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Abstract The vehicle active suspension has attracted
considerable attention owing to its great contributions
to the vertical dynamics of vehicle. This paper inves-
tigates the non-fragile output feedback control prob-
lem of the uncertain vehicle active suspension with
stochastic network-induced delay. Firstly, taking the
variation of sprung and unsprung masses into consid-
eration, an interval type-2 (IT-2) Takagi–Sugeno (T–S)
fuzzy model is introduced to describe the nonlinear
characteristics of active suspension systems (ASSs).
Secondly, to ensure that the control strategy is practi-
cable when some states are unmeasured, a novel output
feedback method is proposed by employing a variable
substitution approach. Meanwhile, in order to approx-
imate the real physical conditions of the control sys-
tem, the gain perturbations are taken into account.
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Thirdly, with regard to the complexity of signal trans-
mission delay in network control process, a more gen-
eralized lumped delay form is employed to represent
the network-induced delay. Moreover, to describe the
stochasticity of lumped delay, a Markovian process
is introduced. Finally, both numerical simulations and
experimental tests are carried out to examine the effec-
tiveness and practicability of the proposed controller.
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1 Introduction

As an essential part of the automotive chassis, the sus-
pension systems are required to satisfy the significant
demands of driving safety, handling stability and ride
comfort. Generally speaking, suspension systems can
be classified into passive suspensions, semi-active sus-
pensions, and active suspensions [1–3]. It isworthmen-
tioning that the active suspension has great advantages
in terms of improving vehicle ride comfort and han-
dling stability, because it can forwardly generate and
adjust the required control force according to different
driving conditions.

It should be pointed out that the vehicle system
parameters constantly vary along with the change of
the driving environment in practical applications. This
inevitably causes the parameter uncertainties of the
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active suspension systems (ASSs) [4]. To effectively
address the inherent uncertainties in ASSs, the inter-
val type-2 (IT-2) fuzzy method has been proven as
an excellent tool, owing to its prominent ability of
capturing system uncertainties [5,6]. An active levi-
tation control system based on an interval IT-2 model-
based fuzzy logic controller was investigated in [7].
Meanwhile, the suspension system is nonlinear due to
the varying configuration. To deal with nonlinear sys-
tems, the Takagi–Sugeno (T–S) fuzzy model has been
confirmed as a well-grounded method. For instance,
the authors in [8] applied the T–S fuzzy method to
explain the electrohydraulic ASSs with consideration
of uncertain sprung mass and the control input. How-
ever, it is still challenging to handle the nonlinearity
and uncertainties of the ASSs by an IT-2 T–S fuzzy
model.

Apart from the construction of the ASSs model, the
design of control strategy is also significant to refine
the performance of the active suspension. Therefore, in
recent ten years, researchers have proposedmany feasi-
ble active suspension control strategies, such as sliding
model control [9–12], adaptive control [13–15], and
H∞ control [16,17]. The H∞ control has been widely
investigated by researchers due to its good robustness
and anti-interference ability. In general, the H∞ con-
trol can be divided into state feedback H∞ control and
the output feedback H∞ control. Given that not all state
vectors can bemeasured online, the state feedback con-
troller is not feasible in actual suspension system.Com-
pared with the state feedback controller , the structure
of output feedback controller is simpler and easier to
implement [18]. Furthermore, the traditional H∞ con-
trol is based on the premise that the controller can be
realized accurately.However, it should be noted that the
controller will be affected by many uncertain factors in
practice, such as the delay of the actuator and the aging
of the corresponding equipment [19–21]. These uncer-
tainties could cause fragility of the controller and fur-
ther lead to the degradation of the closed-loop system
performance. Hence, much effort was devoted to deal
with the controller fragility issue for suspension control
systems, such as safety assessment method [22], fault-
tolerant [23] method, and non-fragile method [24].
Among them, the non-fragile methods that can resist
interference have attracted scholars’ attention.

With the wide application of network communica-
tion technology in the field of vehicles, unlike the tra-
ditional point-to-point connection, the signal transmis-

sion delaymay be an inevitable phenomenon due to the
shared and band-limited channels of vehicle-mounted
network [25]. The delay may lead to system oscilla-
tion and divergence in the operation of the active sus-
pension system [26,27]. Nevertheless, previous stud-
ies regard this time delay as a fixed value [28], or only
confine the upper and lower limits of the time delay
and set the lower limit as zero [29]. However, in fact,
this network-induced delay is usually a random phe-
nomenon. Since the data transmission in the process of
network control always exists, its lower limit cannot be
zero. Therefore, it is necessary to design a more practi-
cal representation method of the network-induced time
delay.

Based on the above motivations, this paper proposes
an IT-2 fuzzy H∞ controller for the uncertain ASSs
with stochastic network-induced delay. The major con-
tributions of this research are listed as follows:

(1) An IT-2T–S fuzzymethod is developed to construct
the model of the suspension system with parameter
uncertainties.

(2) Avariable substitution approach is employed to cal-
culate the output feedback control gains to reduce
the computational burden and ensure satisfactory
system response.

(3) A more generalized lumped delay form is adopted
to present the stochasticity of the network-induced
delay to improve system stability and control effec-
tiveness.

The rest of this work is organized as follows: Sect. 2
establishes the uncertain active suspension model and
formulates the control objective. Section 3 presents the
non-fragile output feedback controller design method.
Simulation and experimental results are illustrated in
Sects. 4 and 5, respectively. Finally, Sect. 6 concludes
this research.
NotationWith regard to amatrix X , X−1 and XT denote
its inverse and transpose, respectively. [X ]s denotes
X+XT . The n-dimensional Euclidean space is denoted
by Rn . diag{·} denotes a block diagonal matrix.

2 Modeling and problem formulation

2.1 Quarter-car ASS model

Figure 1 shows a commonquarter-car active suspension
model, and all symbol definitions of vehicle parameters
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Fig. 1 Quarter-car automotive active suspension model

Table 1 Symbol definitions of vehicle model

Parameter Physical meaning Unit

ms(t) Sprung mass kg

mu(t) Unsprung mass kg

zs(t) Displacement of sprung mass m

zu(t) Displacement of unsprung mass m

zr(t) Displacement input of road m

zmax The maximum suspension travel limit m

ks Stiffness of suspension N/m

kt Stiffness of tire N/m

bs Damping coefficient of suspension N s/m

bt Damping coefficient of tire N s/m

u(t) Actuator force N

are listed in Table 1. On the basis of the Newton’s sec-
ond law, the vertical motion equations of suspension
are acquired as:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ms z̈s(t) = −bs (żs(t)

−żu(t)) − ks (zs(t) − zu(t)) + u(t)

mu z̈u(t) = −bt (żu(t) − żr(t))

− kt (zu(t) − zr(t))

+ bs (żs(t) − żu(t)) + ks (zs(t) − zu(t)) − u(t)

(1)

Define x1 = zs(t)− zu(t), x2 = żs(t), x3 = zu(t)−
zr(t), x4 = żu(t).

The equations of vehicle suspension system in (1)
can be presented as:

ẋ(t) = A(t)x(t) + Bω(t)ω(t) + Bu(t)u(t) (2)

where

x(t) = [
x1 x2 x3 x4

]T
, ω(t) = żr(t),

A(t) =

⎡

⎢
⎢
⎢
⎣

0 1 0 −1
− ks

ms(t)
− bs

ms(t)
0 bs

ms(t)
0 0 0 1
ks

mu(t)
bs

mu(t)
− kt

mu(t)
− bs+bt

mu(t)

⎤

⎥
⎥
⎥
⎦

,

Bω(t) =

⎡

⎢
⎢
⎣

0
0

−1
bt

mu(t)

⎤

⎥
⎥
⎦ , Bu(t) =

⎡

⎢
⎢
⎣

0
1

ms(t)
0
−1

mu(t)

⎤

⎥
⎥
⎦ .

Considering that the aim of controller design is to
enhance the ride comfort and guarantee the road hold-
ing ability, the controlled output can be expressed as:
⎧
⎪⎨

⎪⎩

z1(t) = z̈s(t)

z2(t) =
[
zs(t) − zu(t)

zmax

kt (zu(t) − zr(t))

(ms(t) + mu(t)) g

]T

As a result, (1) can be written as:
⎧
⎪⎨

⎪⎩

ẋ(t) = A(t)x(t) + Bω(t)ω(t) + Bu(t)u(t)

z1(t) = C1(t)x(t) + D1(t)u(t)

z2(t) = C2(t)x(t)

(3)

where

C1(t) =
[ −ks
ms(t)

− bs
ms(t)

0 bs
ms(t)

]
,

D1(t) = 1

ms(t)
,

C2(t) =
[

1
zmax

0 0 0

0 0 kt
(ms(t)+mu(t))g

]

.

2.2 IT2-T–S model

With regard to uncertain variables ms (t) and mu (t),
some assumptions are made as:

ms(t) ∈ [msmin,msmax] , mu(t) ∈ [mumin,mumax]

For brevity, the fuzzy membership functions are
listed in Table 2, and the following definitions are given
as:

�
ms = 1

msmax
= min

1

ms(t)
,
�
mu = 1

mumax
= min

1

mu(t)
�
ms = 1

msmin
= max

1

ms(t)
,
�
mu = 1

mumin
= max

1

mu(t)
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Table 2 Fuzzy membership functions

Sprung mass Unsprung mass

μ
M11

= μ
M21

=
�
ms−l11
�
ms−�

ms
μ
M12

= μ
M22

=
�
mu−l21
�
mu−�

mu

μM31
= μM41

= l11−�
ms

�
ms−�

ms
μM32

= μM42
= l21−�

mu
�
mu−�

mu

μM11
= μM21

=
�
ms−l12
�
ms−�

ms
μM12

= μM22
=

�
mu−l22
�
mu−�

mu

μ
M31

= μ
M41

= l12−�
ms

�
ms−�

ms
μ
M32

= μ
M42

= l22−�
ms

�
mu−�

mu

Fig. 2 Membership functions of the IT-2 fuzzy systems

l11, l12 ∈
[
�
ms,

�
ms

]
, l11 = 1

ms
, l12 < l11

l21, l22 ∈
[
�
mu,

�
mu

]
, l21 = 1

mu
, l22 < l21

These membership functions are plotted in Fig. 2.
Thereafter, the uncertain nonlinear suspension sys-

tem is expressed by the following IT-2 T–S fuzzy mod-
els.

Model Rule i: If ξ1 (t) is Mi1 (ξ1 (t)), ξ2 (t) is
Mi2 (ξ2 (t)), Then
⎧
⎪⎨

⎪⎩

ẋ(t) = Ai x(t) + Bωω(t) + Buiu(t)

z1(t) = C1i x(t) + D1i u(t)

z2(t) = C2i x(t)

(4)

The interval set of the i th rule firing strength is as

g̃i (ξ(t)) =
[
g
i
(ξ(t)), gi (ξ(t))

]

where f = 1, 2,i = 1, 2, 3, 4, ξ (t)denotes the premise
variables, μ

Mi f

(
ξ f (t)

)
and μMi f

(
ξ f (t)

)
denote the

lower membership function and upper membership
function, g

i
(ξ(t))=∏4

f =1 μ
Mi f

(
ξ f (t)

)
and gi (ξ(t))=

∏4
f =1 μMi f

(
ξ f (t)

)
denote the lower grade of mem-

bership and upper grade of membership, and 0 ≤
μ
Mi f

(
ξ f (t)

) ≤ μMi f

(
ξ f (t)

)
, g

i
(ξ(t)) ≤ gi (ξ(t)).

Then, the following definitions are given:

gi (ξ(t)) = zi (ξ(t))g
i
(ξ(t)) + zi (ξ(t))gi (ξ(t))

zi (ξ(t)) + zi (ξ(t)) = 1

4∑

i=1

gi (ξ(t)) = 1

Thus, the uncertain ASSs can be described as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
4∑

i=1

gi (ξ(t)) (Ai x(t) + Bωiω(t) + Buiu(t))

z1(t) =
4∑

i=1

gi (ξ(t)) (C1i x(t) + D1i u(t))

z2(t) =
4∑

i=1

gi (ξ(t)) (C2i x(t))

(5)

where Ai , Bui , C1i , D1i , C2i are obtained by replacing
1

ms(t)
and 1

mu(t)
, with

�
ms (or

�
ms) and

�
mu (or

�
mu) in A,

Bu, C1, D1, C2.
Then, for simplification, the system in (5) can be

written as:
⎧
⎪⎨

⎪⎩

ẋ(t) = Asx(t) + Bωsω(t) + Busu(t)

z1(t) = C1s x(t) + D1su(t)

z2(t) = C2s x(t)

(6)

where

As =
4∑

i=1

gi (ξ(t))Ai , Bωs =
4∑

i=1

gi (ξ(t))Bωi ,

Bus =
4∑

i=1

gi (ξ(t))Bui ,C1s =
4∑

i=1

gi (ξ(t))C1i ,

D1s =
4∑

i=1

gi (ξ(t))D1i ,C2s =
4∑

i=1

gi (ξ(t))C2i .

Remark 1 It is worth noting that different from type-1
fuzzy method, the IT-2 fuzzy actual grades of mem-
bership gi (ξ (t)) in (5) can be reconstructed as a lin-
ear combination of g

i
(ξ (t)) and gi (ξ (t)), character-

ized by the lower and upper membership functions
μ
Mis

(ξs (t)) and μMis
(ξs (t)), which are scaled by

the nonlinear functions zi (ξ (t)) and zi (ξ (t)), respec-
tively. This also means that IT-2 fuzzy sets consist of
countless type 1 fuzzy sets. In other words, by using IT-
2 fuzzy method, any membership function with uncer-
tain parameters can be reconstructed by the upper and
lower membership functions.
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Fig. 3 Schematic diagram of the control-loop for the IT2 T–S
fuzzy ASSs with stochastic network-induced delay

2.3 Non-fragile fuzzy controller with stochastic delay

Design of different membership functions for both the
model and the controller is a challenging work without
sufficient expert knowledge. However, with consider-
ation of the model simplicity and controller effective-
ness, fuzzy rules with the same membership functions
are used for both the model and the controller. Figure 3
presents the schematic diagram of the control-loop
for the IT2 T–S fuzzy ASSs with stochastic network-
induced delay

Subsequently, a fuzzy controller is considered as fol-
lows:

Control Rule j: If ξ1 (t) is Mr (ξ1 (t)), ξ2 (t) is
N r (ξ2 (t)), Then

u(t) =
4∑

j=1

(
gLj (ξ(t)) + gUj (ξ(t))

)
K j x(t) (7)

where

gLj ξ(t) = g j (ξ(t))
∑4

j=1

(
g
j
(ξ(t)) + g j (ξ(t))

) ,

gUj ξ(t) = g j (ξ(t))
∑4

j=1

(
g
j
(ξ(t)) + g j (ξ(t))

) .

The perturbation of controller gain is represented by
�K (t) and it is presumed to be a multiplication form
as:

�K (t) = HF(t)EK (8)

where F (t) is an unknown continuous function with
time-varying characteristics; H and E are the preset
real constant matrices.

Thus, the fuzzy control input can be rewritten as:

u(t) =
4∑

j=1

g j
(
ξ(t)K j (1 + HF(t)E)x(t) (9)

where g j (ξ(t)) = g
j
(ξ(t)) + g j (ξ(t)).

With the wide application of network communi-
cation technology in the field of vehicles, the sig-
nal transmission delay is a critical challenge. Due to
the network-induced delay, the real controller can be
depicted as:

u(t) =
4∑

j=1

g j (ξ(t))K j (1 + HF(t)E)x (tk − ϕk) ,

0 < tk+1 − tk,� hk ≤ h (10)

where tk ≤ t < tk+1, tk denotes the kth sampling
instant, h denotes the sampling period, the local con-
trol gain of j th fuzzy controller is expressed by K j .
The network-induced delay encountered at the sam-
pling instant tk is denoted as ϕk = ϕs + ϕc, where ϕs
stands for the delay encountered in the sensor-to-
controller link and ϕc stands for the delay encoun-
tered in the controller-to-actuator link. After defining
ϕ (t) = t−tk−ϕk , the controller in (10) can be depicted
as:

u(t) =
4∑

j=1

g j (ξ(t))K j (1 + HF(t)E)x (t − ϕt) (11)

In order to present a more generalized delay form,
the randomness can be described as:

prob {ϕ(t) ∈ [0, ϕl (t)]} = prob{β(t) = 1} = E{β(t)} = β

prob {ϕ(t) ∈ [ϕl (t)ϕ11(t)]} = prob{β(t) = 0} = 1 − E{β(t)}
= 1 − β

where 0 < ϕl (t) < ϕu (t), β (t) is a stochastic vari-
able satisfying Bernoulli random, and E {β (t)}denotes
the mathematical expectation of β (t). Hence, the con-
troller in (11) can be depicted as:

u(t) =
4∑

j=1

g j (ξ(t))K j (1 + HF(t)E) (β(t)x (t − ϕ1(t))

+ (1 − β(t))x (t − ϕ2(t))) (12)

where ϕ1(t) and ϕ2(t) are defined as :

ϕ1(t) =
{

ϕ(t), ϕ(t) ∈ [0, ϕl ]
0, ϕ(t) ∈ (ϕl , ϕu]

ϕ2(t) =
{

ϕl , ϕ(t) ∈ [0, ϕl ]
ϕ(t), ϕ(t) ∈ (ϕl , ϕu]
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Finally, by applying the non-fragile fuzzy controller
in (15) to the fuzzy ASS in (5), the overall closed-
loop system with parameter uncertainties and stochas-
tic network-induced delay can be depicted as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f (t) + (β(t) − β)g(t)

z1(t) = C1gx(t) + βD1gKs f x (t − ϕ1(t))

+ (1 − β)D1gKs f x (t − ϕ2(t))

+ (β(t) − β)
(
D1gKs f x (t − ϕ1(t))

)

− (β(t) − β)
(
D1gKs f x (t − ϕ2(t))

)

z2(t) = C2gx(t)

(13)

where

Ag =
4∑

i=1

gi Ai , Bωg =
4∑

i=1

gi Bωi , Bug

=
4∑

i=1

gi

4∑

j=1

g j Bui ,

C1g =
4∑

i=1

giC1i ,C2g =
4∑

i=1

giC2i , D1g

=
4∑

i=1

gi

4∑

j=1

g j D1i ,

Ks f =
4∑

j=1

K j (1 + HF(t)E), x(t)

= φ(t), t ∈ (−2ϕu, 0) ,

f (t) = Agx(t) + Bωgω(t)

+BugKs f (βx (t − ϕ1(t))

+(1 − β)x (t − ϕ2(t))) ,

g(t) = BugKs f (x (t − ϕ1(t)) − x (t − ϕ2(t))) .

Briefly speaking, the objective of this work is to
present a control strategy to compute a non-fragile
fuzzy output feedback controller based on (12) for the
IT2 T–S fuzzy ASSs. Then, the following conditions
are satisfied:

(1) The value of sprung mass acceleration needs to be
minimal enough to improve ride comfort.

(2) The closed-loop system in (13) is exponentially
mean-square stable (EMSS) with the following γ

attenuation level [30,31].
(3) Themechanical constraints of theT–S fuzzy system

in (13) are guaranteed [32]:

∣
∣{z2(t)}p

∣
∣ ≤ 1, p = 1, 2 (14)

∣
∣
∣
∣
u(t)

umax

∣
∣
∣
∣ ≤ 1 (15)

where {z2 (t)}p represents the pth row vector of z2(t),
umax denotes the maximal actuator force.

After takingparameter uncertainties, controller frag-
ile and stochastic delay into consideration, the closed-
loop system in (13) is a stochastic system.

3 Main results

In this section, a novel non-fragile output feedback con-
trol algorithm is presented for uncertain ASSs with
stochastic network-induced delay. This algorithm is
efficient to ensure the stability and the expected per-
formance indexes of the closed-loop system in (13).

3.1 Stability analysis

The following theorem proposed a set of sufficient con-
ditions to guarantee that the closed-loop system in (13)
is EMSS with γ attenuation level.

Theorem 1 Considering the closed-loop system in
(13), for given scalars 0 < ϕl < ϕu, ϕm = ϕu − ϕl ,
β ∈ [0, 1], δ2 = β(1− β) and γ , if there exist positive
definite matrices Q, P1, P2, Z11, Z12, Z21, Z22, and
general matrices M1, M2, M3, M4, so that the follow-
ing conditions hold, the closed-loop system in (13) is
EMSS.

�1 < 0, �2 < 0 (16)

�3 < 0, �4 < 0 (17)
[−Q

√
ρ {C2i }Tq

∗ −I

]

< 0 (18)

[

−I
√

ρKs f
umax∗ −Q

]

< 0 (19)

where

�1 =
⎡

⎣
�

√
ϕl [M1, M1]

√
ϕm [M3, M3]

∗ −Z1 0
∗ ∗ −Z2

⎤

⎦ ,

�2 =
⎡

⎣
�

√
ϕl [M1, M1]

√
ϕm [M4, M4]

∗ −Z1 0
∗ ∗ −Z2

⎤

⎦ ,

�3 =
⎡

⎣
�

√
ϕl [M2, M2]

√
ϕm [M3, M3]

∗ −Z1 0
∗ ∗ −Z2

⎤

⎦ ,

123



Non-fragile robust output feedback control 8281

�4 =
⎡

⎣
�

√
ϕl [M2, M2]

√
ϕm [M4, M4]

∗ −Z1 0
∗ ∗ −Z2

⎤

⎦ ,

� = �1 + �2,

�1 = diag
(
P1 + P2, 0,−P1, 0,−P2,−γ 2 I

)

+ 2
[
NT
1 QY f + M1N2 + M2N3 + M3N4 + M4N5

]
,

�2 =
[
Y T
f δY T

g

]
[ϕl Z1 + ϕm Z2]

[
Y T
f δY T

g

]T

+ ZT
1m Z1m + ZT

2m Z2m ,

N1 = [
I 0 0 0 0 0

]
,

N2 = [
I −I 0 0 0 0

]
,

N3 = [
0 I −I 0 0 0

]
,

N4 = [
0 0 I −I 0 0

]
,

N5 = [
0 0 0 I −I 0

]
,

Y f = [
Ag BugKs f β 0 BugKs f (1 − β) 0 Bωg

]
,

Yg = [
0 BugKs f 0 −BugKs f 0 0

]
,

Z1m = [
C1g βD1gKs f 0 (1 − β)D1gKs f 0 0

]
,

Z2m = [
C2g 0 0 0 0 0

]
,

Z1 =
[
Z11 0
0 Z12

]

, Z2 =
[
Z21 0
0 Z22

]

.

Proof ALyapunov function V (t) is chosen as follows:

V (t) = xT (t)Qx(t) +
∫ t

t−ϕl

xT (α)P1x(α)dα

+
∫ 0

−ϕl

∫ t

t+a

[
f T (s), δgT (s)

]

× Z1

[
f T (s), δgT (s)

]T
ds dα

+
∫ −ϕl

−ϕu

∫ t

t+a

[
f T (s), δgT (s)

]

× Z2

[
f T (s), δgT (s)

]T
ds dα

+
∫ t

t−ϕu

xT (α)P2x(α)dα

(20)

Then, the derivative is obtained as follows:

V̇ (t) = 2xT (t)Q f (t) + xT (t)P1x(t) + xT (t)P2x(t)

−xT (t − ϕl ) P1x (t − ϕl )

−xT (t − ϕu) P2x (t − ϕu)

+
[
f T (t), δgT (t)

]
ϕl Z1

[
f T (t), δgT (t)

]T

−
∫ t

t−ϕl

[
f T (s), δgT (s)

]
Z1

[
f T (s), δgT (s)

]T
ds

+
[
f T (t), δgT (t)

]
ϕm Z2

[
f T (t), δgT (t)

]T

−
∫ t−ϕl

t−ϕu

[
f T (s), δgT (s)

]
Z2

[
f T (s), δgT (s)

]T
ds

(21)

According to the basic theorem of calculus, the fol-
lowing equalities hold:

x(t) − x (t − ϕ1(t)) −
∫ t

t−ϕ1

f (s)

+ g(s)(β(s) − β)ds = 0

x (t − ϕ1(t)) − x (t − ϕl(t))

−
∫ t−ϕ1(t)

t−ϕl

f (s) + g(s)(β(s) − β)ds = 0

x (t − ϕl(t)) − x (t − ϕ2(t))

−
∫ t−ϕl

t−ϕ2(t)
f (s) + g(s)(β(s) − β)ds = 0

x (t − ϕ2(t)) − x (t − ϕu)

−
∫ t−ϕ2(t)

t−ϕu

f (s) + g(s)(β(s) − β)ds = 0

If the following equation is defined:

ξ T (t) =
[
xT (t), xT (t − ϕ1(t)) , xT (t − ϕl)

xT (t − ϕ2(t)) , xT (t − ϕu) , ωT (t)
]

the following equations can hold:

2ξ T (t)M1 [x(t) − x (t − ϕ1(t))

−
∫ t

t−ϕ1(t)
f (s) + g(s)(β(s) − β) ds] = 0

2ξ T (t)M2 [x (t − ϕ1(t)) − x (t − ϕl(t))

−
∫ t−ϕ1(t)

t−ϕ3

f (s) + g(s)(β(s) − β) ds] = 0

2ξ T (t)M3 [x (t − ϕl(t)) − x (t − ϕ2(t))

−
∫ t−ϕ1

t−ϕ2(t)
f (s) + g(s)(β(s) − β) ds] = 0

2ξ T (t)M4 [x (t − ϕ2(t)) − x (t − ϕ11)

−
∫ t−ϕ2(t)

t−ϕ3

f (s) + g(s)(β(s) − β) ds] = 0
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Then, the following inequalities are obtained as:

2ξ T (t)M1 [x(t) − x (t − ϕ1(t))

−
∫ t

t−ϕ1(t)
f (s) + g(s)(β(s) − β) ds]

≤ ϕ1(t)ξ
T (t) [M1, M1] Z

−1
1 [M1, M1]

T ξ(t)

+
∫ t

t−ϕ1(t)
[
f T (s), (β(s) − β)gT (s)

]

× Z1

[
f T (s), (β(s) − β)gT (s)

]T
ds

2ξ T (t)M2 [x (t − ϕ1(t)) − x (t − ϕl(t))

−
∫ t−ϕ1(t)

t−ϕl

f (s) + g(s)(β(s) − β) ds]

≤ (ϕl − ϕ1(t)) ξ T (t) [M2, M2] Z
−1
1 [M2, M2]

T

ξ(t) +
∫ t−ϕ1(t)

t−ϕl

[
f T (s), (β(s) − β)gT (s)

]

Z1

[
f T (s), (β(s) − β)δgT (s)

]T
ds

2ξ T (t)M3 [x (t − ϕl(t)) − x (t − ϕ2(t))

−
∫ t−ϕl

t−ϕ2(t)
f (s) + g(s)(β(s) − β) ds]

≤ (ϕ2(t) − ϕl) ξ T (t) [M3, M3] Z
−1
2 [M3, M3]

T

ξ(t) +
∫ t t

t−ϕl (t)

[
f T (s), (β(s) − β)gT (s)

]

Z2

[
f T (s), (β(s) − β)gT (s)

]T
ds

2ξ T (t)M4 [x (t − ϕ2(t)) − x (t − ϕu)

−
∫ t−ϕ2(t)

t−ϕu

f (s) + g(s)(β(s) − β) ds]

≤ (ϕu − ϕ2(t)) ξ T (t) [M4, M4] Z
−1
2 [M4, M4]

T

ξ(t) +
∫ t−ϕ2(t)

t−ϕu

[
f T (s), (β(s) − β)gT (s)

]

Z2

[
f T (s), (β(s) − β)gT (s)

]T
ds

By taking the expectation of V̇ (t), it gives:

EV(t) ≤ E
{
ξ T (t)

[
�̂ + ϕ1(t) [M1, M1] Z

−1
1 [M1, M1]

T

+ (ϕl − ϕ1(t)) [M2, M2] Z
−1
1 [M2, M2]

T

+ (ϕ2(t) − ϕl ) [M3, M3] Z
−1
2 [M3, M3]

T

+ (ϕu − ϕ2(t)) [M4, M4] Z
−1
2 [M4, M4]

T
]
ξ(t)

}

(22)

Through applying Schur complement to (30), the
following condition is true.

ε
{
zT1 (t)z1(t) − γ 2ωT (t)ω(t) + V̇ (t)

}
< 0 (23)

According to Lemma 1 in [33], the closed-loop sys-
tem in (13) is EMSS.

Under zero initial conditions, it can be obtained
that V (0) = 0,V (∞) ≥ 0, and ·E {‖z1(t)‖2} <

γ E {‖ω(t)‖2} for all nonzeroω(t) ∈ L2[0,∞]. Hence,
the closed-loop system in (13) satisfies the desired H∞
robust requirement.

Based on (23), the following inequality is obtained:

V̇ (t) − γ 2wT (t)w(t) < 0

Integrating two sides of the above inequality from
zero to any t > 0, it can be acquired as:

V (t) − V (0) < γ 2
∫ t

0
wT (τ )w(τ)dτ < γ 2‖w‖22

Thus, the following inequality is obtained:

xT (t)Qx(t) < γ 2ωmax + V (0)

Defining γ 2ωmax + V (0) = ρ, the following
inequality holds as:

max
t>0

∣
∣{z2(t)}q

∣
∣2 ≤ max

t>0

∥
∥
∥
∥
∥

4∑

i=1

hi x
T (t)Q

1
2

Q
−1
2 {C2i }Tq {C2i }q Q

1
2 Q

−1
2 x(t)‖2

It leads to that the constraints in (14) are guaranteed,
if

ρ ·
4∑

i=1

hi Q
− 1

2 {C2i }Tq {C2i }q Q− 1
2 < I (24)

Through applying Schur complement to (20), the
following inequality is obtained as:

ρx(t)Ks f K T
s f x

T (t)

u2max
< x(t)QxT (t) < ρ

which means the constraints in (15) are guaranteed.
Thus, the proof is completed.

3.2 The state feedback control design

Taking gain perturbations into account, the following
theorem is obtained based on Theorem 1 to calculate
the desired state feedback controller gains.
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Theorem 2 Considering the closed-loop system in
(13), with regard to given scalars γ , 0 < ϕl < ϕu,
ϕm = ϕu − ϕl , β ∈ [0, 1], δ2 = β(1 − β), and
�Kx(t) < �umax, the closed-loop system in (13) is
EMSS, if there exist positive definite matrices P, P, P̆1,
P̆2, Z̆1, Z̆2, andgeneralmatrices M̆1, M̆2, M̆3, M̆4, such
that the following conditions apply to i , j = 1, 2, 3, 4.
[

�̆1i j �

∗ �

]

< 0,

[
�̆2i j �

∗ �

]

< 0 (25)

[
�̆3i j �

∗ �

]

< 0,

[
�̆4i j �

∗ �

]

< 0 (26)

[−I
√

ρ {C2i }q P
∗ −P

]

< 0 (27)

[

−I
√

ρVj
umax−�umax∗ −P̄

]

< 0 (28)

Moreover, the state feedback controller gains are
achieved as:

Ki
s f = Vj P

−1

where

�̆1i j =

⎡

⎢
⎢
⎢
⎣

�̆
√

ϕl

[
M̆1, M̆1

] √
ϕm

[
M̆3, M̆3

]
�̆1

∗ Z̆1 − 2P̆ 0 0
∗ ∗ Z̆1 − 2P̆ 0
∗ ∗ ∗ �̆2

⎤

⎥
⎥
⎥
⎦

,

�̆2i j =

⎡

⎢
⎢
⎢
⎣

�̆
√

ϕl

[
M̆1, M̆1

] √
ϕm

[
M̆4, M̆4

]
�̆1

∗ Z̆1 − 2P̌ 0 0
∗ ∗ Z̆1 − 2P̆ 0
∗ ∗ ∗ �̆2

⎤

⎥
⎥
⎥
⎦

,

�̆3i j =

⎡

⎢
⎢
⎢
⎣

�̆
√

ϕl

[
M̆2, M̆2

] √
ϕm

[
M̆3, M̆3

]
�̆1

∗ Z̆1 − 2P̆ 0 0
∗ ∗ Z̆1 − 2P̆ 0
∗ ∗ ∗ �̆2

⎤

⎥
⎥
⎥
⎦

,

�̆4i j =

⎡

⎢
⎢
⎢
⎣

�̆
√

ϕl

[
M̆2, M̆2

] √
ϕm

[
M̆4, M̆4

]
�̆1

∗ Z̆1 − 2P̆ 0 0
∗ ∗ Z̆1 − 2P̆ 0
∗ ∗ ∗ �̆2

⎤

⎥
⎥
⎥
⎦

� = [
�1 �2

]
,

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε1BugHF 0
0 0
0 0

ε1
√

ϕl BugHF 0
0 ε2

√
ϕδBugHF

ε1
√

ϕl BugHF 0
0 ε2

√
ϕmδBugHF

ε1Dli H F 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

β
(
EVj

)T (
EVj

)T

0 0

(1 − β)
(
EVj

)T − (
EVj

)T

0 0
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� = diag (−ε1 I, −ε2 I, −ε1 I, −ε2 I, −ε1 I, −ε2 I ) ,

�̆ = diag
(
P̆1 + P̆2, 0, −P̆1, 0, −P̆2, −γ 2 I

)
,

+ sym
[
NT
1 Y̆ f + M̆1N2 + M̆2N3 + M̆3N4 + M̆4N5

]
,

�̆2 = diag
(−Z̆11 −Z̆12 −Z̆21 − Z̆22 −I −I

)
,

Y̆ f = [
Ai P Bui V jβ 0 Bui V j (1 − β) 0 Bωi

]

Y̆g = [
0 Bui V j 0 −Bui V j 0 0

]
,

Z̆1m = [
C1i P βD1i V j 0 (1 − β)D1i V j 0 0

]
,

Z̆2m = [
C2i P 0 0 0 0 0

]
,

Z̆1 =
[
Z̆11 0
0 Z̆12

]

, P̆ =
[
P 0
0 P

]

,

Z̆2 =
[
Z̆21 0
0 Z̆22

]

.

Proof The following conditions are defined as:

Z̆1 = Z−1
1 , Z̆2 = Z−1

2

P = Q−1, V = Ks f P, P̄ = PT QP

M̆1 = PM1P, M̆2 = PM2P

M̆3 = PM3P, M̆4 = PM4P

� = diag (Pn I P PPP Is) , n = 6, s = 8.

After replacing the correspondingmatrix in (25) and
(26), followed by pre-multiplying and post-multiplying
(25) and (26) by diagonal matrix �. (16) and (17)
are then obtained by replacing Z̆k − 2 P̆ to −P̆ Z̆−1

k P̆ ,
where k = 1, 2. Thus, Theorem 2 is obtained.

Remark 2 �Kx(t) < �umax is the bound of gain per-
turbations�K (t). Considering the fragility of the con-
troller, the gain perturbation �K (t) is introduced into
Theorems 2–3 to improve the anti-interaction ability of
the suspension controller, but the gain perturbations are
not infinite. Referring to [34], the bound is assumed as
�Kx(t) < �umax.

3.3 The output feedback control design

The measured output vector is defined as follows:

y(t) = Cx(t) (29)
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where

C =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ .

According to the relationship between state feed-
back and output feedback, the following equality holds
[35]:

Ks f = Ksof C = V P−1 (30)

The following equations are also defined as:

P = SPN S
T + RPRR

T

V = VRR
T

R = C† + SL

where Ks f denotes the feedback control gains, Ksof

denotes the output feedback control gain, PN , PR are
positive definite matrices, S is the null space of C, L is
an arbitrary matrix.

Based on (25)–(30), a non-fragile output feedback
controller is presented in the following theorem.

Theorem 3 Considering the closed-loop system in
(13), for given scalars γ , 0 < ϕl < ϕu, ϕm = ϕu − ϕl ,
β ∈ [0, 1], δ2 = β(1 − β) and �Kx(t) < �umax ,
the closed-loop system in (13) is EMSS, if there exist
positive definite matrices Q̄, P̄1, P̄2, Z̄1, Z̄2, and gen-
eral matrices M̄1, M̄2, M̄3, M̄4, such that the following
conditions hold true for i, j = 1, 2, 3, 4.
[
Ē1i j �̄

∗ �

]

< 0,

[
�̄2i j �̄

∗ �

]

< 0 (31)

[
�̄3i j �̄

∗ �

]

< 0,

[
�̄4i j �̄

∗ �

]

< 0 (32)

[− (
SPN ST + RPRRT

)

∗
√

ρ
(
SPN ST + RPRRT

) {C2i }Tq
−I

]

< 0 (33)

[

−I
√

ρRV T
Ri

umax−�umax∗ SPN ST + RPRRT

]

< 0 (34)

Moreover, the output feedback controller gains are
obtained as:

Ki
sof = VRj P

−1
R

where

�̄1i j =

⎡

⎢
⎢
⎣

�̄
√

ϕl
[
M̄1, M̄1

] √
ϕm

[
M̄3, M̄3

]
�̄1

∗ Z̄1 − 2 P̄ 0 0
∗ ∗ Z̄2 − 2 P̄ 0
∗ ∗ ∗ �̄2

⎤

⎥
⎥
⎦ ,

�̄2i j =

⎡

⎢
⎢
⎢
⎢
⎣

�̄
√

ϕi
[
M̄1, M̄1

] √
ϕm

[
M̄4, M̄4

]
�̄1

∗ Z̄1 − 2 P̄ 0 0

∗ ∗ Z̄2 − 2 P̄ 0

∗ ∗ ∗ �̄2

⎤

⎥
⎥
⎥
⎥
⎦

,

�̄3i j =

⎡

⎢
⎢
⎢
⎢
⎣

�̄
√

ϕl
[
M̄2, M̄2

] √
ϕm

[
M̄3, M̄3

]
�̄1

∗ Z̄1 − 2 P̄ 0 0

∗ ∗ Z̄2 − 2 P̄ 0

∗ ∗ ∗ �̄2

⎤

⎥
⎥
⎥
⎥
⎦

,

�̄4i j =

⎡

⎢
⎢
⎣

�̄
√

ϕl
[
M̄2, M̄2

] √
ϕm

[
M̄4, M̄4

]
�̄1

∗ Z̄1 − 2 P̄ 0 0
∗ ∗ Z̄2 − 2 P̄ 0
∗ ∗ ∗ �̄2

⎤

⎥
⎥
⎦ ,

�̄ = [
�̄1 �̄2

]
,

�̄1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε1BugHF 0
0 0
0 0

ε1
√

ϕl BugHF 0
0 ε2

√
ϕδBugHF

ε1
√

ϕl BugHF 0
0 ε2

√
ϕmδBugHF

ε1Dli H F 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̄2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

β
(
EVRj R

T
)T (

EVRj R
T
)T

0 0

(1 − β)
(
EVRj R

T
)T −

(
EVRj R

T
)T

0 0
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̄ = diag
(
P̄1 + P̄2, 0,−P̄1, 0, −P̄1,−γ 2 I

)
,

+ sym
[
NT
1 Ȳ f + M̄1N2 + M̄2N3 + M̄3N4 + M̄4N5

]
,

�̄2 = diag
(−Z̄11 − Z̄12 − Z̄21 − Z̄22 − I − I

)
,

Ȳ f =
[
Ai

(
SPN ST + RPR R

T
)

B1i̇ VR j R
T β 0

Bui VR j R
T (1 − β) 0 Bω

]
,

Ȳg = [
0 Bui VR j R

T 0 −Bui VR j R
T 0 0

]
,

Z̄2m =
[
C2i

(
SPN ST + RPR R

T
)

0 0 0 0 0
]
,

Z̄1 =
[
Z̄11 0
0 Z̄12

]

, Z̄2 =
[
Z̄21 0
0 Z̄22

]

,

P̄ =
[
SPN ST + RPR R

T 0
0 SPN ST + RPR R

T

]

.
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3.4 Algorithm

To find a better gain matrix with a more advantageous
performance, the following Algorithm 1 is presented to
further obtain a better solution based on the two-step
method [4]. The two-step method can effectively cal-
culate the optimal output feedback controller based on
the state feedback controller without redundant itera-
tion. Besides, the first step is to solve Theorem 2 to
obtain the transitional arbitrary matrix L , and the sec-
ond step is to solve Theorem 3 on the basis of first step
to finally obtain the output feedback gain directly.

Algorithm 1

Step1: Input scalarsϕl , ρ, ϕu , ϕm , β and δ and solve theLinear
matrix inequality (LMI) optimization problem Qs.

Qs :
⎧
⎨

⎩

minimize γ

s.t. P > 0, V > 0, P̆1 > 0, P̆2 > 0, Z̆1 > 0
Z̆2 > 0,�K < �umax, LMIs (25) − −(28)

Step 2: If Qs is feasible, Matrix L can be defined as: L =
S†PCT

(
CPCT

)−1

Step 3: Solve the LMI optimization problem Qo, the output
feedback control gain can be obtained as K i

sof = VRj P
−1
R .

Qo :
⎧
⎨

⎩

minimize γ

s.t. PR > 0, VR > 0, P̄1 > 0, P̄2 > 0, Z̄1 > 0
Z̄2 > 0,�K < �umax LMIs (31) − (34)

Remark 3 It is noteworthy that the value of Matrix
S also has a great influence on Ksof , and its value
should be adjusted appropriately in the process of solv-
ing. If the performance of the optimized control gain
matrix Ksof is better than before, then the procedure is
stopped.

4 Simulation results

In this section, some numerical simulations on a
quarter-car ASS model are executed to estimate and
verify the performance of the designed control algo-
rithm. Table 3 lists the relevant parameters of the
quarter-car ASS model.

In order to more highlight the effectiveness of
the presented control method, the control methods in
[16,17,34] introduced for comparison. Given that the
authors in [34] presented a non-fragile controller with-
out time delay, or the ease of expression, this set of
the comparison is represented as Cases 1- 4 with dif-
ferent controller parameter perturbation as shown in

Table 3 Vehicle parameters and values

Parameter Value Unit Parameter Value

ms(t) [256,384] kg zmax 0.1 m

mu(t) [35,45] kg �umax 50 N

ks 18000 N/m umax 2500 N

kt 200000 N/m ϕl 0.035 s

bs 1000 N s/m ϕd 0.095 s

bt 10 N s/m

Table 4 Control perturbation cases in stimulation

Case number H F E �K

Case 1 0 0 0 0

Case 2 1 1 0.2 0.2K

Case 3 1 − 1 0.3 −0.3K

Case 4 1 1 0.4 0.4K

Table 4. The aim of this comparison is to clarify the
effectiveness with consideration of time delay in the
ASSs. The authors in [16] presented an output feed-
back controller with time delay which is not stochastic.
In order to highlight the effectiveness of the stochas-
tic method, we compare the presented controller with
the controller in [16], which is reflected as Case 1. The
authors in [17]proposed a fuzzy controller without con-
sidering non-fragile. Thus, we compare the proposed
controller with the controller in [17]to emphasize the
importance of the non-fragile control.

Remark 4 It is known that the state feedback system
requires the measurement of every component of the
state.However, in practical applications, it is not always
possible to access all state variables, and only par-
tial information is available through measured outputs.
Compared with the state feedback control system, the
output feedback control system is a low-cost solution
which does not require full information of the state
variables. However, the difference of the control effect
with the two control methods is not obvious and can-
not be easily figured out in the simulation stage, so the
comparisons are not conducted in this work.

Withmincx solver in the LMI toolbox, the following
local control gains and compared gains are obtained as:
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Fig. 4 Frequency responses of vehicle body acceleration inCase
1, Case 2, Case 3, and Case 4

Case 1 :

K = 104 × [−1.2089 − 4.1497 − 0.0079]
K1 = 2500 × [5.2122 − 0.6415 − 0.2503]
K2 = 104 × [1.7417 0.5445 0.0399 − 0.0314]
Case 2:

K = 104 × [−1.7650 − 5.5251 − 0.0185]
K1 = 2500 × [4.4865 − 1.3724 − 0.1413]
K3 = 104 × [1.6026 − 0.1181 − 0.2097 − 0.0333]
Case 3:

K = 104 × [−1.6826 − 5.4481 − 0.0110]
K1 = 2500 × [3.1293 − 2.4439 − 0.1658]
K3 = 104 × [1.6026 − 0.1181 − 0.2097 − 0.0333]
Case 4:

K = 104 × [−1.5368 − 5.0442 − 0.0015]
K1 = 2500 × [2.4183 − 1.6881 − 0.1200]
K3 = 104 × [1.6026 − 0.1181 − 0.2097 − 0.0333]

4.1 Frequency responses

The frequency response is used to show the interfer-
ence attenuation performance in this section.
The controller designed in this paper is K , which is
represented by a red solid line. And the compared con-
troller in [34] is K1, which is represented by a green
dotted line.And the compared controllers in [16,17] are

Fig. 5 Frequency responses of relative suspension travel in Case
1, Case 2, Case 3, and Case 4

Fig. 6 Frequency responses of suspension relative dynamic load
in Case 1, Case 2, Case 3, and Case 4

Fig. 7 Sprung mass acceleration under bump excitation in Case
1, Case 2, Case 3, and Case 4
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Fig. 8 Relative suspension travel under bump excitation in Case
1, Case 2, Case 3, and Case 4

Fig. 9 Relative dynamic load under bump excitation in Case 1,
Case 2, Case 3, and Case 4

Fig. 10 Quarter-car test rig

Fig. 11 Block diagram of the experimental test with quarter car
test rig

Fig. 12 Experimental sprungmass accelerationunder sinusoidal
bump excitation in Case 1, Case 2, Case 3, and Case 4

Fig. 13 Experimental relative suspension travel under sinu-
soidal bump excitation in Case 1, Case 2, Case 3, and Case 4
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Fig. 14 Experimental relative dynamic load under sinusoidal
bump excitation in Case 1, Case 2, Case 3, and Case 4

K2 and K3, which are denoted by a yellow dash-dotted
line and the black scribed line describes the uncon-
trolled passive suspension.

Figure 4 plots the frequency response of the sprung
mass acceleration in Cases 1−4. We can see that with
the controller K , the acceleration values of the ASSs
are lower than with the other controllers evidently. It
means the proposed controller in this paper can greatly
improve the ride comfort.

Figures 5 and 6 plot the relative suspension travel
and dynamic load. It can be seen that controller K pro-
vides a significant improvement near the natural fre-
quency of the sprung mass mode.

Remark 5 The main purpose of this work is to max-
imumly improve the ride comfort of the suspension
system, and at the same time meeting the mechani-
cal constraints of the suspension dynamic travel and
dynamic load. Although the Bode diagram of the rel-
ative dynamic load of the designed controller is not
excellent, the main control target of this work is sat-
isfied as well as the corresponding mechanical con-
straints.

4.2 Bump responses

The effectiveness of the proposed controller is verified
by using a bumped road profile [36], as shown below:

zr(t) =
{ A

2

(
1 − cos

( 2πv
l t

))
, if 0 ≤ t ≤ l

v

0, if l
v

< t
(35)

where A denotes the height of the bump and l denotes
the length of the bump. The parameters are set as A =

Table 5 Root mean square 1

Case number Passive K K1 K2

Case 1 0.7616 0.1037 0.3251 0.4256

Reduced rates 86.38% 57.31% 44.11%

0.05 m and l = 3 m, and the forwardvelocity of vehicle
is set as v = 15 m/s. The time-domain response results
ofCases 1−4 are shown in Figs. 7, 8 and 9, respectively.

As shown in Fig. 7, the controller K can quickly
reduce the sprung mass acceleration evidently, com-
pared with other the controllers. It validates the effec-
tiveness and importance of non-fragile control and
stochastic method.

Figures 8 and 9 indicate that the maximum value of
relative suspension travel and the maximum value of
relative dynamic load are less than one, respectively.
According to the conditions in (14), the ASSs satisfies
the requirements of safety performance constraints.

4.3 Root mean square

Furthermore, the root mean square (RMS) values of
body vertical acceleration are listed in Tables 5 and
6. As shown in Table 5, compared with the passive
suspension, the RMS values of body vertical accelera-
tion for the compared controller K1, K2 and designed
controller K can be reduced by 57.31%, 44.11%, and
86.38% under Case 1, respectively. This shows that
the designed controller can improve vehicle ride qual-
ity while taking time delay and safety performance
constraints into account. Moreover, Table 6 shows the
RMS values of body vertical acceleration under dif-
ferent controller parameter perturbations. This reveals
that the controller parameter perturbation can cripple
the performance of the ASS. Meanwhile, Table 6 also
validates the effectiveness and robustness of the pro-
posed controller.

5 Experimental results

For the sake of validating the significance and per-
formance of the presented non-fragile H∞ controller,
experimental tests are carried out by a quarter-car test
bench.
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Table 6 Root mean square 2

Case number Passive K K1 K3

Case 2 0.7616 0.1299 0.3399 0.3560

Reduced rates 82.94% 55.37% 53.25%

Case 3 0.7616 0.1376 0.3014 0.3560

Reduced rates 81.93% 53.98% 53.25%

Case 4 0.7616 0.1186 0.3879 0.3560

Reduced rates 84.42% 49.07% 53.25%

Table 7 Parameters of quarter car test rig

Parameter Value Unit Parameter Value

ms(t) 3.45 kg zmax 0.038 m

mu(t) 1 kg �umax 5 N

ks 900 N/m umax 38.3 N

kt 2500 N/m ϕl 0.035 s

bs 7.5 N s/m ϕd 0.095 s

bt 5 N s/m

As shown in Fig. 10, the test rig is mainly com-
posed of a computer with an embedded controller, a
data acquisition board, an emergency button, a power
amplifier, and an active suspension emulator. The active
suspension emulator elements mainly contain a servo
motor to push the road, a payload to simulate the vehi-
cle load-bearing, a vehicle body mass, a tire mass, and
an actuator. Figure 11 shows the block diagram of the
experimental test with quarter car test rig. The param-
eters of this test rig are listed in Table 7. Owing to
the existence of white noise and the limitations of the
motor, the random road contour cannot be provided by
the servomotor. Since the sine wave road profile is usu-
ally used in the experiment to interpret the performance
of controllers [37], the following sine wave road profile
is employed for the experiments.

zr(t) = A sin

(
2πv

l
t

)

(36)

The parameters are set as A = 0.005 m, l = 5 m, and
the forward velocity of vehicle is set as v = 36 km/s.

Remark 6 The output feedback control of the active
suspension system is implemented in Simulink numeri-
cal environment. The stochastic network-induced delay
and the nonlinear factors are fully considered for solv-
ing the feedback gains. Meanwhile, a delay block is

Table 8 Control gains in experiment

Case number K

Case 1 [−132.20,−131.24, 2.5056]

Case 2 [−90.873,−114.59, 3.3945]

Case 3 [−109.03,−124.38, 3.4842]

Case 4 [−82.868,−105.05, 3.4398]

used outside the controller to represent the network-
induced delay in actuator-to-system link and an IT-2
T–S fuzzy model is introduced to describe the non-
linear characteristics of active suspension systems. In
addition, road input is established in Simulink environ-
ment. The servo motor generates corresponding forces
according to the road block to push the road upwards.

The local control gains of the experiment are shown
in Table 8.

Moreover, the experimental comparison gains of the
controllers in [17] are as follows:

K3 = [70.785,−29.679,−12.852,−0.5105]
The experimental results are shown in Figs. 12, 13

and 14. Similar to the simulation study, the controller
in [17] are taken as the compared controller to demon-
strate the effectiveness of the designed controller. Fig-
ures 12, 13 and 14 indicate that the designed controller
is more to improve the ride comfort compared with the
controllers in [17] and passive suspension.

6 Conclusions

In this research, a non-fragile IT-2 fuzzy H∞ controller
for the uncertain ASSs with the stochastic network-
induced delay is presented. According to the experi-
mental results, the designed controller was more effec-
tive to demands of driving safety, handling stability
and ride comfort than the comparative cases.Moreover,
some useful conclusions are summarized as follows:

(1) The IT-2 T–S fuzzy model built in this paper fully
considers the parameter uncertainties of the suspen-
sion system, and reasonably reflects the dynamic
characteristics of the ASSs.

(2) In view of a large amount of output feedback calcu-
lation and the unsatisfactory system response, the
optimal output feedback control method designed
in this paper not only ensures the control perfor-
mance, but also reduces the computational burden.
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Moreover, by introducing control gain perturba-
tions, the control performance is further improved.

(3) In the process of establishing Lyapunov func-
tion, the upper and lower bounds and existence of
network-induced delay information are considered.
The proposed approach effectively reduces the con-
servatism of the controller.

Future work can be considered to investigate the
asynchronous constraints between the fuzzy system
and the fuzzy controller. Moreover, the influencing fac-
tors of suspension frequency characteristics can be also
considered in the future work.
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