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Abstract In this paper, the periodic solutions of

nonlinear mechanical systems are studied starting

from the nonlinear state-space model estimated using

the nonlinear subspace identification (NSI) technique.

In its standard form, NSI needs the input–output data

from a nonlinear structure undergoing broadband

excitation and requires the prior knowledge of the

locations and kind of nonlinearities to be estimated.

The method allows the estimation of the nonlinear

features of the system and the indirect study of its

periodic solutions using a single broadband excitation,

without the need of feedback control loops. To this

end, the nonlinear frequency response curves of the

system are estimated merging the harmonic balance

method with the NSI technique and using a continu-

ation approach. Then, a monodromy-based stability

analysis is developed in the nonlinear state-space

framework to study the stability of the periodic

solutions of the system and to track its bifurcations.

The method is validated considering conservative

nonlinearities on two numerical examples and one

experimental application, the latter comprising a

double-well oscillator with period-doubling phenom-

ena. The effects of noise and nonlinear modeling

errors are also evaluated.

Keywords Nonlinear system identification �
Periodic solution � Harmonic balance � Continuation �
Bifurcation � Nonlinear frequency � Stability

1 Introduction

Nonlinear system identification is an essential tool for

understanding and modeling the dynamics of nonlin-

ear structures, and plenty of methods have been

developed to perform this task [1]. This process

generally refers to the extraction of information

directly from the measured data, and it may or may

not involve a model, depending on the information

that is sought and on the algorithms that are adopted.

In the case of nonlinear systems, the complexity of this

process is much more important due to the phenomena

that nonlinearity brings and the lack of superposition

principle [2, 3]. Generally, methods for system

identification are classified based on different aspects,

such as their ‘‘gray’’ tone [4], the domain in which they

operate (time or frequency), or the kind of excitation

they need. The latter topic is particularly interesting in

the case of nonlinear systems, with the two main

categories being harmonic-based and random (or

broadband)-based. Harmonic-based methods gain

their strength from the theory laying behind nonlinear

dynamics, which is mainly focused on harmonic

excitations [2]. This class of methods is generally
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devoted to the study of the periodic solutions of the

system and its nonlinear frequency response curves

(NFRCs), which are the generalization of the fre-

quency response functions of linear systems. NFRCs

are response amplitude dependent, and several non-

linear phenomena may arise when changing the

excitation level, such as sub- and super-harmonics,

bifurcations, unstable and isolated solutions, period-

icity breaks, and chaos. Methods belonging to this

class generally use the harmonic balance method

(HBM) to solve the equation of motion considering a

finite number of harmonics [5, 6]. When used in

conjunction with a continuation technique, HBM can

be used to reconstruct the NFRCs of the system and to

track its bifurcations [5–7].

The direct estimation of the NFRCs from experi-

mental measurements is a challenging task, and

several powerful approaches have been developed by

the research community. Generally, the base require-

ment of these methods is to have one or more feedback

control loops on the input forcing function. Control

loops are needed to tune the response amplitude in the

case of stepped-sine tests [8], or to experimentally

replicate a continuation procedure, such as in [9, 10].

In the latter case a phase control is also required to

keep the system response in quadrature with the input.

The necessity of control strategies demands an ade-

quate instrumentation and an iterative test procedure.

Furthermore, the interaction with the shaker [10] and

the presence of harmonics in the input spectrum [9, 11]

are two aspects that must be accounted for. Despite the

experimental difficulties, this class of methods has the

advantage of directly measuring the NFRCs, as well as

the backbone curves [9, 12, 13], the unstable branches

[14, 15] and the nonlinear normal modes [10, 16–18].

Sensitivity analyses and confidence intervals have

been also proposed in this framework [19, 20].

On the other hand, broadband-based techniques

offer a quick and easy way to estimate a nonlinear

model from the measured data, since multiple modes

can be excited simultaneously in an open loop, thus

simplifying the experimental setup. This class of

methods include the nonlinear subspace identification

(NSI) technique [21, 22] and the polynomial nonlinear

state-space approach (PNLSS) [23]. The former in

particular is based on the feedback interpretation of the

nonlinearity [24, 25] combined with the classical

subspace identification framework, and it has been

adopted to identify both localized and distributed

nonlinearities [26–28], and bistable systems [29–31].

In order to adopt the NSI technique, the following

prior information must be known/assumed: (1) the

functional form of the nonlinearities of the system, in

the following called ‘‘nonlinear basis functions’’; (2)

the location of the nonlinearities (in the case of

localized nonlinear behavior). Methods exist to char-

acterize and/or locate a nonlinear behavior of a

structure and they are generally based on the estima-

tion of the restoring surface at the location of interest

[32]. Furthermore, the measured data used for the

identification must properly engage the nonlinear

behavior of the system under test.

In this paper, the twodifferent approaches, harmonic-

based and random-based, are combined to study the

periodic solutions of the system starting from the

nonlinear subspace identification under random excita-

tion. The reconstruction of the NFRCs in the nonlinear

state-space framework has been presented in [33], and

this approach is here further developed in the NSI

formulation andwith a novel study on the stability of the

solution paths and the system bifurcations tracking

using a monodromy-based approach. The method

allows a comprehensive study of the periodic solutions

of a nonlinear system without performing any har-

monic-based experimental measurements, which are

generally complex and require specific instrumentation.

Instead, the periodic solutions are indirectly studied

from the estimated state-spacemodel. It follows that the

accuracy of the predicted NFRCs depends on the

accuracy of the state-space estimation. The latter can

be assessed by using a validation dataset, or by

inspecting the invariance of the underlying-linear

dynamic features (linear FRFs, natural frequencies,

damping ratios, mode shapes). The method is tested on

numerical and experimental applications. The effects of

noise, nonlinear modeling errors and extrapolation of

the results are also evaluated.

In the following, the proposed method will be

referred to as HBM-NSI.

The paper is organized as follows. Section 2 recalls

the problem statement of NSI and describes the

proposed method. Section 3 proposes two numerical

demonstrations with smooth and non-smooth nonlin-

earities. The experimental application is presented in

Sect. 4, and the results are compared with the system

measurements, also addressing period-doubling phe-

nomena. Finally, the conclusions of the present work

are summarized in Sect. 5.
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2 Problem statement

A discrete nonlinear mechanical system having N

degrees of freedom (DOFs) is considered, described

by the following equation of motion

M€y tð Þ þ Cv _y tð Þ þ Ky tð Þ þ f nl y; _y; tð Þ ¼ f ðtÞ ð1Þ

where M, Cv and K 2 RN�N are the mass, viscous

damping and stiffness matrices respectively, while

y tð Þ and fðtÞ 2 RN are the generalized displacement

and external force vectors. The nonlinear part of the

equation is described by the term f nl y; _y; tð Þ 2 RN and

generally depends on displacements and/or velocities.

It is assumed that f nl can be decomposed into J distinct

nonlinear contributions using a linear-in-the-parame-

ters model, thus yielding:

f nl y; _y; tð Þ ¼
XJ

j¼1
ljLjgj y; _y; tð Þ ð2Þ

Each term of the summation is defined by a

coefficient lj, a nonlinear basis function gj y; _y; tð Þ
and a location vector Lj 2 RN . The elements of Lj can

assume the values -1, 1 or 0 and define the position of

the jth nonlinearity. As stated in the introduction, both

the location vector and the nonlinear basis functions

are prior knowledge of NSI. The term f nl can be shifted

to the right-hand side of Eq. (1), thus becoming an

additional forcing term to the so-called underlying-

linear system (ULS):

M€y tð Þ þ Cv _y tð Þ þ Ky tð Þ ¼ f tð Þ � f nl y; _y; tð Þ ð3Þ

Defining now the extended input vector f e as

f e y; _y; tð Þ ¼ f tð ÞT;�g1ðy; _y; tÞ; . . .;�gJðy; _y; tÞ
h iT

ð4Þ

and introducing the state vector x ¼ yT; _yT½ �T, a

continuous state-space formulation can be retrieved:

_x tð Þ ¼ Acx tð Þ þ Be
cf

e y; _y; tð Þ
y tð Þ ¼ Cx tð Þ þ Def e y; _y; tð Þ:

�
ð5Þ

The matrices Ac;B
e
c;C;D

e are the state, extended

input, output and extended direct feedthrough matri-

ces, respectively, and the subscript �c stands for

‘‘continuous’’. All the steps here presented will be

related to the continuous-time formulation, but they

can easily be adapted to the discrete one, for instance

by applying the transformations reported in [21].

Subspace identification can be performed to iden-

tify the state-space matrices, rearranging the measured

displacements into Hankel-type block matrices. The

idea is borrowed from the linear subspace identifica-

tion theory [34], and detailed steps can be found in

[21, 35]. The identification does not involve any

optimization or minimization problem, as it is per-

formed in a single step. It is worth noticing that the

matrix Ac is the state-matrix of the ULS, thus the

underlying-linear dynamics of the structure can be

easily estimated by classical eigenvalue decomposi-

tion of Ac. The extended FRF matrix Ge xð Þ can be

obtained from

Ge xð Þ ¼ De þ C ixI2N � Acð Þ�1Be
c; ð6Þ

where I2N is the identity matrix of size 2N and i is the

imaginary unit. The matrix Ge xð Þ has the same

structure of the extended force vector f e, so that its

first block G xð Þ is the FRF matrix of the underlying-

linear system:

Ge xð Þ ¼ G xð Þ;G xð Þl1L1; . . .; G xð ÞlJLJ

� �
: ð7Þ

The coefficients of the nonlinear terms lj can

eventually be deduced from the remaining blocks of

Ge xð Þ [21].
It should be highlighted that the state-space model

order must be determined by the user. This represents a

classic step in system identificationmethods and can be

performed using well-known techniques, such as the

inspection of the singular values of the system and the

use of stabilization diagrams. The latterwill be adopted

in this paper considering the estimated modal param-

eters of the ULS. In particular, the stabilization of

modal masses is included as described in [35, 36] along

with natural frequencies, damping ratios and mode

shapes. More recent developments of NSI use modal

decomposition to have a better estimation of the

coefficients of the nonlinearities and to remove possi-

ble spurious poles from the identified model [35–37].

3 Harmonic balance method in the extended state-

space framework

Let us assume that the state-space model described by

Eq. (5) is driven by a periodic excitation and that the

system response has the same period as the excitation.

The extended force vector, the state vector and the
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system outputs can therefore be represented as a

Fourier series up to order H

f e tð Þ ¼ Fð0Þ þ
XH

h¼1
FðhÞ
c cos hxtð Þ þ FðhÞ

s sin hxtð Þ
� �

x tð Þ ¼ Xð0Þ þ
XH

h¼1
XðhÞ
c cos hxtð Þ þ XðhÞ

s sin hxtð Þ
� �

y tð Þ ¼ Yð0Þ þ
XH

h¼1
YðhÞ
c cos hxtð Þ þ YðhÞ

s sin hxtð Þ
� �

;

ð8Þ

where the Fourier coefficients are recast into vectors of

size 2N � 2H þ 1ð Þ

Fe ¼ F 0ð ÞT ;F 1ð ÞT
c ;F 1ð ÞT

s ; . . .;F Hð ÞT
c ;F Hð ÞT

s

h iT

X ¼ X 0ð ÞT ;X 1ð ÞT
c ;X 1ð ÞT

s ; . . .;X Hð ÞT
c ;X Hð ÞT

s

h iT

Y ¼ Y 0ð ÞT ;Y 1ð ÞT
c ;Y 1ð ÞT

s ; . . .;Y Hð ÞT
c ;Y Hð ÞT

s

h iT
: ð9Þ

By introducing the linear operator Q tð Þ ¼
1 cos xtð Þ sin xtð Þ . . . cos Hxtð Þ sin Hxtð Þ½ �, Eq. (8)

can be written in a more compact form as

f e tð Þ ¼ Q tð Þ � IJþ1ð ÞFe; x tð Þ ¼ Q tð Þ � I2Nð ÞX; y tð Þ
¼ Q tð Þ � INð ÞY;

ð10Þ

where I is the identity matrix and � is the Kronecker

tensor product [6]. The first derivative of x is

_x tð Þ ¼ Q tð Þr � I2Nð ÞX, where the operator r is

defined as

r ¼ diag 0;r1; . . .;rHð Þ;rh ¼ hx
0 1

�1 0

� �
:

ð11Þ

Recalling the mixed-product property of the Kro-

necker tensor product, the state-space model of Eq. (5)

can be written as [33]

Q tð Þr � I2Nð ÞX ¼ Q tð Þ � Acð ÞX þ Q tð Þ � Be
c

	 

Fe

Q tð Þ � INð ÞY ¼ Q tð Þ � Cð ÞX þ Q tð Þ � Deð ÞFe:

�

ð12Þ

As commonly done in HB approaches, a Galerkin

procedure is then applied to remove the time depen-

dency by projecting Eq. (12) on the trigonometrical

basis Q. Equation (12) is therefore multiplied by 2
T Q

T

and integrated over one period of the external force,

equal to T . Considering that

2

T

Z T

0

QT tð ÞQ tð Þdt ¼ I2Hþ1; ð13Þ

and defining eH ¼ 2H þ 1, the state-space formu-

lation can be eventually written as

r� I2Nð ÞX ¼ IeH � Ac

� �
X þ IeH � Be

c

� �
Fe

I
NeHY ¼ IeH � C

� �
X þ IeH � De

� �
Fe:

8
<

:

ð14Þ

The input–output relation can be obtained by

rearranging the first equation as

X ¼ r� I2N � IeH � Ac

� ��1

IeH � Be
c

� �
Fe; ð15Þ

and substituting into the second. This yields

I
N eHY ¼ ½ IeH � De

� �
þ IeH � C
� �

r� I2N � IeH � Ac

� ��1

IeH � Be
c

� �
�Fe ¼ Ke xð ÞFe:

ð16Þ

The matrix Ke xð Þ relates the inputs to the outputs,

just as the extended FRF matrix Ge xð Þ defined in

Eq. (6), and its formulation is consistent with the one

found in [33]. As for the vector Fe, it contains the

Fourier coefficients of both the forcing term and the

nonlinear basis functions. The latter depend on

displacements and/or velocities, and therefore their

Fourier coefficients are a function of Y. Since the

vector Y is unknown, a recursive methodologymust be

implemented to solve Eq. (16). In particular, the

following nonlinear problem can be deduced:

e Y;xð Þ ¼ Ke xð ÞFe Yð Þ � I
NeHY ¼ 0; ð17Þ

which can be solved using an incremental-iterative

Newton–Raphson procedure, as commonly done in

HB approaches. It is possible to spot three main steps

in the solution of Eq. (17):

1. Choose an appropriate starting point for the

iterations. This can be selected as the linear

solution, or the previous solution in the nonlinear

frequency response (see Sect. 2.2).

2. Compute the quantity Fe Yð Þ. An efficient way of

performing this operation is obtained by using the

alternating frequency/time-domain technique
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(AFT) [38]. With respect to the proposed method,

the AFT algorithm consists in using the inverse

Fourier transform to compute the nonlinear basis

functions and thus the extended forces in the time

domain. The vector Fe can then be obtained by

switching back to the frequency domain:

Y !FFT
�1

y tð Þ ! f e

¼ f T ;�g1; . . .;�gJ
� �T!FFTFe Yð Þ:

ð18Þ

3. Compute theJacobianmatrixeY ¼ oe=oY of Eq. (17)

with respect to the Fourier coefficients Y. This

must be provided in order to search for the solution

in the Newton–Raphson algorithm, and it means

computing the quantity oFe=oY. As explained in

[6], it is possible to express the inverse Fourier

transform as a known linear operator C xð Þ, and
therefore y as y ¼ C xð ÞY. Similarly, the direct

Fourier transform can be written for the extended

forces as Fe ¼ C xð Þð Þþf e. The symbol �þ stands

for the Moore–Penrose pseudoinverse

Cþ ¼ CT CCT
	 
�1

. With this approach, the term

oFe=oY can be written as

oFe

oY
¼ oFe

of e
of e

oy

oy

oY
¼ Cþ of e

oy
C: ð19Þ

The last equation contains the derivative of the

extended force vector with respect to the displacement

vector. Recalling the definition of the extended force

vector inEq. (4), it is straightforward how this operation

can be easily performed in the case of conservative

nonlinearities, since a close expression of the nonlinear

basis functions gj is already known. Note that this

implies that the functions gj are differentiable w.r.t. the

displacement vector in the considered range of motion.

In the case of systems with distinct states, the

differentiation of the nonlinear force can be performed

as detailed in [39]. In the general case, Eq. (19) can be

computed by discretizing one period of oscillations

into Ns samples and numerically perform the time

derivatives involved, as described in [6, 7].

3.1 Nonlinear frequency response, stability

and bifurcations

When the approach described in Sect. 2.1 is used in

conjunction with a continuation technique, the non-

linear frequency response curves (NFRC) of the

system can be obtained and the bifurcations can be

tracked. Several methods have been developed in this

framework, such as pseudo-arc length continuation [5]

and Moore–Penrose [6]. The first method is adopted in

this paper, based on tangent prediction and orthogonal

corrections.

Whatever algorithm is adopted, the continuation

procedure allows possibly to find several solutions on

the frequency response for one given excitation

frequency, some of which are not stable. Several

algorithms have been developed to analyze the

stability of periodical solutions, and a comparison of

the most relevant ones is reported in [40]. In this paper,

a novel methodology is therefore derived in the

extended nonlinear state-space framework based on

the evaluation of the monodromy matrix of the system

H [41], whose eigenvalues are called Floquet multi-

pliers and determine the stability of the solution.

Starting from the state-space formulation of

Eq. (5), a small perturbation can be applied to the

states, yielding

x tð Þ ¼ x� tð Þ þ � tð Þ ð20Þ

where the �� symbol denotes the unperturbed quantity.

The state equation becomes then

_x� þ _� ¼ Ac x� þ �xð Þ þ Be
cf

e ð21Þ

It is convenient to write the extended forces f e as a

function of the state vector x rather than the output

displacements and velocities. Note that an explicit

relationship between the nonlinear basis functions and

the state variables is not required, as it will be

demonstrated later. The extended forces f eðx; tÞ are

expanded in a Taylor series around the unperturbed

solution and truncated to the first order, obtaining

f e x; tð Þ ¼ f e x� þ �; tð Þ ffi f e x�; tð Þ þ of e

ox

����
x�
� ð22Þ

Substituting Eq. (22) into Eq. (21) yields
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_x� tð Þ þ _� tð Þ ¼ Ac x� tð Þ þ � tð Þð Þ

þ Be
c f e x�; tð Þ þ of e

ox

����
x�
�

� 
ð23Þ

Since by definition _x� tð Þ ¼ Acx
� tð Þ þ Be

cf
e x�; tð Þ,

the following equation is obtained:

_� tð Þ ¼ Ac þ Be
c

of e

ox

����
x�

� 
� ¼ J x�; tð Þ� ð24Þ

The matrix J x�; tð Þ is T-periodic and the mon-

odromy matrix H 2 R2N�2N can be defined such that

� Tð Þ ¼ H� 0ð Þ. Equation (24) must be solved by

proceeding to 2N time integrations over one period,

using 2N linearly independent initial conditions. The

easiest choice is �k 0ð Þ ¼ ek; k 2 1; . . .; 2N½ �, where ek
is a vector of zeros with a one at the kth position.

Eventually, the monodromy matrix can be assembled

as:

H ¼ �1 Tð Þ; �2 Tð Þ; . . .; �2N Tð Þ½ � ð25Þ

This process in principle requires the computation

of of e=ox, which is not straightforward. This step can

be circumvented by recalling that the extended force

vector contains the nonlinear basis functions

expressed in terms of output displacements and/or

velocities. For instance, if a closed form of of e=oy is

known (i.e., geometric nonlinearities), the derivative

chain rule can be applied yielding

of e

ox
¼ of e

oy

oy

ox
¼ of e

oy

o

ox
Cxþ Def eð Þ

¼ of e

oy
C þ De of

e

ox

� 
ð26Þ

Eventually the quantity of e=ox can be written as

of e

ox
¼ IJ �

of e

oy
De

� �1
of e

oy
C ð27Þ

and thus J can be written as a function of ðy�; tÞ as

J y�; tð Þ ¼ Ac þ Be
c IJ �

of e

oy

����
y�
De

 !�1
of e

oy

����
y�
C ð28Þ

A similar result can be obtained if a closed form of

of e=o _y is known (i.e., dissipative nonlinearities), by

writing of e/ox ¼ of e/o _y o _y=o _x o _x=ox.
Once the monodromy matrix has been computed,

its eigenvalues rk; k ¼ 1; 2; . . .; 2N (Floquet multipli-

ers) can be exploited to compute the stability of the

solution: a periodic solution is unstable if there exists

at least one Floquet multiplier with a magnitude higher

than 1 [41]. The Floquet multipliers are generally

represented in the complex plane and compared to the

unit circle, as in Fig. 1. Bifurcations are detected when

one or more Floquet multipliers leave the unit circle, in

particular [42]:

– a fold bifurcation (FB) or saddle-node bifurcation

is detected when a Floquet multiplier crosses the

real axis through ? 1;

– a Neimark–Sacker bifurcation (NSB) is detected

when two complex-conjugate Floquet multipliers

cross the unit circle, resulting in a quasi-periodic

solution;

– a period-doubling bifurcation (PDB) is detected

when one Floquet multiplier crosses the real axis

through - 1.

The latter case implies that a new branch of solution

is created, having a period doubled compared to the

solutions of the original branch. When this type of

bifurcations appears in cascade, it can lead to chaos

[2].

It is worth highlighting that all the steps presented

here can be also applied in the case of distributed

Fig. 1 Loss of stability of a periodic solution. Blue dots: fold

bifurcation; green dots: Neimark-Sacker bifurcation; red dots:

period-doubling bifurcation
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nonlinearities by adopting the modal version of NSI

described in [36].

The flowchart of the proposed methodology is

presented in Fig. 2.

4 Numerical demonstration

In this section, the HBM-NSI method is tested using

synthetic data and validated against the theoretical

results. Two cases will be considered, namely a single-

degree-of-freedom Helmholtz–Duffing oscillator and

a two-degree-of-freedom system with a contact non-

linearity. It is worth reminding that a single random

test is needed to apply the proposed approach, though

other tests will be used to validate the methodology in

this paper.

4.1 Single-degree-of-freedom Helmholtz–

Duffing oscillator

The equation of motion of a Helmholtz–Duffing

oscillator reads [43]:

m€y tð Þ þ cv _y tð Þ þ ky tð Þ þ k2y tð Þ2 þ k3y tð Þ3 ¼ f tð Þ ð29Þ

with the system parameters listed in Table 1. The

system is excited by a zero-mean Gaussian random

input, having a root-mean-square (RMS) value of 3 N.

The numerical integration of the equation of motion is

performed using the Newmark method with a sam-

pling frequency of 4096 Hz and considering a time

span of 100 s. No noise is added to the system

response at first to focus on the validation of the

methodology.

The FRF obtained from the synthetic data using the

H1-estimator is depicted in Fig. 3 and compared with

the theoretical FRF of the ULS. The nonlinear

Fig. 2 Flowchart of the

HBM-NSI method
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behavior of the system can be deduced by the

frequency shift visible between the two FRFs.

NSI is performed considering two nonlinear basis

functions: g1 tð Þ ¼ �y tð Þ2 and g2 tð Þ ¼ �y tð Þ3, and the
stabilization diagram of the estimated ULS is depicted

in Fig. 4. Stabilization is checked for frequency,

damping ratio and modal mass with thresholds equal

to 0.5%, 20% and 20%, respectively. A model order

equal to 2 is eventually selected.

The estimatedmodal parameters of the ULS are listed

in Table 2 together with the theoretical values, showing a

perfectmatch.The estimated coefficients of the nonlinear

terms are: kid2 ¼ 4:9986 � 103N=m2 and kid3 ¼ 1:4994 �
106 N=m3, with an average percentage difference of

0.03% from the theoretical ones of Table 1.

The estimated state-space model is then used to

construct the NFRC considering 5 harmonics and a

forcing amplitude of 1 N. Equation (17) is therefore

solved iteratively and the pseudo-arc length continu-

ation method is adopted. Stability is checked at each

step by adopting the methodology described in

Sect. 2.2. In particular, the computation of of e=oy in

this case reads:

of e

oy
¼ o

oy
f tð Þ;�g1 y; tð Þ;�g2 y; tð Þ½ �

¼ 0; 2y tð Þ; 3y tð Þ2
h i

ð30Þ

The results are compared with the theoretical ones,

obtained applying the standard HB method with the

system parameters listed in Table 1. The obtained

NFRC is depicted in Fig. 5, where a clear overlap with

the theoretical NFRC can be appreciated. Also, the

unstable path is correctly recognized, along with the

fold bifurcation point (FB).

Reminding that the frequency response is computed

as a sum of harmonic contributions (see Eq. (8)), an

in-depth comparison can be obtained by inspecting the

single contributions Y
hð Þ
1 defined as

Y
hð Þ
1 ; h ¼ 0

Y
ðhÞ
1 ¼ Y1

hð Þ
c þ iY1

hð Þ
s ; h ¼ 1; . . .;H:

(

The result is depicted in Fig. 6 for both the

theoretical and the NSI-based results, showing a

perfect match.

4.2 Effects of noise and nonlinear modeling errors

The proposed numerical example did not consider the

presence of noise in the system response nor the

possibility of nonlinear modeling errors, as it was

devoted to validating the methodology. As for the

noise, it is known that it degrades the quality of the

identification, and this is particularly true in the

nonlinear case. It is therefore important to check how

noise affects the estimation of the nonlinear frequency

response when adopting the HBM-NSI technique.

Table 1 System parameters of the Helmholtz–Duffing

oscillator

mðkgÞ kðN=mÞ cvðNs=mÞ k2ðN=m2Þ k3ðN=m3Þ

1:3 800 2 5 � 103 1:5 � 106
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Fig. 3 FRF of the Helmholtz–Duffing oscillator. Solid black

line: theoretical FRF of the underlying-linear system; dashed-

dotted red line: FRF estimation of the synthetic data
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Fig. 4 Stabilization diagram of the ULS, Helmholtz–Duffing

oscillator. Gray dot: new (not stable) pole; black plus: pole

stable in frequency; green circle: pole stable in frequency and

damping; red triangle: pole stable in frequency, damping and

modal mass
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Nonlinear modeling errors instead originate from the

need of fitting physical (and generally complex)

nonlinear behaviors to a mathematical description in

the identification process. This leads to intrinsic errors

in the identification of real-life nonlinear systems,

which can be mitigated by accurately selecting proper

candidate nonlinear models. This step is generally

referred to as nonlinear characterization and it is

essential for a satisfactory identification [1, 44].

The same Helmholtz–Duffing oscillator is therefore

considered in this section, but the output is here

corrupted with an increasing level of Gaussian noise,

and it is assumed that the true nonlinear basis

functions are not known. A general polynomial

expansion up to degree 7 is therefore considered:

gk ¼
P7

k¼1y tð Þk, leading to an over-parametrization of

the nonlinear restoring force.

Four levels of noise are discussed, expressed as a

percentage of the output signal standard deviation.

HBM-NSI is therefore performed on 100 Monte Carlo

simulations for each level of noise. First, the state-

space model and the modal parameters of the ULS are

estimated using NSI with a model order equal to 2.

Afterward, the NFRC is constructed for each case,

considering 5 harmonics and a forcing amplitude of 1

N.

The percentage errors on the natural frequency and

the damping ratio are listed in Table 3, together with

the maximum percentage errors on the nonlinear

restoring force and on the NFRC w.r.t. the theoretical

ones. Results are averaged over the Monte Carlo

simulations, with standard deviations written in

brackets.

The effects of the nonlinear modeling errors are

negligible in the absence of noise, while they increase

with higher noise contamination. For completeness of

information, the average percentage deviation on kid2
and kid3 with 3% noise corruption and no modeling

errors is in the order of 0.4% and 0.9%, respectively.

The identified nonlinear restoring force for the differ-

ent levels of noise is displayed in Fig. 7 together with

the RMS contributions of the single nonlinear terms.

The NFRCs are instead depicted in Fig. 8.

4.3 Comments on the choice of the input

amplitude

The proposed approach can be used in principle to

study the periodic solutions of a nonlinear system

without any limitation on the considered forcing

amplitude. However, this is not generally the case in

a real-life scenario, since the state-space model is

estimated using a training data set covering a certain

Table 2 Modal parameters of the Helmholtz–Duffing

oscillator

Frequency

(Hz)

Damping ratio

(%)

Modal mass

(kg)

Theoretical 3.948 3.10 1.30

Estimated 3.948 3.10 1.30
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Fig. 5 Frequency response, Helmholtz–Duffing oscillator.

Black line: theoretical NFRC; dashed-dotted red line: HBM-

NSI result. The unstable branch is depicted with a thin line. The

value of the Floquet multipliers is also depicted for one point of

the unstable branch according to HBM-NSI
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Fig. 6 Single harmonic contributions, Helmholtz–Duffing

oscillator. Black lines: theoretical results; dashed-dotted red

lines: HBM-NSI result
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range of motion (ROM). If the chosen forcing

amplitude for the computation of the NFRCs is such

that the frequency response of the system exceeds the

ROM of the training data, the model starts to

extrapolate. In general, extrapolation in nonlinear

system identification should be circumvented as far as

possible, and this is particularly true for polynomial

models [45]. It is therefore important to consider the

ROM of the training data when simulating the NFRCs

using the estimated state-space model.

To represent a realistic scenario, the Helmholtz–

Duffing oscillator of the previous example with 3%

noise and nonlinear modeling errors is considered

(dotted green line in Fig. 8). The NFRC is computed

for several forcing amplitudes and the maximum error

between estimated and theoretical frequency response

is calculated. For convenience, an amplitude index AI

is defined as AI ¼ max Y1ð Þ/ max yð Þ; in such a way

that extrapolation occurs when AI[ 1. Results are

depicted in Fig. 9 and confirm that extrapolation errors

arise when exceeding the training data ROM.

4.4 Two-degree-of-freedom system with non-

smooth nonlinearity

The system depicted in Fig. 10 is considered, having

two degrees of freedom and a mechanical stop

positioned 2 mm away from DOF 2. This creates a

strong, non-smooth asymmetric nonlinear behavior of

contact type when the gap is filled. The system

parameters are listed in Table 4.

The system is excited at DOF 1 by a zero-mean

Gaussian random input, having a root-mean-square

(RMS) value of 2 N. The numerical integration of the

equation of motion is performed using the Newmark

method with a sampling frequency of 4096 Hz and

considering a time span of 100 s. As for the previous

example, four levels of noise are considered and

expressed as a percentage of the output signal standard

deviation in the range 0–3%.

Table 3 Effects of noise and nonlinear modeling errors on the estimation of the system parameter. Results are averaged over 100

Monte Carlo simulations, with standard deviations written in brackets

Noise

level

Error on frequency

(%)

Error on damping

(%)

Max. error on the nonlinear restoring force

(%)

Max. error on the NFRC

(%)

0 0.000 (0.000) 0.004 (0.001) 0.047 (0.005) 0.096 (0.001)

1% 0.080 (0.039) 1.234 (0.556) 0.351 (0.190) 0.565 (0.177)

2% 0.136 (0.068) 1.778 (1.111) 0.641 (0.371) 1.275 (0.348)

3% 0.192 (0.113) 2.088 (1.382) 0.969 (0.586) 2.289 (0.594)
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Fig. 7 Identification of the Helmholtz–Duffing oscillator with

noise and nonlinear modeling errors. a Nonlinear restoring

force. b Single RMS contributions to the nonlinear restoring

force
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Fig. 8 Frequency response, Helmholtz–Duffing oscillator with

noise and nonlinear modeling errors (stable path only)
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The driving point FRF G1;1 obtained from the

synthetic data using the H1-estimator is depicted in

Fig. 11 and compared with the theoretical FRF of the

ULS. The first mode shows a strong nonlinear

behavior, as it can be deduced from the figure. Instead,

the second mode behaves linearly in the considered

range of motion.

NSI is performed considering the following non-

linear basis functions and location vectors:

g1 ¼
� y2 � dð Þ if y2 tð Þ	 d

0 elsewhere

�
;

g2 ¼
� y2 � dð Þ3 if y2 tð Þ	 d

0 elsewhere

(
; L1 ¼ L2 ¼ 0 1½ �T

Fig. 9 Frequency response for several forcing input amplitudes,

Helmholtz–Duffing oscillator with 3% noise and nonlinear

modeling errors. The maximum error on the NFRC is depicted

in a. Extrapolation occurs when AI[ 1 (yellow region). Black

lines in b and c: theoretical results; dashed-dotted red lines in

b and c: HBM-NSI result
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Fig. 10 Scheme of the 2-DOF system with contact nonlinearity
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Note that the gap value d is assumed to be known in

this example for simplicity and therefore is not

included among the parameters to be estimated. The

reader can refer to [21] for the gap estimation in NSI.

NSI is performed independently for the considered

four levels of noise. The stabilization diagram of the

estimated ULS is depicted in Fig. 12 (no noise), with

thresholds equal to 0.5%, 20%, 99% and 20%, for

frequency, damping ratio, MAC and modal mass

respectively. Similar results are obtained with the

other noise levels, and a model order equal to 4 is

eventually selected for each case.

The theoretical modal parameters of the ULS are

listed in Table 5. The modal masses are computed

considering the unit-normalization of the

eigenvectors.

The errors on the estimated modal parameters and

nonlinear coefficients are listed in Table 6 and related

to 100Monte Carlo simulations for each level of noise.

Results are averaged over the simulations, with

standard deviations written in brackets. It can be seen

that the errors are quite low, but they generally

increase with the noise with a clear trend, as expected.

As for the previous example, the nonlinear state-

space model is used to construct the NFRCs and to

study the stability. The selected forcing amplitude is

0.3 N and the analysis is conducted around the first

mode, considering a frequency range from 2 to 5 Hz.

Five harmonics are included.

Note that in this case Eq. (19) can be applied for

every value of y2 6¼ d, since the basis function is not

differentiable in d. Practically, this is not an issue since

the numerical values of y2 are never exactly equal to d

due to the numerical nature of the algorithm.

The obtained NFRCs are depicted in Fig. 13 for the

case with zero noise and compared with the theoretical

ones. A clear overlap can be appreciated also in this

case, along with a correct recognition of the unsta-

ble paths. No extrapolation is involved in this case.

The single harmonic contributions of DOF 2 are

represented in Fig. 14. It can be observed how the

harmonic contributions different from 1 are null

everywhere except the frequency region where the

response amplitude exceeds the gap value of 2 mm.

The NFRCs obtained with the noise-corrupted mea-

surements are depicted in Fig. 15 for the second DOF.

The frequency responses are consistent with each other,

with minor deviations due to noise. In particular, the

maximum percentage error in terms of response ampli-

tude is roughly 0.8%, confirming the robustness of the

algorithm with respect to the presence of noise.

5 Experimental application

A double-well vibrating system is considered, com-

posed by a u-shaped steel frame connected through

rods to a moving mass m whose vertical movement is

guided. Base excitation is provided with a shaking
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Fig. 11 Driving point FRF of the 2-DOF system. Solid black

line: theoretical FRF of the underlying-linear system; dashed-

dotted red line: FRF estimation of the synthetic data with no

noise
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Fig. 12 Stabilization diagram of the ULS, 2-DOF system with

no noise. Gray dot: new (not stable) pole; black plus: pole

stable in frequency; blue square: pole stable in frequency and

MAC; green circle: pole stable in frequency, MAC and

damping; red triangle: pole stable in frequency, MAC, damping

and modal mass

Table 5 Theoretical modal parameters of the 2 DOF system

Frequency

(Hz)

Damping ratio

(%)

Modal mass

(kg)

Mode

1

3.1491 1.9787 1.024

Mode

2

11.375 7.1470 0.5118
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Table 6 Effects of noise on the estimation of the system parameter. Results are averaged over 100 Monte Carlo simulations, with

standard deviations written in brackets

Noise

level

Error on frequency (%) Error on damping (%) Error on modal mass (%) Error on k1
(%)

Error on

k3(%)

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

0 0.000

(0.000)

0.003

(0.000)

0.005

(0.004)

0.005

(0.001)

0.043

(0.002)

0.523

(0.000)

0.014 (0.008) 0.121 (0.016)

1% 0.044

(0.005)

0.003

(0.001)

0.376

(0.278)

0.015

(0.012)

0.114

(0.058)

0.523

(0.012)

0.162 (0.124) 0.294 (0.189)

2% 0.112

(0.012)

0.003

(0.002)

0.626

(0.483)

0.029

(0.021)

0.230

(0.116)

0.513

(0.022)

0.333 (0.254) 0.569 (0.402)

3% 0.182

(0.019)

0.004

(0.003)

0.988

(0.671)

0.038

(0.029)

0.418

(0.172)

0.513

(0.034)

0.459 (0.367) 0.913 (0.706)
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Fig. 13 Frequency response, 2-DOF system with no noise.

aDOF 1; bDOF 2. Black line: theoretical NFRC; dashed-dotted

red line: HBM-NSI result. The unstable branch is depicted with

a thin line
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Fig. 14 Single harmonic contributions, 2nd DOF of the 2-DOF

system. Black lines: theoretical results; dashed-dotted red lines:

HBM-NSI result. The gap value is depicted with a dotted gray

line
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Fig. 15 Frequency response of the 2-DOF system in the

presence of noise (stable path only). Black line: no noise; dashed

blue line: 1% noise; dashed-dotted orange line: 2% noise; dotted

green line: 3% noise

Fig. 16 Experimental setup. a Schematic representation;

b Photo
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table, so that a displacement bðtÞ is imposed to the

structure. A schematic representation of the device is

depicted in Fig. 16, together with a photo.

The device has been already studied in [29] where

the equation of motion with respect to the vertical

movement of the mass has been derived. The system

shows a double-well potential nature resulting in three

equilibrium positions, two of which are stable. The

device can oscillate around one equilibrium position

(in-well motion) or encompassing all the equilibrium

positions (cross-well motion). This originates a rich

nonlinear behavior, which can include softening

phenomena, period doublings and chaos. Only in-well

oscillations will be considered in this work, but the

reader can refer to [29, 31] for a deeper investigation

about cross-well related phenomena.

Calling x tð Þ ¼ y tð Þ � b tð Þ the relative vertical dis-

placement around one stable equilibrium position, the

equation of motion reads [29]:

m€x tð Þ þ cv _xþ k3x tð Þ3 þ k2x tð Þ2 þ k1xðtÞ ¼ �m €bðtÞ;
ð31Þ

where cv; k3; k2 and k1 are the viscous damping, cubic

stiffness, quadratic stiffness and linear stiffness coef-

ficients, respectively, and €bðtÞ is the acceleration of the
base.

As for the damping model, detailed studies have

been conducted in [44] to derive an ad-hoc dissipative

model, which considers the effects of the sliding

movement of the moving mass. The importance of

such a model is quite significant when considering

cross-well oscillations. However, the analysis in this

work will be limited to in-well motion, and a simple

equivalent viscous damping term has been found to be

enough for the purposes of this study.

The moving mass is instrumented with a laser

vibrometer to measure its absolute displacement yðtÞ,
starting from the equilibrium position depicted in

Fig. 16. The acceleration of the base €b tð Þ is recorded
through an accelerometer and the displacement xðtÞ is
computed as the difference between the laser measure

yðtÞ and the displacement of the base bðtÞ, obtained by
integrating twice its measured acceleration.

5.1 Nonlinear system identification under random

excitation

Random excitation is applied to perform the nonlinear

system identification using NSI, with a sampling

frequency of 512 Hz and a time span of 300 s. The

RMS value of the base acceleration is 26m=s2RMS,

and the time history of the relative displacement xðtÞ is
shown in Fig. 17, together with the restoring surface

plot.

Fig. 17 Double-well system under random excitation. a Time

history of the relative displacement; b Restoring surface plot
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Fig. 18 Stabilization diagram of the ULS, double-well system.

Gray dot: new (not stable) pole; black plus: pole stable in

frequency; green circle: pole stable in frequency and damping;

red triangle: pole stable in frequency damping and modal mass
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Fig. 19 Transmissibility of the double-well system. Solid black

line: low excitation level (H1-estimator); dashed-dotted red line:

high-excitation level (H1-estimator); solid green line: transmis-

sibility of the ULS as obtained from NSI
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The stabilization diagram of the estimated ULS is

depicted in Fig. 18, with thresholds equal to 1%, 20%

and 20%, for frequency, damping ratio and modal

mass, respectively. A model order equal to 2 is

eventually selected. The estimated natural frequency

is 11.22 Hz, with a damping ratio of 6.22%.

A second random test is performed with a lower

excitation level so as to have a linear reference and to

make a comparison with the estimated ULS. The RMS

value of the base acceleration is in this case equal to

10m=s2RMS. The experimental low-level transmissi-

bility between relative and base displacements is

compared with the transmissibility of the ULS

estimated using the state-space model of NSI, and

the result is depicted in Fig. 19.

It can be appreciated how close the estimated ULS

transmissibility is to the one associated with the low

excitation level, confirming the goodness of the

identification. The estimated coefficients of the non-

linear terms are: kid2 ¼ �4:5501 � 105Nm�2 and

kid3 ¼ 1:8924 � 105Nm�3, obtained as in the classic

NSI framework [21, 36] from the blocks of the

extended FRF matrix (see Eq. (7)). The estimated

discrete state-space model reads:

A ¼
0:98490:1443

�0:12790:9793

" #
;

Be ¼
�0:002026 108:6 �1143

�0:002247 87:47 257:7

� �
;

C ¼ �0:0211 0:0143½ �;
De ¼ �2 � 10�6 �18:95 321:6

� �
:

5.2 NFRC reconstruction and sine-sweep

comparison

The estimated state-space model is used to construct

the NFRC and to study the stability, following the

methodology presented in Sect. 2. The result is

compared with the measured responses to two slow

logarithmic frequency sweeps, namely a sweep-up and

a sweep-down. The frequency range is from 7 to 16 Hz

and the sampling frequency is 512 Hz. The spectro-

gram of the two sweep responses is depicted in

Fig. 20, where even and odd harmonics of the

fundamental frequency can be observed. A jump-up

occurs during the sweep-up at around 0.3 min, while a

jump-down occurs during the sweep-down between at

around 1 min. Prior to that, subharmonics show up

between 0.8 and 1 min. The instantaneous fundamen-

tal frequency is also represented, computed using the

Hilbert transform [46] of the measured input signal.

The shaker is controlled so as to keep the amplitude

of the base b0 constant and equal to 4.7 mm. The

Fig. 20 Spectrogram of the logarithmic sweep response.

a Sweep-up; b Sweep-down. The instantaneous fundamental

frequency is depicted in red

Fig. 21 Measured base acceleration versus the instantaneous

frequency. The amplitude of the acceleration is depicted with a

dotted blue line

Fig. 22 Frequency response, double-well system. Blue line:

sweep-down; yellow-line: sweep-up; black line: HBM-NSI

result. The unstable branch is depicted with a thin line and the

period-doubling branch is depicted with a dashed-dotted line
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forcing input term f tð Þ in Eq. (31) is proportional to

the base acceleration, depicted in Fig. 21 in this case

as a function of the instantaneous frequency. The

amplitude of the acceleration grows quadratically with

the frequency as b0 2pmð Þ2, where m is the instantaneous
frequency in Hz. To correctly compare the results with

the measured frequency sweeps, the forcing input

amplitude F mð Þ used in HBM-NSI is therefore sam-

pled from the function F mð Þ ¼ mb0 2pmð Þ2 for each

value of m considered in the continuation procedure.

The proposed method is applied with 5 harmonics,

and the result is depicted in Fig. 22 and compared with

the sweep-up and sweep-down measured time

responses. The amplitude of the oscillations predicted

by the HBM-NSI approach is generally very close to

the measured ones, confirming the goodness of the

method. Furthermore, a fold bifurcation is detected at

9 Hz using the methodology presented in Sect. 2.2,

where the sweep-up response shows a jump-up.

Conversely, a jump-down occurs at 7.6 Hz during

the sweep-down test, and the predicted unstable branch

ends at the very close frequency of 7.7 Hz. A period-

doubling bifurcation is detected at 7.9 Hz, initiating a

new branch of solutions having half the fundamental

period until 10.2 Hz (dashed-dotted line in Fig. 22). It

should also be noted that the range of motion of the

NFRC in Fig. 22 is comparable with the training data

of the identification step depicted in Fig. 17. This

allows the estimated nonlinear model to be safely used

for the construction of the frequency response of the

system with the selected input amplitude without

encountering extrapolation issues.

The locus of the two Floquet multipliers of the

system around the fold and the period-doubling

bifurcations is represented in Fig. 23.

As for the period-doubling bifurcation, it should be

highlighted that the occurrence of subharmonics has

already been spotted in the spectrogram of the relative

displacement (Fig. 20) between 8.5 and 10 Hz, in

accordance with the HBM-NSI result. A clear picture

of this behavior can be obtained by performing a sine test

at the fixed frequency of 9 Hz andwith base amplitude of

4.7 mm. The system response is depicted in Fig. 24,

where the period-doubling phenomenon can be observed

in the phase diagram, showing two nested orbits.

Eventually, the NFRC can be generated for several

input amplitudes to track the evolution of the system

response and its bifurcations. The result is shown in

Fig. 25, where several base displacement amplitudes

are considered and the unstable areas highlighted. It

can be noted how the fold bifurcation (in red) starts at

relatively low excitation levels, while the period-

-1 1

Re( )

Im( )

-1 1

Re( )

Im( )a) b)

Fig. 23 Locus of the two Floquet multipliers of the double-well

system depicted with solid red and dashed-dotted blue lines.

a Solution around FB; b Solution around PDB

Fig. 24 Response of the double-well system to a sine excitation

at 9 Hz with base amplitude equal to 4.7 mm. a Time history;

b Phase diagram

Fig. 25 Nonlinear response curves for different base displace-

ment amplitudes (extrapolation in yellow). Solid black lines:

stable paths of some NFRCs; solid red line: locus of the fold

bifurcations; solid blue line: locus of the period-doubling

bifurcations. Dotted lines represent unstable paths
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doubling bifurcation (in blue) needs higher excitation

levels to appear. Note that the curves obtained with a

base displacement amplitude higher than 4.7 mm

involve extrapolation (yellow area).

6 Conclusions

The purpose of this paper was to study the periodic

solutions of nonlinear mechanical systems starting

from the nonlinear state-space model estimated using

the nonlinear subspace identification (NSI) technique.

In its standard form, NSI needs the input–output data

from a nonlinear structure undergoing broadband

excitation, and requires the prior knowledge of the

locations and kind of nonlinearities to be estimated.

The proposed technique allows to study the stability of

the periodic solutions of the system by building the

nonlinear frequency response curves (NFRCs) using a

single broadband excitation, making it very conve-

nient from an experimental point of view. To this end,

a novel methodology is derived in the extended state-

space framework considering a continuation proce-

dure and a monodromy-based approach. The method

has been first tested on simulated nonlinear systems in

the presence of noise and nonlinear modeling errors.

Results showed a satisfactory level of accuracy in

determining the periodic solutions of the systems, with

errors comparable to the noise floor. Eventually, the

experimental identification of a double-well vibrating

system has been carried out and the estimated NFRC

validated against the acquired data, comprising fold

and period-doubling bifurcations. The proposed

method has been tested in the case of conservative

nonlinearities, suggesting that future validations

should be focused on the dissipative case.
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