-
ton kink interaction is well learned. Under the con-
dition of training duration of 373.2689s and iteration
number of 7028, we get that the error of L2-norm
between the exact solution and the training solution is
1.452126e−02. In Fig. 5a, b, the density graph, error
graph and time evolution graph of the training and
exact solution at t=−10.05, t=0, t=10.05 are specifi-
cally given. In Fig. 5c, d, we use the training data to give
the three-dimensional graph and the iterative degree
graph.

5 Data-driven solutions of the nonlocal mKdV
equation with nonzero boundary

This part mainly studies the solutions of the nonlo-
cal mKdV equation under nonzero boundary, includ-
ing kink solution, dark solution, anti-dark solution and
rational solution.

5.1 Data-driven solitary wave solution

The kink solution of the nonlocal mKdV with nonzero
boundary has been obtained by inverse scattering
method in Ref. [16], which is expressed as

u(x, t) = −ũ0 tanh

[
ũ0

(
x + 2ũ20t

)
+ θ1 + θ2

2
i

]
eiθ2 .

In order to distinguish between the training initial
boundary and the nonzero boundary conditions satis-
fied by the equation, we use ũ0 to represent the nonzero
boundary conditions satisfied by the equation. The neu-
ral network is constructed by Eq. (6), and its training
initial condition is

u0(x) = u(x,−10)

= −ũ0 tanh

[
ũ0

(
x − 20ũ20

)
+ θ1 + θ2

2
i

]
eiθ2 .

At this time,we select the region of x and t as [−10, 10]
and divide 512 points and 200 points in the region of x
and t , respectively. Nu = 1000 and N f = 10, 000
points are randomly selected as training data at the
boundary and inside, respectively.We numerically pre-
dict the kink soliton solution with proper parameters
ũ0 = 1, θ1 = θ2 = 0 under a six hidden layer deep
PINNwith the 40 neurons per layer. The training results
show that its L2 error is 5.162946e−04 compared with
the exact solution, the training time ismerely 23.7374s,
and the number of iterations is only 350, the final result
is shown in Fig. 6. Once again, it shows the power of
the deep integrable system.

The dark and anti-dark soliton solutions of the non-
localmKdVwere also given inRef. [16], and the overall
expression is
u(x, t)

= eiθ−

w

wũ0
(
ũ20 + w2

) [
e2ϕ+i(θ1+θ2)−e2iθ− ] +2

(
w4eiθ2−ũ40e

iθ1
)
eϕ+iθ−

(
ũ20+w2

) [
e2ϕ+i(θ1+θ2)−e2iθ−

]+2ũ0w
(
eiθ2−eiθ1

)
eϕ+iθ−

,

(30)

where

ϕ =
(
w2 − ũ20

) [
w2x − (

w4 + 4w2ũ20 + ũ40
)
t
]

w3 ,
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Fig. 4 (Color online) The 2-soliton solution u(x, t) for the nonlocal mKdV equation: a The density plot and the error density diagram;
b The wave propagation plot at three different times; c The three-dimensional plot; d The loss curve figure

it is a dark soliton solution as ũ0 = 1, w = 3
2 , θ1 =

π, θ2 = θ = 0, and it is an anti-dark soliton solution
as ũ0 = 1, w = 3

2 , θ1 = θ = 0, θ2 = π . For the dark
soliton solution, let the interval of x and t be [-1,1], and
the corresponding initial condition is

u0(x) = u(x,−1) = 39e
5
3 x+ 1205

108 + 39 − 97e
5
6 x+ 1205

216

39e
5
3 x+ 1205

108 + 39 − 72e
5
6 x+ 1205

216

.

For the anti-dark soliton solution, let the intervals of x
and t be [-4,4] and [-2,2], respectively, and its initial
condition becomes
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Fig. 5 (Color online) Solution of the interaction between soliton
and kink-type waves u(x, t) for the nonlocal mKdV equation: a
Thedensity plot and the error density diagram;bThewavepropa-

gation plot at three different times; c The three-dimensional plot;
d The loss curve figure
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Fig. 6 (Color online) The kink soliton solution u(x, t) for the
nonlocal mKdV equation under nonzero boundary: a The den-
sity plot and the error density diagram; b The wave propagation

plot at three different times; c The three-dimensional plot; d The
loss curve figure
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Fig. 7 (Color online) The dark soliton solution u(x, t) for the nonlocal mKdV equation: a The density plot and the error density
diagram; b The wave propagation plot at three different times; c The three-dimensional plot; d The loss curve figure

u0(x) = u(x,−2) = 39e
5
3 x+ 1205

54 + 39 + 97e
5
6 x+ 1205

108

39e
5
3 x+ 1205

54 + 39 + 72e
5
6 x+ 1205

108

.

By performing the same data collection and train-
ing procedures as kink soliton solution, through train-
ing, we can get that the L2-norm error between

the learning solution and the accurate solution is
2.459108e−02 for the dark soliton solution, the whole
learning process takes about 261.6747s and iterates
4618. For the anti-dark soliton solution, the L2-norm
error between the learning solution and the exact solu-
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Fig. 8 (Color online) The anti-dark soliton solution u(x, t) for nonlocal mKdV equation: a The density plot and the error density
diagram; b The wave propagation plot at three different times; c The three-dimensional plot; d The loss curve figure

tion is 3.244125e−04, and the whole learning process
takes about 24.5986s, with 345 iterations. The con-
struction of this neural network is easier to learn the
anti-dark soliton solution, takes less time, and the train-
ing result is more ideal. The learning results are shown
in Figs. 7 and 8, respectively.

5.2 Data-driven rational solution

In this section, we use the PINN method to construct
the rational soliton solution of Eq. (1). The form of its
solution was given in Ref. [16]

u(x, t) = −1 + 4

1 + 4(x − 6t)2
. (31)

123



8412 J. Zhu, Y. Chen

Fig. 9 (Color online) The rational soliton solution u(x, t) for the nonlocal mKdV equation: a The density plot and the error density
diagram; b The wave propagation plot at three different times; c The three-dimensional plot; d The loss curve figure

If the boundary regions of x and t are [−0.5,0.5] and
[−0.3,0.3], then the corresponding initial condition is

u(x, t) = −1 + 4

1 + 4(x − 5
9 )

2
, (32)

in order to learn rational soliton solution better and
more accurately, Nu = 100 configuration points are

selected at the boundary and N f = 5000 configuration
points are selected internally for training. The train-
ing results are compared with the accurate solution to
achieve a relative L2 error of 1.164655e−02 in about
477.8897s, and the number of iterations is 2848. In
Fig. 9, we give the specific training results, including
the density graph, error graph and time evolution graph
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Table 1 Parameter discovery through different neurons with different noises

Hidden layers -Neurons Without noise With a 0.1% noise With a 0.5% noise

a Error % a Error % a Error %

9-40 5.385962 10.23397 5.941454 0.97576 5.86068 2.32201

9-60 5.817094 3.04843 5.822274 2.9621 5.6708 5.48667

9-80 5.991696 0.1384 5.593484 6.77526 6.001476 0.0246

Table 2 Parameter discovery through different internal configuration points with different noises

Internal points N f Without noise With a 0.1% noise With a 0.5% noise

a Error % a Error % a Error %

10000 5.635974 6.0671 5.866333 2.22778 5.132474 14.45876

30000 5.702411 4.95981 5.5218 7.97 5.752123 4.13129

50000 5.991696 0.1384 5.593484 6.77526 6.001476 0.0246

of the exact solution and the training solution. The 3D
stereoscopic map is generated from the training results.
The training error map is not very stable, and there will
be some burrs in the middle, but this will not affect the
final training results.

6 The PINN algorithm for the data-driven
parameter discovery

In this section, we focus on data-driven discovery of the
nonlocalmKdV equation through PINN algorithm. It is
well known that linear equations have good properties,
while most equations in real life are nonlinear. It is pre-
cisely because of the existence of these nonlinear terms
that more physical properties are stimulated andwidely
used in various fields, such as physics, mechanics, and
life sciences. Therefore, it is necessary to learn the spe-
cific forms of nonlinear terms. For nonlocal nonlinear
partial differential mKdV equation, we mainly study
the coefficient a of the following nonlinear terms

uxxx + ut + auu(−x,−t)ux = 0. (33)

Theoretically, parameter can be found by using any
known nonlocal mKdV solution. Here, we choose to
use the complex solution to do parameter discovery,
and choose Eqs. (22) and (23) as the physical infor-
mation neural network of the nonlocal mKdV equa-
tion. The Latin hypercube is still used for sampling.
With the help of the exact soliton solutions of a=6 and
(x, t) ∈ [−5, 5] × [− 1

100 ,
1

100 ], the training data set

is generated by randomly selecting Nu = 200 as the
initial boundary data and N f = 50000 as the configura-
tion point. According to the training data set obtained,
the data-driven parameter a can be found by using the
PINN.

When the hidden layer of PINN is determined, we
give the data-driven parameter a under different neu-
rons of each layer and show the results in Table 1.
From the table, it can be found that, when no noise
is added to the system, the precision of PINN learning
unknown parameters becomes higher and higher as the
number of neurons increases. When we add different
noises, the results of parameter discovery will oscil-
late with the increase in the number of neurons. When
the number of hidden layers and neurons is fixed, the
number of internal configuration points also affects the
discovery of parameter. In Table 2, we list the results
of parameter learning under different internal configu-
ration points and different noises. It can be seen from
the table that the more internal configuration points are
given, the better the learning results will be. However,
when the internal configuration points are determined,
different noises are added to the neural network, and the
results are also oscillatory. In general, the more config-
uration points, the greater the noise added to the neural
network, and the result of parameter discovery is the
closest to the ideal result.

In Fig. 10a and b, we show the iterative changes of
unknown parameters in the process of inverse prob-
lem under different internal configuration points and

123



8414 J. Zhu, Y. Chen

(a) (b)

(c) (d)

Fig. 10 (Color online) Parameter discovery of the nonlocal
mKdV equation: a Iteration diagram of different internal con-
figuration points; b Iterative graph of different neurons in each

layer with the same neural network depth; c Iterative graph under
different noise conditions; d The variation of loss function with
the different noise

different number of neurons. When other conditions
are determined, the more internal configuration points
or the more neurons in each layer, the faster the con-
vergence of unknown parameters. In Fig. 10c and d, the
changes of unknownparameters and loss functionswith
iteration are analyzed when different noises are used in
the inverse problem. The iteration of unknown parame-
ters under different noises is described in Fig. 10c. The
convergencewithout noise is faster than thatwith noise,
but the final learning result is better when the noise is
0.5%. Figure10d describes the change of loss functions
of different noises with the increase in iteration times.
The results show that the convergence effect is the best
when 0.5% noise is added to the PINN. When 0.1%
noise is added to the network, the convergence effect is

the worst. This shows that adding proper noise into the
network is beneficial to improving the training results.

7 Conclusion

In this paper, we first give the infinite conservation laws
of the nonlocal mKdV equation by using Riccti-type
equation, which shows the integrability of the nonlo-
cal mKdV equation. Then, the components of PINN
are introduced, and two forms of loss functions for
nonlinear equation solutions are given. After that, the
nonlocal term is added to the PINN deep learning to
reconstruct the zero boundary solutions of the non-
local mKdV equation, including kink solution, com-
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plex soliton solution, bright-bright soliton and bright-
kink interaction solutions. For nonzero boundary, we
use PINN to numerically simulate kink solution, dark
soliton solution, anti-dark soliton solution and rational
solution. At the same time, the error of each learning
solution under L2 norm is given. The results show that
the error between the exact solution and the predictive
solution generated by the PINN deep learning method
is very small, which verifies the effectiveness and sta-
bility of the integrable deep learning method. For a
given region, PINN can quickly and accurately learn
the corresponding solution by using less data and net-
work layers, which shows the power of integrable deep
learning. Finally, the problem of data-driven parameter
discovery is solved. The coefficients of nonlinear terms
for the nonlocal mKdV equation are learned through
PINN. In the process of inverse problem processing,
we add noise to the network. Using the control vari-
able method, when the training data and network depth
are determined, we compare the parameter discovery
of different neurons in each hidden layer under dif-
ferent noise conditions and present the results in the
form of a table. Under the condition of determining the
network depth and neurons, we compare the learning
results of parameters given different training datas and
noises. The results show that the more internal config-
uration points are given, the more accurate the learning
results are. In addition, the discovery of parameters is
also closely related to noise. The addition of differ-
ent noises has a great influence on the learning results,
which indicates that noise has a strong sensitivity.

Here, we only verify the integrability of the nonlo-
cal mKdV equation and numerically simulate various
solutions for the nonlocal mKdV through PINN, with-
out applying the integrability to PINN.Whether adding
some properties of integrability to the PINN for nonlo-
cal partial differential equations will have better results
is a question we need to consider further. Just as the
conservation laws were added to the PINN of the local
equation in Ref. [51,62], whether there is less error for
the nonlocal equation under the L2-norm is a question
to be investigated. In addition, other neural networks
can also predict the solutions of nonlinear partial dif-
ferential equations. For example, Zhang has predicted
and analyzed the dynamic behavior of bright soliton
solutions, dark soliton solutions and rouge wave solu-
tions of the (3+1)-dimensional Jimbo-Miwa equation,
p-gBKP equation and other nonlinear partial differen-
tial equations through bilinear residual network and

bilinear neural network [35,37,63–65], whether these
neural network models are suitable for nonlocal equa-
tions is also the direction we need to consider in the
future.

Funding The project is supported by National Natural Science
Foundation of China (No. 12175069 and No. 12235007) and
Science and Technology Commission of Shanghai Municipality
(No. 21JC1402500 and No. 22DZ2229014).

Data Availability All data generated or analyzed during this
study are included in this published article.

Declarations

Conflict of interest The authors declare that there is no conflict
of interests regarding the publication of this paper.

References

1. Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in
PT -symmetric optical lattices. Phys. Rev. A 85(2), 023822
(2012)

2. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal non-
linear Schrödinger equation. Phys.Rev.Lett.110(6), 064105
(2013)

3. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension
of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

4. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering trans-
form for the integrable nonlocal nonlinearSchrödinger equa-
tion. Nonlinearity 29, 915–946 (2016)

5. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.:
General soliton solution to a nonlocal nonlinear Schrödinger
equation with zero and nonzero boundary conditions. Non-
linearity 31(12), 5385 (2018)

6. Wang, M.M., Chen, Y.: Dynamic behaviors of general N-
solitons for the nonlocal generalized nonlinear Schrödinger
equation. Nonlinear Dyn. 104(3), 2621–2638 (2021)

7. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the
integrable nonlocal nonlinearSchrödinger equation. J.Math.
Phys. 60(3), 031504 (2019)

8. Li, G., Yang, Y., Fan, E.: Long time asymptotic behavior for
the nonlocal nonlinear Schrödinger equation with weighted
Sobolev initial data. arXiv preprint arXiv:2110.05907
(2021)

9. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational
solutions of the nonlocal Davey-Stewartson equations. Stud.
Appl. Math. 139(4), 568–598 (2017)

10. Zhou, Z.X.: Darboux transformations and global solutions
for a nonlocal derivative nonlinear Schrödinger equation.
Commun.Nonlinear Sci. Numer. Simul. 62, 480–488 (2018)

11. Cen, J., Correa, F., Fring, A.: Integrable nonlocal Hirota
equations. J. Math. Phys. 60(8), 081508 (2019)

12. Zhu, J., Chen, Y.: Long time asymptotic analysis for a non-
local Hirota equation via the Dbar steepest descent method.
arXiv preprint arXiv:2206.08634, (2022)

13. Gürses, M., Pekcan, A.: Nonlocal KdV equations. Phys.
Lett. A 384(35), 126894 (2020)

123

http://arxiv.org/abs/2110.05907
http://arxiv.org/abs/2206.08634


8416 J. Zhu, Y. Chen

14. Lou, S.Y., Huang, F.: Alice-Bob physics: coherent solutions
of nonlocal KdV systems. Sci. Rep. 7(1), 1–11 (2017)

15. Ji, J.L., Zhu,Z.N.: Soliton solutions of an integrable nonlocal
modified Korteweg-de Vries equation through inverse scat-
tering transform. J. Math. Anal. Appl. 453, 973–984 (2017)

16. Zhang, G., Yan, Z.: Inverse scattering transforms and soliton
solutions of focusing and defocusing nonlocal mKdV equa-
tions with non-zero boundary conditions. Physica D 402,
132170 (2020)

17. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de
Vries equation: integrability, Darboux transformation and
soliton solutions. Commun. Nonlinear Sci. Numer. Simul.
42, 699–708 (2017)

18. Luo, J., Fan, E.: ∂̄-dressing method for the nonlocal mKdV
equation. J. Geom. Phys. 177, 104550 (2022)

19. He, F.J., Fan, E.G., Xu, J.: Long-time asymptotics for the
nonlocal mKdV equation. Commun. Theor. Phys. 71, 475–
488 (2019)

20. Hydon, P.E.: Conservation laws of partial difference equa-
tions with two independent variables. J. Phys. AMath. Gen.
34(48), 10347 (2001)

21. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de
vries equation and generalizations .II. Existence of conser-
vation laws and constants of motion. J. Math. Phys. 9(8),
1204–1209 (1968)

22. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-
difference equations and Fourier analysis. J. Math. Phys.
17(6), 1011–1018 (1976)

23. Wadati, M., Sanuki, H., Konno, K.: Relationships among
inverse method, Bäcklund transformation and an infinite
number of conservation laws. Prog. Theoret. Phys. 53(2),
419–436 (1975)

24. Shabat, A., Zakharov, V.: Exact theory of two-dimensional
self-focusing and one-dimensional self-modulation of
waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)

25. Konno,K., Sanuki, H., Ichikawa,Y.H.: Conservation laws of
nonlinear-evolution equations. Prog. Theoret. Phys. 52(3),
886–889 (1974)

26. Tsuchida, T., Wadati, M.: The coupled modified Korteweg-
de Vries equations. J. Phys. Soc. Jpn. 67(4), 1175–1187
(1998)

27. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property
for partial differential equations. J. Math. Phys. 24(3), 522–
526 (1983)

28. Lou, S., Wu, Q.: Painlevé integrability of two sets of non-
linear evolution equations with nonlinear dispersions. Phys.
Lett. A 262(4–5), 344–349 (1999)

29. Lü, X., Peng, M.: Painlevé-integrability and explicit solu-
tions of the general two-coupled nonlinear Schrödinger sys-
tem in the optical fiber communications. Nonlinear Dyn.
73(1), 405–410 (2013)

30. Wazwaz,A.M.:New (3+ 1)-dimensional Painlevé integrable
fifth-order equation with third-order temporal dispersion.
Nonlinear Dyn. 106(1), 891–897 (2021)

31. Wazwaz,A.M.: Painlevé integrability and lump solutions for
two extended (3+ 1)-and (2+ 1)-dimensional Kadomtsev-
Petviashvili equations. Nonlinear Dyn. (2022). https://doi.
org/10.1007/s11071-022-08074-2

32. Wazwaz, A.M., El-Tantawy, S.A.: Bright and dark opti-
cal solitons for (3+ 1)-dimensional hyperbolic nonlinear

Schrödinger equation using a variety of distinct schemes.
Optik 270, 170043 (2022)

33. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of vari-
able coefficient Biswas-Milovic (BM) model comprising
Kerr law and damping effect. Optik 266, 169617 (2022)

34. Zhang,R.F., Bilige, S., Liu, J.G., Li,M.:Bright-dark solitons
and interaction phenomenon for p-gBKP equation by using
bilinear neural network method. Phys. Scr. 96(2), 025224
(2020)

35. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan,
Z.Z.: Generalized lump solutions, classical lump solutions
and rogue waves of the (2+ 1)-dimensional Caudrey-Dodd-
Gibbon-Kotera-Sawada-like equation.Appl.Math.Comput.
403, 126201 (2021)

36. Dudley, J.M., Dias, F., Erkintalo,M.,Genty,G.: Instabilities,
breathers and rogue waves in optics. Nat. Photonics 8(10),
755–764 (2014)

37. Zhang,R.F., Li,M.C.,Gan, J.Y., Li,Q., Lan, Z.Z.:Novel trial
functions and rogue waves of generalized breaking soliton
equation via bilinear neural network method. Chaos Solit.
Fract. 154, 111692 (2022)

38. Sun, X.D., Wu, P.C., Hoi, S.C.H.: Face detection using deep
learning: an improved faster RCNN approach. Neurocom-
puting 299, 42–50 (2018)

39. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.:
Predicting the sequence specificities of DMA-and RNA-
binding proteins by deep learning. Nat. Biotechnol. 33(8),
831–838 (2015)

40. Shao, Z.F., Wang, L.G., Wang, Z.Y., Du, W., Wu, W.J.:
Saliency-aware convolution neural network for ship detec-
tion in surveillance video. IEEE Trans. Circ. Syst. Video
Technol. 30, 781–94 (2020)

41. Nassif, A.B., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.:
Speech recognition using deep neural networks: a systematic
review. IEEE Access 7, 19143–19165 (2019)

42. Collobert, R., Weston, J., Bottou, G., Karlen, M.,
Kavukcuoglu, K., Kuksa, P.: Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 12, 2493–537
(2011)

43. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys. 378, 686–
707 (2019)

44. Li, J., Chen, Y.: Solving second-order nonlinear evolution
partial differential equations using deep learning. Commun.
Theor. Phys. 72, 105005 (2020)

45. Peng, W.Q., Chen, Y.: N-double poles solutions for nonlo-
cal Hirota equation with nonzero boundary conditions using
Riemann-Hilbert method and PINN algorithm. Physica D
435, 133274 (2022)

46. Pu, J.C., Li, J., Chen, Y.: Soliton, breather and rogue wave
solutions for solving the nonlinear Schrödinger equation
using a deep learning method with physical constraints.
Chin. Phys. B 30(6), 060202 (2021)

47. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solu-
tions of the derivative nonlinear Schrödinger equation using
an improved PINN method. Nonlinear Dyn. 105(2), 1–17
(2021)

123

https://doi.org/10.1007/s11071-022-08074-2
https://doi.org/10.1007/s11071-022-08074-2


Data-driven solutions and parameter discovery 8417

48. Pu, J.C., Chen, Y.: Data-driven vector localized waves and
parameters discovery forManakov system using deep learn-
ing approach. Chaos Solit. Fract. 160, 112182 (2022)

49. Miao, Z.W., Chen, Y.: Physics-informed neural networks
method in high-dimensional integrable systems.Mod. Phys.
Lett. B 36(01), 2150531 (2022)

50. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning for
the Chen-Lee-Liu equation: rogue wave on the periodic
background. Commun. Nonlinear Sci. Numer. Simul. 105,
106067 (2022)

51. Lin, S., Chen, Y.: A two stage physics-informed neural net-
workmethod based on conserved quantities and applications
in localized wave solutions. J. Comput. Phys. 457, 111053
(2022)

52. Lin, S., Chen, Y.: Physics-informed neural network meth-
ods based on Miura transformations and discovery of new
localized wave solutions. arXiv preprint arXiv:2211.15526,
(2022)

53. Wang, L., Yan, Z.: Data-driven rogue waves and parameter
discovery in the defocusing nonlinear Schrödinger equation
with a potential using the PINN deep learning. Phys. Lett.
A 404, 127408 (2021)

54. Fang, Y.,Wu, G.Z.,Wang, Y.Y., Dai, C.Q.: Data-driven fem-
tosecond optical soliton excitations and parameters discov-
ery of the high-order NLSE using the PINN. Nonlinear Dyn.
105(1), 603–616 (2021)

55. Mo, Y., Ling, L., Zeng, D.: Data-driven vector soliton solu-
tions of coupled nonlinear Schrödinger equation using a
deep learning algorithm. Phys. Lett. A 421, 127739 (2022)

56. Li, J., Li, B.: Mix-training physics-informed neural net-
works for the rogue waves of nonlinear Schrödinger equa-
tion. Chaos Solit. Fract. 164, 112712 (2022)

57. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics
of diverse data-driven solitons for the three-component
coupled nonlinear Schrodinger model by the MPS-PINN
method. Nonlinear Dyn. 109(4), 3041–3050 (2022)

58. Bo, W.B., Wang, R.R., Fang, Y., Wang, Y.Y., Dai, C.Q.:
Prediction and dynamical evolution of multipole soliton
families in fractional Schrödinger equation with the PT-
symmetric potential and saturable nonlinearity. Nonlinear
Dyn. 111(2), 1577–1588 (2023)

59. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.:
Automatic differentiation in machine learning: a survey. J.
Mach. Learn. Res. 18, 1–43 (2018)

60. Stein, M.: Large sample properties of simulations using
Latin hypercube sampling. Technometrics 29(2), 143–151
(1987)

61. Gürses, M., Pekcan, A.: Nonlocal modified KdV equations
and their soliton solutions byHirotamethod.Commun.Non-
linear Sci. Numer. Simul. 67, 427–448 (2019)

62. Fang, Y., Wu, G.Z., Wen, X.K., Dai, C.Q.: Predicting cer-
tain vector optical solitons via the conservation-law deep-
learning method. Opt. Laser Technol. 155, 108428 (2022)

63. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions
and the bright and dark solitons of the (3+ 1)-dimensional
Jimbo-Miwa equation. Nonlinear Dyn. 103(1), 1071–1079
(2021)

64. Zhang, R.F., Bilige, S.: Bilinear neural network method to
obtain the exact analytical solutions of nonlinear partial dif-
ferential equations and its application to p-gBKP equation.
Nonlinear Dyn. 95(4), 3041–3048 (2019)

65. Zhang, R.F., Li, M.C.: Bilinear residual network method for
solving the exactly explicit solutions of nonlinear evolution
equations. Nonlinear Dyn. 108(1), 521–531 (2022)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2211.15526

	Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method
	Abstract
	1 Introduction
	2 Conservation laws for the nonlocal mKdV equation
	3 The PINN deep learning method
	4 Soliton solutions of the nonlocal mKdV equation under zero boundary condition
	4.1 1-soliton solution
	4.2 2-soliton solution

	5 Data-driven solutions of the nonlocal mKdV equation with nonzero boundary
	5.1 Data-driven solitary wave solution
	5.2 Data-driven rational solution

	6 The PINN algorithm for the data-driven parameter discovery
	7 Conclusion
	References




