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Abstract Multi-scale dispersion entropy (MDE1D)

is an effective nonlinear dynamic tool to characterize

the complexity of time series and has been extensively

applied to mechanical fault diagnosis. However, with

the increase of scale factor, the values of MDE1D often

fluctuate largely, resulting in poor stability. Besides, it

only extracts the complexity information from the

time domain of vibration signal, while the complexity

information in the frequency domain is ignored. To

enhance the stability of MDE1D and extract the

complexity characteristics from the time–frequency

domain of vibration signal, this paper first develops a

two-dimensional multi-scale reverse dispersion

entropy (MRDE2D), inspired by the MDE1D and

two-dimensional multi-scale dispersion entropy

(MDE2D) through introducing the ‘‘distance

information from white noise’’. Then a two-dimen-

sional multi-scale time–frequency reverse dispersion

entropy (MTFRDE2D) combined with time–frequency

analysis is proposed. After that, considering that the

length of the coarse-grained sequence used in the

multi-scale coarse-grained process of MTFRDE2D

will become shorter and shorter with the increase of

scale factor, resulting in a loss of potentially useful

information, the two-dimensional composite multi-

scale time–frequency reverse dispersion entropy

(CMTFRDE2D) is proposed through using the com-

posite coarse-grained process. The effectiveness and

advantages of CMTFRDE2D algorithm are demon-

strated by analyzing different kinds of noise signals.

Following that, a new rolling bearing fault diagnosis

method is proposed based on the CMTFRDE2D for

feature extraction and gravitational search algorithm

optimized support vector machine for mode identifi-

cation. The proposed fault diagnosis method is

employed on two rolling bearing test data sets and

also compared with the existing MTFRDE2D,-

MRDE2D,- MDE2D,- and MDE1D-based fault diagno-

sis methods. The analysis results reveal that the

proposed fault diagnosis method can successfully

extract the fault information from rolling bearing

vibration signals in time–frequency domain and can

accurately identify different fault locations and sever-

ities of rolling bearings with certain advantages.
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Abbreviations

ApEn1D Approximate entropy

SampEn1D Sample entropy

FE1D Fuzzy entropy

PE1D Permutation entropy

DE1D Dispersion Entropy

RDE1D Reverse dispersion entropy

MDE1D Multi-scale dispersion entropy

MDE2D Two-dimensional multi-scale

dispersion entropy

MRDE2D Two-dimensional multi-scale reverse

dispersion entropy

MTFRDE2D Two-dimensional multi-scale time–

frequency reverse dispersion entropy

CMTFRDE2D Two-dimensional composite multi-

scale time–frequency reverse

dispersion entropy

SVM Support vector machine

GSA Gravitational search algorithm

PSO Particle swarm optimization

CSO Chicken swarm optimization

1 Introduction

Thanks to the advantages of low friction resistance and

high mechanical efficiency, rolling bearing performs

an essential role in a range of industry applications.

However, rolling bearing usually operates under harsh

working environment, which makes it prone to failure.

Hence, it is important significance to study the

condition monitoring and early fault diagnosis

approaches of rolling bearing [1].

As rolling bearing often presents non-stationary

and nonlinear characteristics of vibration signal when

local failure occurs in operation [2, 3], the traditional

linear analysis methods inevitably have certain limi-

tations. Therefore, the effective extraction of fault

feature information hidden in the non-stationary and

nonlinear signals becomes critical to rolling bearing

fault diagnosis and prognosis.

Entropy index, including approximate entropy

(ApEn1D) [4], sample entropy (SampEn1D) [5, 6],

fuzzy entropy (FE1D) [7], and permutation entropy

(PE1D) [8–10], has been recognized as a commonly-

used nonlinear analysis tool which is widely used in

feature extraction for rolling bearing, because of their

stable and robust merits for relatively short data. PE1D

is a nonlinear dynamic analysis to detect random

changes in time series, which has the advantages of

fast calculation speed and strong anti-noise ability. But

the PE1D does not consider the relationship between

the amplitudes of the original signal in the calculation

process. Dispersion Entropy (DE1D) has recently been

proposed by Azami et al. [11, 12] for the measurement

of complexity in time series to address the shortcom-

ings of PE1D. However, the stability of DE1D is poor

and is easily affected by relevant parameters. Subse-

quently, the reverse dispersion entropy (RDE1D) was

proposed to improve the stability of DE1D by Li et al.

[13], which is defined as ‘‘distance to white noise’’ and

its better stability relative to DE1D was verified by the

simulation tests and ship signals.

The above methods are all single-scale analysis

tools based on entropy index, while the vibration

signals usually contain different fault information in

different scale ranges, thus the single-scale analysis

tool still has some constraints to deal with these kinds

of signals. The multi-scale dispersion entropy

(MDE1D) was proposed [14] to characterize the time

series complexity on multiple time scales and applied

to the field of biomedical signal analysis. However,

MDE1D is defined on the one-dimensional time series

and cannot be used to characterize the complexity

characteristics of two-dimensional images. Recently,

two-dimensional multi-scale dispersion entropy

(MDE2D) was proposed by Furlong et al. [15, 16] to

characterize the complex characteristics of images in

different scales.

MDE1D can only extract the time-domain charac-

teristics of vibration signal, resulting in a loss and

waste of the frequency domain information. MDE2D

can effectively represent the complex characteristics

of image, but the entropy value of MDE2D has poor

stability and cannot provide stable and reliable

analysis results. In this paper, first, the two-dimen-

sional multi-scale reverse dispersion entropy

(MRDE2D) is proposed for solving the problem of

MDE2D entropy values with poor stability. After that,

the two-dimensional multi-scale time–frequency

reverse dispersion entropy (MTFRDE2D) is proposed

by introducing time–frequency analysis [17, 18] for
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measuring the complexity of the time–frequency

distribution of vibration signals. However, as the

coarse-grained sequence used in the multi-scale

coarse-grained process of MTFRDE2D will become

shorter in length with increasing scale factor, it will

lose much potentially useful information. Then the

two-dimensional composite multi-scale time–fre-

quency reverse dispersion entropy (CMTFRDE2D) is

proposed to fully use the time–frequency distribution

information of vibration signals on different scales.

Finally, the effectiveness and superiority of

CMTFRDE2D are verified by simulation signal

analysis.

In general, the vibration signal of normal bearing,

similar to white noise, is random with a high degree of

irregularity. The vibration signal will become regular

and periodic, impacted by the complexity change

when the rolling bearing works with partial failures. In

addition, the information of time–frequency distribu-

tion will also change with the increasing failure

severity for the vibration signals usually contain

different fault information in different scale ranges.

Therefore, the proposed CMTFRDE2D method can be

utilized to extract the time–frequency distribution

information in different scales from the vibration

signal of rolling bearings. After that, the gravitational

search algorithm optimized support vector machine

(GSA-SVM) is used for pattern recognition of fault

features to achieve intelligent diagnosis of rolling

bearing. According to the above analysis, a rolling

bearing fault diagnosis method is proposed based on

the CMTFRDE2D and GSA-SVM. The validity and

advantages of the proposed fault diagnosis method are

illustrated through two groups of rolling bearing test

data under different operating conditions.

The major contributions of this paper are as

follows:

(1) CMTFRDE2D is proposed to extract the fault

features of the time–frequency distribution of

vibration signals, which overcomes the defect

that traditional entropy only extracts the time-

domain features.

(2) In CMTFRDE2D, the information utilization of

the original signal is effectively improved by

using the coarse-grained process of the moving

average of adjacent elements.

(3) A rolling bearing fault diagnosis method is

proposed based on the CMTFRDE2D and GSA-

SVM, and the validity and superiority of the

proposed method are verified by two sets of

measured data.

This paper is structured as follows. In Sect. 2, the

algorithms of RDE2D and MRDE2D are reviewed

firstly and then the CMTFRDE2D algorithm is intro-

duced, as well as the parameters selection of RDE2D

and the performance of CMTFRDE2D are investi-

gated. In Sect. 3, a new rolling bearing fault diagnosis

method is proposed based on CMTFRDE2D and GSA-

SVM. In Sect. 4, the effectiveness of the proposed

fault diagnosis methods is verified by two sets of

rolling bearing test data with different operating

conditions. Finally, the discussion of conclusions is

presented in Sect. 5.

2 CMTFRDE2D and its related algorithms

2.1 RDE2D algorithm

DE2D is a nonlinear analysis tool that can effectively

characterize the complexity of images, but it has poor

stability. In this paper, RDE2D is proposed by intro-

ducing ‘‘distance information from white noise’’ to

improve the stability of DE2D, and its steps can be

described as follows:

(1) For a given image signal U with pixel size

h� w, its discrete form is denoted as the matrix

U ¼ fui;jgj¼1;2;���;w
i¼1;2;���;h . First, U is mapped to Y ¼

fyi;jgj¼1;2;���;w
i¼1;2;���;h by utilizing the normal cumulative

distribution function, namely

yi;j ¼
1

r
ffiffiffiffiffiffi

2p
p

Z ui;j

�1

e�ðt�lÞ2

2r2
dt ð1Þ

where r and l are the standard deviation and

mean value of U, respectively. The range of yi;j
is [0,1].

(2) A linear operation is used to map yi;j to the

symbol sequence zci;j, that is

zci;j ¼ intðc� yi;j þ 0:5Þ ð2Þ

where int(�) indicates the rounding process, and

c is a positive integer, indicating the number of

classes. zci;j stands for the class sequence of i-th
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row and j-th column elements mapped from the

element ui;j of image U.

(3) Based on the embedding theory, the embedding

matrix is reconstructed as:

zm ¼ zm;cd;r

n o

¼

zcd;r zcd;rþ1 � � � zcd;rþðmw�1Þ
zcdþ1;r zcdþ1;rþ1 � � � zcdþ1;rþðmw�1Þ

..

. ..
. ..

. ..
.

zcdþðmh�1Þ;r zcdþðmh�1Þ;rþ1 � � � zcdþðmh�1Þ;rþðmw�1Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð3Þ

where m is embedding dimension, 1� d� h�
ðmh � 1Þ and 1� r�w� ðmw � 1Þ. For each

element in zm is mapped to a dispersion pattern

p ¼ px0x1���xmh�mw�1
, where zcd;r ¼ x0,

zcd;rþ1 ¼ x1,:::, zcdþðmh�1Þ;rþðmw�1Þ ¼ xmh�mw�1.

Since there are mh � mw elements in the matrix,

and each element is mapped between 1 and c,

there are total q ¼ cmh�mw possible dispersion

patterns corresponding to zm.

(4) The probability pðpÞ of each potential disper-

sion pattern in all possible dispersion patterns q

can be computed by:

pðpÞ ¼
number zm;cd;r has type p

n o

h� mh � 1ð Þð Þ w� mw � 1ð Þð Þ ð4Þ

where number{�} indicates the number of zm;cd;r

mapped to dispersion pattern p. In fact, pðpÞ is
equal to the ratio of the number of zm;cd;r mapped

to the dispersion pattern p to the total number

ðh� ðmh � 1ÞÞðw� ðmw � 1ÞÞ of all embedded

vectors in zm.

(5) RDE2D is defined as the distance to white noise

by combining distance information as:

RDE2DðU;m; cÞ ¼
X

q

p¼1

pðpÞ � 1

q

� �2

¼
X

q

p¼1

p ðpÞ2 � 1

q
ð5Þ

There are two key parameters in RDE2D that are

required to be set in advance, i.e., embedding dimen-

sionm and class c. In the literature [15], it is suggested

that m is set from 1 to 5, and c is set from 3 to 8.

Generally, the largerm is, the subtle changes cannot be

accurately reflected in the joint probability dynamic

reconstruction of the sequence, and the computation

time is longer. To balance the accuracy and compu-

tation efficiency, m = 2 is chosen in this paper.

In the following, a MIX2D(n) function composed of

periodic signals and random signals regulated by differ-

ent probabilities n (0� n� 1) was defined to verify the

performance of RDE2D in detecting the degree of

image irregularity and investigate the effect of c on

RDE2D, where the MIX2D(n) is defined as below [19]

MIX2DðnÞi;j ¼ ð1� Ni;jÞXi;j þ Ni;jYi;j ð6Þ

where the sinusoidal image Xi;j ¼ sinð2pi
12
Þ þ sinð2pj

12
Þ,

random image Yi;j consists of uniform white noise in

the range ½�
ffiffiffi

3
p

;
ffiffiffi

3
p

�. When the random variable

Ni;j ¼ 1, the probability is n, while when Ni;j ¼ 0 the

probability is 1� n. In fact, when the probability n

takes any value in the range, the MIX2D(n) generates

an image that presents a specific spatial regularity. For

example, when n = 0, MIX2D(n) generates regular

periodic images. With the increase of probability n

(0� n� 1), the irregularity of the image generated by

MIX2D(n) gradually increases, and a completely

random and highly irregular image is generated when

n = 1.

For different probability n, the MIX2D(n) randomly

generates synthetic images with different regularity

(as shown in Fig. 1), and its RDE2D value is computed

and the entropy value curve is displayed in Fig. 2. As

seen in Fig. 2, with the increasing of n value, the

irregularity of the image generated by MIX2D(n) will

become higher and higher. Since the reverse disper-

sion entropy (or RDE2D) is defined as the distance to

white noise (or random image), the RDE2D values will

become smaller with the increase of the image

irregularity. Therefore, the trend of RDE2D is in line

with the expected effect and corresponds to the image

shown in Fig. 1, which further verifies the effective-

ness of RDE2D in measuring the degree of image

irregularity. In addition, Fig. 2 indicates that the value

of entropy tends to decrease with the increase of c, and

the entropy difference between different n becomes

smaller and smaller, which is not conducive to

classification. It also can be observed from Fig. 2 that

when c = 3, the difference of RDE2D value for

different noises is the largest, and thus we set c = 3.
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2.2 MRDE2D algorithm

Since the fault information is usually distributed on

different time scales, accordingly, the complexity of

image will change on different scales. In this part,

MRDE2D is proposed to reflect the complexity infor-

mation of image on different scales, with its steps

being described as follows.

(1) For image U with size h� w and given scale

factor of s, the size of the resulting coarse-

grained image is h=sb c � w=sb c, where �b c
denotes rounding. The two-dimensional

coarse-grained process of image is described by:

y
ðsÞ
i;j ¼ 1

s2
X

e¼is
f¼js

e¼ði�1Þsþ1
f¼ðj�1Þsþ1

xe;f ; 1� i� h=sb c; 1� j� w=sb c

ð7Þ

(2) For the coarse-grained image yðsÞ ¼ y
ðsÞ
i;j

n o

with

different scale factors s, MRDE2D is defined by:

MRDE2D U; s;m; cð Þ ¼ RDE2D yðsÞ;m; c
� �

ð8Þ

MRDE2D overcomes the problem that RDE2D can

only extract the complexity of single scale time series.

n=0.2 n=0.3    n=0.4 n=0.5 n=0.6 

Fig. 1 Composite image generated by MIX2D(n) for different n values

Fig. 2 RDE2D for different n values
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It extends the traditional coarse-grained method to a

two-dimensional coarse-grained way which is appli-

cable to image processing, and multi-scale image

analysis has been developed to characterize the degree

of irregularity of images for different scales. The

schematic diagram of the two-dimensional coarse-

grained for scale factor s ¼ 2 is displayed in Fig. 3.

Although MRDE2D overcomes the shortcomings of

RDE2D cannot performmulti-scale analysis of images,

the coarse-grained process of MRDE2D for images is

relatively complex and computationally expensive. In

addition, MDE1D cannot comprehensively utilize the

information in the time–frequency domain of vibra-

tion signals. Therefore, the MTFRDE2D method is

proposed, which combines the advantages of

MRDE2D and MDE1D to extract the time–frequency

distribution information of vibration signals. How-

ever, as the length of the coarse-grained sequence

utilized in the multi-scale coarse-grained process of

MTFRDE2D will become shorter with the increase of

scale factor, which inevitably leads to the loss of much

potentially useful information. To address this issue,

the CMTFRDE2D method is proposed for solving the

problem of information loss caused by MTFRDE2D.

2.3 Introduction of CMTFRDE2D algorithm

The steps of the CMTFRDE2D algorithm are given as

follows.

(1) For a given scale factor s, the n-th (1� n� s)

coarse-grained sequence y
ðsÞ
n ¼ fyðsÞn;1; y

ðsÞ
n;2; � � �g

of the original time series fxðsÞ; s ¼ 1; 2; � � � ; Sg
is defined as:

y
ðsÞ
n;j ¼

1

s

X

jsþn�1

s¼nþðj�1Þs
xs; 1� j� S=s; 1� n� s

ð9Þ

(2) For each coarse-grained sequence y
ðsÞ
n obtained

when the scale factor is s, its time–frequency

distribution U
ðsÞ
n is calculated through continu-

ous wavelet transform, namely:

Uða; bÞ ¼
Z þ1

�1
y
ðsÞ
j w�

a;b ds

¼ 1
ffiffiffi

a
p

Z þ1

�1
y
ðsÞ
j w� s� b

a

� �

ds

ð10Þ

where a is the scale and a[ 0, b represents the

translation factor, 1
ffiffi

a
p is the normalization factor

in ensuring that a and b having the same energy,

and Uða; bÞ is the continuous wavelet transform
of the coarse-grained time series y

ðsÞ
j .

(3) For the time–frequency distribution U
ðsÞ
n of all

coarse-grained sequences with scale factor s, its
CMTFRDE2D can be calculated by:

Fig. 3 Schematic diagram

of two-dimensional coarse-

grained for s ¼ 2

123

7530 J. Li et al.



CMTFRDE2DðU; s;m; cÞ

¼ 1

s

X

s

n¼1

RDE2DðUðsÞ
n ;m; cÞ ð11Þ

The CMTFRDE2D method reduces the fluctuation

of entropy value with increasing scale factor by

averaging RDE2D values of s coarse-grained sequence
time–frequency images. Also, it can reduce the

information loss caused by the coarse-grained process

used in MTFRDE2D. Since CMTFRDE2D is to calcu-

late the RDE2D values of the time–frequency distri-

bution of composite coarse-grained time series, and

thus the parameters settings are the same as RDE2D,

i.e., m = 2 and c = 3 are set. The comparison of the

computation process between MRDE2D and

CMTFRDE2D is displayed in Fig. 4.

In the following, four kinds of noises, including

pink noise, blue noise, purple noise, and red noise with

a length of 1024, are selected as the research objects

[20–22] to verify the effectiveness of CMTFRDE2D in

the complexity measurement of image and their

waveforms in time-domain are exhibited in Fig. 5.

The CMTFRDE2D, MTFRDE2D, MRDE2D and

MDE2D values of the above noise signals with a

maximum scale of smax ¼ 20 were calculated [23],

and the mean–variance diagram is displayed in Fig. 6.

As seen in Fig. 5, the waveforms of pink noise and red

noise are quite different that can be distinguished

obviously, while the blue noise and purple noise

waveforms are very similar and difficult to distinguish.

The four different colored noises in the mean–variance

diagram shown in Fig. 6 can be distinguished by the

CMTFRDE2D method, where the pink and red noises

are more clearly distinguished from the other two

noises, corresponding to the waveforms shown in

Fig. 5, and thus the validity of the proposed method

for feature extraction is confirmed. The standard

Fig. 4 The flowcharts of MRDE2D and CMTFRDE2D
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deviation of the CMTFRDE2D method is the smallest

among the four processing methods for different noise

vibration signals, and this indicates that the

CMTFRDE2D method has better stability and robust-

ness in nonlinear dynamic feature reflection.

3 The proposed fault diagnosis method

The mentioned analysis demonstrates that

CMTFRDE2D is an efficient method for vibration

signals complexity analysis, which is used for feature

extraction of rolling bearing vibration signals in this

paper. However, it is essential to select an appropriate

classifier to realize an intelligent fault classification of

rolling bearing. Support vector machine (SVM)

[24, 25] is a pattern recognition tool that is suitable for

small sample classification, and its performance

depends significantly on the selection of kernel

parameter g and penalty factor c. In general, c is used

to achieve a compromise between minimizing the

number of misclassified samples and maximizing the

classification interval. When the value of c is small,

the phenomenon of under-fitting occurs, which leads

to lower training accuracy and poorer generalization

performance. On the contrary, there will be an over-

fitting phenomenon. And g mainly affects the distri-

bution of sample data in high-dimensional space,

which also has a significant impact on the classifica-

tion performance of SVM. However, the c and g value

in SVM cannot be changed once determined.

Therefore, the parameters of SVM need to be

optimized to improve the classification efficiency.

Particle swarm optimization (PSO) [26], chicken

swarm optimization (CSO) [27] and gravitational

search algorithm (GSA) [28, 29] are commonly used

optimization algorithms. GSA is a cluster intelligence

optimization algorithm with high robustness and easy

implementation. The algorithm simulates the univer-

sal gravitational in physics, and the particles scattered

in space move each other according to the gravita-

tional interaction, and finally calculates the optimal

position to realize position optimization. Therefore,

the gravitational search algorithm is selected to

optimize the relevant parameters of SVM in this paper.

3.1 Principle of gravitational search algorithm

GSA is a heuristic algorithm based on the law of

universal gravitation. It can optimize the position of

objects by simulating the interaction between objects

with arbitrary mass to achieve the effect of parameter

optimization. GSA needs to set parameters such as

allowable range for search space, the maximum

number of iterations and the number of agents in

advance, and randomly initialize the positions of

particles. Then the velocity, acceleration and position

of the particle are updated according to formulas (12)–

(15), and the iteration is stopped after the termination

condition is satisfied, and the optimal parameters are

output. The specific steps of GSA algorithm are

described in the literature [30].

Fig. 5 The colored noise

waveform of (a) blue noise,
(b) pink noise, (c) red noise,

and (d) purple noise
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Fl
ijðtÞ ¼ GðtÞMpiðtÞ �MdjðtÞ

RijðtÞ þ n
ðxljðtÞ � xliðtÞÞ ð12Þ

aliðtÞ ¼

P

N

j¼1;j 6¼i

randjF
l
ijðtÞ

MiðtÞ
ð13Þ

vliðt þ 1Þ ¼ randi � vliðtÞ þ aliðtÞ ð14Þ

xliðt þ 1Þ ¼ xliðtÞ þ vliðt þ 1Þ ð15Þ

where GðtÞ is the gravitational constant at time t,

MpiðtÞ and MdjðtÞ are the gravitational masses of

particles i and j respectively, n is a small constant,

RijðtÞ is the Euclidean distance between particles i and

j, and Fl
ijðtÞ is the resultant force of interaction

between particles i and j. aliðtÞ is the acceleration of

particle i in the l-th dimension, MiðtÞ is the inertial

masses of particles i. randj is a random variable

between [0,1], vliðtÞ and xliðtÞ are the velocity and

position of particle i at the t-th iterations.

3.2 GSA-SVM optimization process

The penalty factor c and the kernel parameter g in the

SVM are optimized using the GSA algorithm, and the

specific steps are as follows:

(1) The parameters of GSA-SVM are initialized,

i.e., the number of agents equals 20, the

(a) CMTFRDE2D
(b) MTFRDE2D

(c) MRDE2D (d) MDE2D

Fig. 6 The mean standard deviation diagram of colored noise (a) CMTFRDE2D, (b) MTFRDE2D, (c) MRDE2D and (d) MDE2D
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maximum number of iterations is 30, the

allowable range for search space is from 0.01

to 100, and randomly initialize position of

particle.

(2) The minimum value of the objective function is

used as the optimization target, and the fitness

value of particle is calculated. It is worth noting

that GSA-SVM takes the error rate between the

actual output and the theoretical output of the

test set as the fitness function, that is, the error

rate of the classification prediction is used as the

fitness value [31].

(3) The mass of each particle and the resultant force

of interaction between particles are calculated.

(4) The velocity, acceleration and position of par-

ticle are updated, that is, the kernel parameter

g and penalty factor c of SVM are updated.

(5) Repeat steps (2) * (4) until the maximum

number of iterations is achieved, and the

iteration is terminated to output the optimal

parameters.

3.3 The proposed method

Based on the advantages of CMTFRDE2D and GSA-

SVM mentioned above, a new rolling bearing fault

diagnosis model is proposed, and the detailed proce-

dures are described as below.

(1) The vibration signals of rolling bearing are

collected in M different statues and each state

contains N samples with the same length. The

CMTFRDE2D values for the time–frequency

distribution of each state vibration signal with

the maximum scale of smax are calculated and

used being the sets of sample feature vectors.

(2) The sample feature vectors for each state

vibration signal are divided randomly for

I training samples and J testing samples, where

N = I ? J.

(3) The selected training samples are input to the

GSA-SVM based classifier for training, in

which GSA-SVM dynamically updates penalty

factor c and kernel parameter g according to the

different input training samples to obtain the

optimal parameters.

(4) The testing samples are input into the GSA-

SVM for classification prediction, and the fault

locations and severities are judged according to

the output results of classifier to achieve fault

diagnosis of rolling bearing.

The process of the proposed fault diagnosis method

is illustrated in Fig. 7.

4 Experimental data analysis

4.1 Experiment 1

The rolling bearing data of Case Western Reserve

University1 are employed to verify the validity of the

proposed diagnosis method. The test bearing model

used in the experiment is the 6205-2RSJEM SKF with

a single point of failure assigned to the rolling bearing

by EDM technology [32]. The test stand is displayed in

Fig. 8. The vibration acceleration signals of rolling

bearing with 12 different states were collected,

respectively, under operating conditions with a

Fig. 7 Flowchart of the proposed method

1 https://github.com/yyxyz/CaseWesternReserveUniversity

Data.
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sampling frequency of 12 kHz and a speed of 1730

r/min, including normal bearing (denoted as Norm)

and ball element fault, outer race fault and inner race

fault bearings with fault diameters of 0.1778 mm,

0.3556 mm and 0.5334 mm, respectively, as well as

ball element fault (BE4) and inner race fault (IR4)

with fault diameter of 0.7112 mm. Among which ball

element fault, outer race fault, and inner race fault with

fault diameter of 0.1778 mm are denoted as BE1, OR1

and IR1, respectively. The bearings with fault diam-

eter of 0.3556 mm are denoted as BE2, OR2 and IR2,

and the bearings with fault diameter of 0.5334 mm are

denoted as BE3, OR3 and IR3. The waveforms of

vibration signals in time domain are shown in Fig. 9.

According to the proposed method, first, there are

30 samples with a length of 1024 collected from each

of the above 12 states of rolling bearing vibration

signal, and the CMTFRDE2D value for time–fre-

quency distribution with the maximum scale smax ¼
20 of the collected data is calculated and the corre-

sponding mean–variance diagram is present in

Fig. 10a. According to Fig. 10a, the CMTFRDE2D

Fig. 8 Case Western

Reserve University bearing

test bench

Fig. 9 The time-domain

waveforms of rolling

bearing vibration signals
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(a) CMTFRDE2D     (b) MTFRDE2D

(c) MRDE2D (d) MDE2D

(e) MDE1D
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of rolling bearing vibration signals in 12 states

decreases as the scale factor increases and can be

effectively distinguished. In addition, the normal

condition bearing has the smallest value of

CMTFRDE2D. This is because the resulting vibrations

in rolling bearing during normal operation are random,

the complexity of the signal is relatively large, and the

corresponding entropy value is also large. The vibra-

tion generated will be accompanied by a certain

periodic shock when the rolling bearing operates with

local failure, resulting in the entropy being smaller

than the normal state. However, reverse dispersion

entropy is defined as the ‘‘distance from white noise’’

and thus the CMTFRDE2D is smallest when rolling

bearings in normal conditions. The CMTFRDE2D

value is larger for the vibration signal that has a

periodic shock when the rolling bearing operates with

local failure. In conclusion, CMTFRDE2D can effec-

tively characterize the fault features of rolling bearing

vibration signals.

Next, in order to demonstrate the advantages of

CMTFRDE2D method, it is compared with

MTFRDE2D, MRDE2D, MDE2D andMDE1Dmethods,

respectively. The MTFRDE2D, MDE2D, MRDE2D and

MDE1D values are calculated for the rolling bearing

vibration signals (to make the test results not affected

by the parameter settings, the parameter settings of

MTFRDE2D, MRDE2D, MDE2D and MDE1D methods

are the same as CMTFRDE2D), and the mean standard

deviation diagrams are shown in Fig. 10(b–e). Com-

pared with Fig. 10(c and d), the MRDE2D and MDE2D

curves show opposite trends, i.e., the MDE2D value for

the vibration signal of rolling bearing gradually

increases, while the MRDE2D value progressively

decreases as the scale factor increases. The vibration

signals of rolling bearings can be distinguished in

different states by both methods. Besides, the standard

deviation of the processing results of the MRDE2D

method is smaller compared to the MDE2D method,

which indicates that the MRDE2D method has stronger

stability and robustness. As shown in Fig. 10(a and b),

the two methods have similar trends, and the corre-

sponding entropy values decrease gradually as the

scale factor increases. The standard deviations of the

CMTFRDE2D and MTFRDE2D are both smaller than

those of the MRDE2D method, and the standard

deviations of CMTFRDE2D values are smaller com-

pared to those of MTFRDE2D as the scale factor

increases. It reveals that the CMTFRDE2D method has

better stability and reflects the advantages of compos-

ite multi-scale. In addition, the MDE1D curve of the

bearing vibration signal in the normal state is clearly

distinguished from that of the vibration signal in the

faulty state, but when the scale factor is large, the

MDE1D curve is not easy to differentiate for the faulty

state rolling bearing vibration signal overlaps with

each other. Moreover, the standard deviation of the

MDE1D value is relatively large, and the stability is

lower than the proposed method. In conclusion, the

proposed CMTFRDE2D method can extract the time–

frequency distribution information of rolling bearing

vibration signal on different scales and has better

stability.

To demonstrate the superiority of the proposed

method in recognition accuracy, 10 samples are

randomly chosen from the sample feature set of

vibration signals in each state for training samples, and

other 20 samples as testing sample sets and corre-

sponding class labels are created. The classification

labels are shown in Table 1. After that, the training

samples are input into GSA-SVM to train, and the best

kernel parameters and penalty factor obtained after

training are 5.2282 and 34.8106, respectively. The

testing samples are input into the trained multi-fault

classifier to perform classification and the results are

displayed in Fig. 11. By observing Fig. 11, it is found

that the actual output result is exactly the same as the

predicted result, with a recognition accuracy of 100%.

Hence, the proposed CMTFRDE2D method can

effectively extract the complex features for the time–

frequency distribution of vibration signals, and the

proposed fault diagnosis method can precisely recog-

nize the different fault locations and severities of

rolling bearings.

Further, the obtained MTFRDE2D, MRDE2D,

MDE2D, and MDE1D sample feature sets are input

into GSA-SVM to train and test, with the test results

being displayed in Fig. 12 and Table 2. By observing

Fig. 12a–c, it is found that the diagnosis performance

based on the MRDE2D method (5 samples are wrongly

classified) is higher than that based on the MDE2D

method (8 samples are wrongly classified), and the

recognition accuracy is 97.92% and 96.67%,

bFig. 10 The mean standard deviation diagram of different

processing methods (a) CMTFRDE2D, (b) MTFRDE2D,

(c) MRDE2D, (d) MDE2D and (e) MDE1D
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respectively. Besides, the two samples in IR2 and one

sample in OR2 are misjudged as BE1 and BE3 by the

MTFRDE2D method, respectively. The identification

accuracy is 98.75% which is higher than that of the

MRDE2D method. From Fig. 12, it is found that the

MDE1D-based fault diagnosis method has the lowest

recognition accuracy of 95.42%, with 11 samples

being misjudged in total, which is lower than other

two-dimensional entropy-based fault recognition

methods, indicating that the two-dimensional

entropy-based fault diagnosis method is better than

the one-dimensional entropy method. In addition,

these four methods of fault diagnosis all have different

degrees of misjudgment, and their recognition

accuracy is lower than that of the proposed method.

Hence, the CMTFRDE2D-based fault diagnosis

method has certain superiority.

It is compared with PSO-SVM and CSO-SVM to

verify the advantages of GSA-SVM in rolling bearing

fault features pattern recognition. Without loss of

generality, the same numbers of training samples and

testing samples is used as above, and the correspond-

ing classification results are listed in Table 2. From

Table 2, it is found that PSO-SVM based on parameter

optimization has the lowest identification rate for each

feature set among the three parameters optimized

classifiers. In contrast, the GSA-SVM has the highest

recognition rate for each feature set, indicating that the

GSA method can effectively avoid the local optimiza-

tion situation and get relatively better parameter

optimization results. Therefore, GSA-SVM has cer-

tain superiority in fault classification of rolling

bearings.

Finally, the influence of input features number on

the diagnosis results is investigated. Without loss of

generality, the same number of training and testing

samples are applied as in the above experiments. The

first 15 sample features are sequentially input into

GSA-SVM to train, and the recognition precision of

the five methods is shown in Fig. 13. By observing

Fig. 13, it is found that the identification accuracy of

the MDE1D-based method is always lower than the

other four methods when the number of input samples

is greater than 5, which is because the MDE1D method

Table 1 Rolling bearing test data classification label

Fault type Fault diameter (mm) No. of training samples No. of testing samples Class label

Norm 0 10 20 1

IR1 0.1778 10 20 2

IR2 0.3556 10 20 3

IR3 0.5334 10 20 4

IR4 0.7112 10 20 5

BE1 0.1778 10 20 6

BE2 0.3556 10 20 7

BE3 0.5334 10 20 8

BE4 0.7112 10 20 9

OR1 0.1778 10 20 10

OR2 0.3556 10 20 11

OR3 0.5334 10 20 12

Fig. 11 CMTFRDE2D classification results
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can only extract fault information in the time-domain

with the incomplete fault information leading to the

lowest recognition accuracy. In addition, the

CMTFRDE2D method can always obtain the highest

recognition accuracy compared with the other four

methods regardless of the number of input features.

Therefore, the proposed fault diagnosis method can

also obtain higher recognition accuracy and has better

robustness and stability when the number of input

features is small.

In conclusion, the CMTFRDE2D method can

effectively extract the fault characteristics from the

time–frequency distribution of rolling bearings, and

has better stability compared with the existing meth-

ods. The CMTFRDE2D and GSA-SVM-based fault

diagnosis method can accurately identify the different

health states of rolling bearings. In addition, the

proposed method can obtain the highest recognition

accuracy when the number of input sample features is

small, which indicates that it is more suitable for small

sample classification. Overall, the advantages of the

proposed fault diagnosis methods mainly come from

the fact that CMTFRDE2D can effectively improve the

information utilization of the original signal, and the

extracted features contain more fault information.

Meanwhile, GSA-SVM can avoid the occurrence of

local optimization in parameter optimization, thus

improving the fault recognition rate of the diagnostic

model.

(a) MTFRDE2D (b) MRDE2D

(c) MDE2D                   (d) MDE1D

Fig. 12 Classification results of different methods (a) MTFRDE2D (b) MRDE2D (c) MDE2D (d) MDE1D
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4.2 Experiment 2

The test data obtained from the self-made rolling

bearing simulation test rig is used for analyzing to

further verify the superiority of the proposed method,

and the simulation test rig as shown in Fig. 14. The test

bearing type is SKF 6206-2Z, and the ball element

fault (BE), outer race fault (OR), and inner race fault

(IR) are arranged on the bearing utilizing wire cutting

technology, respectively. The rolling bearing vibra-

tion acceleration signals of seven different fault depths

were collected under the operating condition with a

sampling frequency of 10.24 kHz, a motor speed of

1500 r/min, and a load of 7 kN. The specific descrip-

tion is shown in Table 3. Thirty samples with a length

of 1024 are selected from each state rolling bearing

vibration signal. The waveforms of the vibration

signals in time-domain are shown in Fig. 15.

Firstly, the CMTFRDE2D, MTFRDE2D, MRDE2D,

MDE2D, and MDE1D values of the above vibration

signal with the maximum scale smax ¼ 20 are calcu-

lated, respectively, and other parameters settings are

the same as those in Experiment 1. The mean standard

deviation diagram of the corresponding entropy values

is displayed in Fig. 16. As seen in Fig. 16, the overall

change trends of MRDE2D and MDE2D are opposite as

the scale factor increases, but the standard deviation of

the MRDE2D processing results is smaller and has

more excellent stability. Compared with the

MTFRDE2D, the CMTFRDE2D method has stronger

stability and robustness, although the processing

results of the two methods have similar trends.

A GSA-SVMmulti-fault classifier is constructed to

further demonstrate the advantages of the proposed

Table 2 Optimal parameters and recognition rate of five methods

Method Parameter setting Misclassified samples Optimal parameters Recognition rate (%)

CMTFRDE2D PSO-SVM m = 2

c = 3

s ¼ 20

4 c = 0.3603, g = 0.5502 98.33

CSO-SVM 1 c = 29.1305, g = 31.1103 99.58

GSA-SVM 0 c = 34.810, g = 5.2282 100

MTFRDE2D PSO-SVM 6 c = 9.0233, g = 10.8914 97.5

CSO-SVM 5 c = 11.9110, g = 7.3361 97.92

GSA-SVM 3 c = 25.8862, g = 0.3501 98.75

MRDE2D PSO-SVM 11 c = 100, g = 6.5340 95.42

CSO-SVM 9 c = 76.6594, g = 1.1559 96.25

GSA-SVM 5 c = 47.7172, g = 23.2000 97.92

MDE2D PSO-SVM 12 c = 100, g = 2.2971 95

CSO-SVM 10 c = 73.8741, g = 0.0100 95.83

GSA-SVM 8 c = 69.0314, g = 2.1427 96.67

MDE1D PSO-SVM m = 2

c = 3

d = 1

s ¼ 20

17 c = 16.5803, g = 2.6305 92.92

CSO-SVM 12 c = 17.7283, g = 0.1323 95

GSA-SVM 11 c = 36.8317, g = 0.3473 95.42

Fig. 13 The recognition rate of five methods when inputting

different feature numbers
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fault diagnosis method in recognition accuracy.

Without losing generality, the same number of training

and testing samples as in Experiment 1, and the

specific description is shown in Table 3. After that, the

training and testing samples are input into GSA-SVM

to perform prediction and classification, and the

Fig. 14 Self-made rolling bearing simulation test bench

Table 3 Rolling bearing

test data classification label
Fault type Fault size (mm) No. of training samples No. of testing samples Class label

Norm 0 10 20 1

IR1 0.3 10 20 2

IR2 0.4 10 20 3

BE1 0.2 10 20 4

BE2 0.4 10 20 5

OR1 0.2 10 20 6

OR2 0.3 10 20 7

Fig. 15 The time-domain

waveform of rolling bearing

vibration signals
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(a) CMTFRDE2D (b) MTFRDE2D

(c) MRDE2D (d) MDE2D

(e) MDE1D
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corresponding optimization parameters and output

results are listed in Fig. 17 and Table 4, respectively.

By observing Fig. 17 and Table 4, it is found that the

proposed method correctly classifies the vibration

signals of rolling bearings with different fault loca-

tions and severities, and the recognition accuracy is

100%. The MTFRDE2D-based fault diagnosis method

divides two samples of BE1 into BE2 by mistake with

a recognition accuracy of 98.57%, which indicates that

the MTFRDE2D method can accurately identify dif-

ferent fault locations, but the ability to distinguish

different fault degrees of the same locations is lower

than the proposed method. The fault diagnosis meth-

ods based on MRDE2D, MDE2D, and MDE1D all have

different degrees of misjudgment, and the recognition

accuracy is MRDE2D, MDE2D, and MDE1D in

descending order. To sum up, the proposed

CMTFRDE2D-based fault diagnosis method has the

highest recognition accuracy among the five different

fault diagnosis methods and has certain advantages.

Next, compared with PSO-SVM and CSO-SVM to

illustrate the advantage of the GSA-SVM classifier,

the results are listed in Table 4. As demonstrated in

Table 4, the GSA-SVM can achieve the highest

recognition accuracy no matter which feature set is

input among the three classifiers that optimized

parameters based on different algorithms, which

further verifies the superiority of the GSA-SVM in

fault pattern identification.

Finally, the influence of the input features number

on the classification results is investigated. The 30

samples of rolling bearing vibration signals in each

state are divided randomly into 10 samples to train and

the other 20 samples to test. The recognition accuracy

obtained according to the different number of input

features is displayed in Fig. 18. As demonstrated in

Fig. 18, when the number of input features is small,

the other four methods have poor classification results.

While the recognition precision of the CMTFRDE2D

method is higher than the other four methods regard-

less of the number of input features. In addition, when

the number of input features is greater than 10, the

recognition rate of the CMTFRDE2D method reaches

and stabilizes at 100%. Combined with the analysis

results of Experiment 1, it can be seen that better

classification results can be obtained with the number

of input features greater than 11. Therefore, the

method of fault diagnosis based on CMTFRDE2D

has more advantages in small sample classification.

5 Conclusion

In this paper, firstly, based on the definition ofMDE2D,

the two-dimensional multi-scale reverse dispersion

entropy (MRDE2D) is proposed by introducing ‘‘dis-

tance information from white noise’’, and then the

two-dimensional multi-scale time–frequency reverse

dispersion entropy (MTFRDE2D) is developed to

quantify the complexity of time–frequency distribu-

tion information for vibration signal of rolling bearing.

Based on that, the two-dimensional composite multi-

scale time–frequency reverse dispersion entropy

(CMTFRDE2D) is proposed to reduce the information

loss caused by conventional coarse-grained used in

MTFRDE2D, and to alleviate the phenomenon that the

entropy value fluctuation of MTFRDE2D as the scale

factor increases. The effectiveness and stability of the

CMTFRDE2D for signal complexity measurement are

verified through four kinds of colored noise analysis.

After that, an intelligent diagnosis method of rolling

bearing based on CMTFRDE2D and GSA-SVM is

proposed, which is subsequently employed on rolling

bearing test data under two different working condi-

tions. The results reveal that the proposed method can

accurately identify different locations and severities of

faults in rolling bearings with greater robustness and

stability than the MTFRDE2D, MRDE2D, MDE2D, and

MDE1D methods. In addition, the effect of the number

of input features upon the classification results also is

investigated. The results indicate that the proposed

method still has high recognition precision with less

input features, and it is found that a higher recognition

rate can be achieved with a number of input features

greater than 11. Finally, the superiority of GSA-SVM

in fault pattern recognition is demonstrated by com-

paring it with several other most commonly employed

optimization algorithms. In summary, the

CMTFRDE2D and GSA-SVM-based rolling bearing

fault diagnosis method can effectively extract the fault

information of vibration signal and has a certain

superiority over the compared methods in fault

identification. However, the parameter selection of

bFig. 16 The mean standard deviation diagram of different

processing methods (a) CMTFRDE2D, (b) MTFRDE2D,

(c) MRDE2D, (d) MDE2D and (e) MDE1D
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(a) CMTFRDE2D (b) MTFRDE2D

(c) MRDE2D (d) MDE2D

(e) MDE1D

Fig. 17 Classification results of different methods (a) CMTFRDE2D, (b) MTFRDE2D, (c) MRDE2D, (d) MDE2D and (e) MDE1D
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CMTFRDE2D still requires to be studied in future

work.

In fact, due to the influence of background noise

and complex environment in practical engineering

applications, it is not easy to effectively diagnose

mechanical equipment in different health conditions

without the given known knowledge. We want to say

that this paper verifies the validity and superiority of

the proposed method through the test data of rolling

bearings under two different working conditions,

which provides a new way for the fault diagnosis of

mechanical equipment. In addition, we will apply the

proposed method to the fault diagnosis of planetary

gears and rotors in the future work to further study the

application area of this method.
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