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Abstract Slow convergence and low accuracy are

twomain drawbacks in nonlinear system identification

methods. It becomes more complicated when time

delay and noises are considered. In this paper,

considering a fractional-order Hammerstein model,

an online identification method is proposed. A com-

bination of an evolutionary optimization method and

recursive least square algorithm is used to estimate the

system parameters and orders in the presence of

unknown noises. Finally, simulation results are taken

to prove the effectiveness of the proposed algorithm.

Keywords Online system identification � Nonlinear
systems � Hammerstein model � Modified radial basis

function

1 Introduction

Previously, standard systems as well as standard

control systems, regardless of reality, were all con-

sidered to be integer-order systems. Recent researches,

however, have shown that some of real-world systems

are fractional order. In recent years, an increasing

number of real-time physical systems have been better

described by fractional-order differential equations

(FODEs) than classical integer-order models. So,

researchers and engineers are increasingly using

fractional-order dynamical models to model real

physical systems.

Identifying of the mathematical model of the

system is very important in analyzing the properties

of the system as well as designing a suitable controller

for the system. System identification is a standard tool

for modeling unknown systems whose main purpose is

to determine the structure and parameters of the

mathematical model of the system to reproduce the

dynamic behavior of the system. This process

becomes more difficult when physical systems are

described by FODE instead of integer-order models.

In this regard, the high complexity and lack of

sufficient mathematical tools had led to little attention

to fractional-order (FO) dynamical systems in theory

and practice [1, 2]. But today, however, with the

growth of computers and their ability to compute

complex integrals and FO derivatives, this problem

has been somewhat solved and fractional calculations

have become an attractive research topic in the

scientific and industrial communities. In recent

decades, due to this growth, along with the theoretical

research of fractional integrals and derivatives [3, 4],

the use of fractional operators in various fields has

been significantly developed.

Fractional calculus has been introduced in various

fields of science and engineering [5, 6], including
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identification of thermal systems [7], identification of

biological tissues [8], image processing [9], signal

processing [10], path planning [11], path tracking [12],

robotics [13], mechanical damping [14], battery [15],

control theory and its applications [16, 17], mechanics

[18], diffusion [19]. Also, systems with long-memory

transient characteristics and independent frequency

domain [14, 20, 21], transmission and distribution

lines, electromechanical processes, dielectric polar-

ization, viscoelastic materials such as polymers and

rubbers, relaxation phenomena of organic dielectric

materials, flexible structures, traffic in information

networks and biological systems [7, 19, 22–29], col-

ored noise, chaos [30], controllers [31], etc., can be

modeled more appropriately by FO models than

integer-order models. This confirms the fact that a

significant number of real systems are generally

fractional. Although for many of them, the degree of

fractionality is very low. Thus, the application of

fractional calculus has become the focus of interna-

tional academic research, and the identification of

such fractional-order systems has aroused growing

interest in the scientific community. Although FO

models are more suitable for describing dynamic

systems than integer-order models, they require suit-

able methods for analytical or numerical calculations

of FODEs [3, 4].

The aim of this paper is presenting a new online

method for identifying nonlinear systems which offers

two features simultaneously: increasing accuracy and

decreasing computations. For this purpose, a nonlinear

system identification based on FO Hammerstein

model has been considered. The proposed method

uses recursive identification algorithm with the ability

of online identification.

The reason for using the Hammerstein model

(Fig. 1) is that this model does not require a lot of

basic information from the system, which makes

identifying using process data relatively easier. The

motivation for using fractional calculations in system

identification is to preserve the features and phenom-

ena ignored by integer-order models by FO models, as

well as the fact that the dynamic behavior of an

increasing number of real processes can be more

accurately expressed using fractional models.

In the FO Hammerstein model identification using

input/output data, all unknown system parameters

include:

1. The coefficients of numerators and denominators

of the transfer function and fractional degrees in

the linear dynamics part.

2. Bezir–Bernstein polynomial (BBP) coefficients or

radial basis function neural network (RBFNN)

parameters including centers, widths and connec-

tion weights in the nonlinear static part are

estimated. The recursive method in identification

is based on updating unknown parameters by

adding new input/output data using a recursive

optimization algorithm. In this paper, recursive

least square (RLS) algorithm is used for this

purpose.

The fractional Hammerstein model is developed to

identify multi-input–single-output (MISO) nonlinear

systems with the following structure (Fig. 2). It is

clear that the identification of MISO systems has many

practical applications and it can be generalized to

multi-input–multi-output (MIMO) systems.

Modeling the behavior of the nonlinear static part is

a major challenge in the Hammerstein model. In this

paper, two methods are used to represent this part:

1. Bezier–Bernstein polynomials: From the point of

numerical analysis view, although different types

of polynomial functions can be used to estimate

the function, in [32] it is shown that Bernstein

basic functions are the best and most stable basic

functions against other polynomial basic

functions.

2. Artificial neural network: An important advantage

of using artificial neural network is overcoming

limitations such as slow convergence and com-

plexity of the structure [33].

Weaknesses and limitations of existing methods of

identifying the Hammerstein model, which has

become a motivation to present a new method, can

be mentioned as follows:

Fig. 1 Single-input–single-output Hammerstein model structure
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1. Limited to the proportional fractional orders

[34–41]

2. Assuming the fractional orders as known

[34–36, 39, 40]

3. Disqualification for online identification due to

computational complexity [34–41]

4. High estimation errors [34–41]

5. Not to consider time delays especially in online

mode [34–47]

6. Lack of generality of the presented models. For

example, most methods are only applicable to

nonlinear systems that have quasi-linear proper-

ties [37, 38];

7. Inability in system identification in the presence of

noises [43–48].

In this paper, a recursive method that is generalized

to online identification will be used and the Hammer-

stein model will be considered with the following

features:

1. The linear part transfer function is considered as a

fractional order, which, in addition to more

accurate identification of the system, allows the

reduction of the number of parameters as a feature

of FO systems.

2. Due to the BBP properties and RBFNN in more

accurate modeling of nonlinear dynamics, these

two functions are used to represent the nonlinear

part of the Hammerstein model.

3. The FO Hammerstein model is developed in

MISO mode.

4. According to the use of the recursive method and

other mentioned features, the proposed identifica-

tion method is generalized to the online mode.

2 Mathematical background

2.1 Fractional-order models

A continuous-time FO dynamical system can be

expressed by a FODE as follows [27, 49]:

HðDa0a1���anÞyðtÞ ¼ GðDb0b1���bnÞuðtÞ;

HðDa0a1���anÞ ¼
Xn

k¼0

akDak ;

GðDb0b1���bnÞ ¼
Xm

k¼0

bkDbk

ð1Þ

where ak; bk 2 R. In explicit form:

anDan yðtÞ þ an�1D
an�1yðtÞ þ � � � þ a0D

a0yðtÞ
¼ bmDbm uðtÞ þ bm�1Dbm�1uðtÞ þ � � � þ b0Db0uðtÞ

ð2Þ

By applying the Laplace transform with zero initial

conditions, the input–output representation of the FO

system can be obtained in the form of a transfer

function:

GðsÞ ¼ YðsÞ
UðsÞ ¼

bmsbm þ bm�1sbm�1 þ � � � þ b0s
b0

ansan þ an�1san�1 þ � � � þ a0sa0

ð3Þ

2.2 The structure of Hammerstein model

As mentioned, the MISO Hammerstein model consists

of a linear static subsystem and a linear dynamic part.

In general, the system is modeled as follows:

yðtÞ þ
Xn

i¼1

aiD
ai yðtÞ ¼

Xm

j¼0

bjD
bjðw1ðtÞ þ . . .þ wrðtÞÞ

wkðtÞ ¼ f ðukðtÞÞ
ð4Þ

Fig. 2 MISO Hammerstein

model structure

123

Online system identification using fractional-order Hammerstein model with noise cancellation 7913



where yðtÞ is the output of the system and ukðtÞ; k ¼
1; 2; . . .; r specifies the inputs, and wkðtÞ; k ¼
1; 2; . . .; r are the outputs of the nonlinear part and

the input to the dynamic one, and n;m are the input and

output delays for the linear subsystem.

In this paper, for the linear dynamics part, the FO

transfer function is used as follows:

GðsÞ ¼ BðsÞ
AðsÞ ¼

bmsbm þ � � � þ b1s
b1 þ b0s

b0

1þ ansan þ � � � þ a1sa1
ð5Þ

where a1; . . .; an; b0; . . .; bm 2 R are coefficients and

a1; . . .; an; b0; . . .; bm 2 R are fractional orders. The

corresponding FODE is shown as follows:

anDan yðtÞ þ an�1D
an�1yðtÞ þ � � � þ a0D

a0yðtÞ
¼ bmDbm uðtÞ þ bm�1Dbm�1uðtÞ þ � � � þ b0Db0uðtÞ

ð6Þ

In the considered fractional-order transfer function,

there is no proportional order constraint.

In order to use the output estimation method,

Eq. (6) must be written in the regression form:

yðtÞ ¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj wðtÞ ð7Þ

In this paper, three different structures are consid-

ered for the nonlinear static part:

2.2.1 Bezier–Bernstein polynomials

Reference [32] has shown that among the various

types of polynomial functions for estimating a func-

tion, Bernstein’s basic functions are the best and most

stable of the basic functions against other polynomial

basic functions. Therefore, the first method considered

for modeling the nonlinear static part is the use of BBP

functions. In 1912, S.N. Bernstein introduced the

following polynomials for a function defined on the

interval [1, 0] [50]:

Bnf ðtÞ ¼
Xn

i¼0

n
i

� �
tið1� tÞn�if ð i

n
Þ n¼ 1; 2;. . . ð8Þ

Bernstein’s polynomials can be defined on an

interval [a, b] by the following equation [50]:

Bi;nðtÞ ¼
n
i

� �
t � að Þiðb � tÞn�i

b � að Þn i¼ 0; 1; 2;. . .;n

ð9Þ

These polynomials can be used to estimate any

continuous function in the interval [a, b] and have the

following properties [50]:

Xn

i¼0

Bi;nðtÞ ¼ 1 ð10Þ

A general Bezier curve of degree n, defined by

n ? 1 vertices, can be expressed as follows [50]:

BðtÞ ¼
Xn

i¼0

aiBi;nðtÞ t 2 a; b½ � ð11Þ

where ai defines the ith vertex and provides informa-

tion about the shape of the B-curve. Bezier extended

the idea of estimating a function to the estimation of a

polygon in which n ? 1 vertices of a polygon are

estimated by Bernstein’s basis. As a result, it was

called the Bezier–Bernstein polynomial curve.

The Bezier–Bernstein polynomial used for the

nonlinear static part in this paper is considered in the

following form:

f uðtÞð Þ ¼
Xd

j¼0

djBj;dðxðuðtÞÞÞ ð12Þ

where j; d are non-negative integers, dj are weights

that must be specified, xðuðtÞ converts the input

change interval to the interval [1, 0] (x 2 0; 1½ �), and
Bj;dð:Þ are the BBPs with the following definition:

Bj;dðxÞ ¼
d

j

� �
x j 1� xð Þd�j ð13Þ

The number of Bernstein univariate polynomials of

degree d is d ? 1.

In [40], a formula for Bernstein polynomials

defined in interval [a, b] is given as follows:

Bj;dðxÞ ¼
d

j

� �
ðx � aÞ j b � xð Þd�j

ðb � aÞd

j = 0,1,. . .,d a� x� b

, a = min(u(t)), b = max(u(t))

ð14Þ

With this definition, the relation (12) can be written

as follows:
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f uðtÞð Þ ¼
Xd

j¼0

djBj;dðuðtÞÞ ð15Þ

Using BBPs to represent the nonlinear part, we

have in relation (4):

wk tð Þ ¼ fk uk tð Þð Þ ¼
Xd

i¼0

dk iBk i;d uk tð Þð Þ ð16Þ

Bk i;d uk tð Þð Þ; i ¼ 0; . . .; d; k ¼ 1; . . .; r are BBPs

related to kth input and dk i; i ¼ 0; 1; . . .; d; k ¼
1; . . .; r are related weights to be determined.

2.2.2 Radial basis function neural network (RBFNN)

In this case, the identification of the fractional-order

Hammerstein model with RBFNN in the nonlinear

static part and the fractional-order transfer function in

the linear dynamic part is investigated.

The two advantages of using a RBFNN for the

structure of a nonlinear gain function are the ability to

quickly modify modeling during changes in process

dynamics and to overcome constraints such as slow

convergence and structural complexity [33]. In fact,

the ability of Hammerstein models in nonlinear

dynamics modeling with relatively simpler models is

combined with the ability of more accurately and

simpler system estimation using fractional-order

transfer functions. As a result, the problems of

inadequacy for online identification and high estima-

tion error in existing methods are eliminated. Also,

due to RBFNN capabilities for estimating functions,

its use in this paper, by increasing the accuracy of

nonlinear part estimation, affects the reduction of

estimation error. In this case, the output of the

nonlinear part and the input to the linear part are

obtained from the following relation:

wkðtÞ ¼ fk ukðtÞð Þ ¼ x0k þ
XM

h¼1

xhk/hkðukðtÞÞ ð17Þ

/hkð:Þ; h ¼ 1; . . .;M; k ¼ 1; . . .; r are the Gaussian

functions of hth hidden node related to kth input and

xhkð:Þ; h ¼ 1; . . .;M; k ¼ 1; . . .; r are the connection

weights from hth hidden node to the output related to

kth input which should be identified. M is the number

of radial basis neural network functions.

/hkðukðtÞÞ ¼ exp � ukðtÞ � chkk k2
.
d2hk

� �n o
ð18Þ

chk; dhk; h ¼ 1; . . .;M; k ¼ 1; . . .; r are the centers

and widths of the hth RBF hidden unit associated with

the kth input and :k k defines the Euclidean norm.

2.2.3 Modified radial basis function neural network

(MRBFNN)

RBFNNs consist of only one layer of activation

functions that are radially symmetric. In the standard

form, the number RBFNN parameters increases

exponentially with increasing the number of inputs.

In the modified RBFNN, the centers and widths of

Gaussian functions are concentrated in a single

adjustable point instead of different points, and only

different weights are used. Also, in RBFNN, the

number of hidden nodes is equal to the number of

sampled training data. But in the MRFNN, the number

of hidden nodes is limited and selectable. These two

features significantly reduce the number of unknown

parameters in the identification process. In this case,

the Gaussian functions associated with kth input are no

longer dependent on the hidden nodes and have a

constant center and width for each input. They are as

follows:

/kðukðtÞÞ ¼ exp � ukðtÞ � ckk k2
.

d2
k

� �n o
ð19Þ

That is, /hkð:Þ Gaussian functions have the same

centers and widths and are simplified to

/kð:Þ; k ¼ 1; . . .; r.

3 System identification algorithms

In the proposed identification method, the modified

genetic algorithm (MGA) [51] is applied to identify

fractional orders and time delays in the dynamic part

and to identify the centers and widths of RBF units

(Eqs. 17–19) in the nonlinear part as well as the

production of initial estimations for the coefficients of

the fractional-order transfer function, BBP weights

(Eq. 16) and NN weights (Eqs. 17–19).

GA with an innovative strategy is called as

modified genetic algorithm (MGA). Comparing with

the classic GA in which the best solutions or chromo-

somes are selected and transferred to the next gener-

ation, the best characteristics or properties are selected

and transferred to the next generation in MGA. It is

inspired from artificial genetic operation in some
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agronomic products that the best properties of differ-

ent types by genetic manipulation are transferred to the

new product. In this algorithm, the crossover is

performed exchanging the best genes between the

chromosomes [51].

The crossover step is the main difference between

the classic GA and MGA. In MGA, after selection the

best chromosomes, the genes are changed between

them. The aim of continuing this process is finding the

best genes instead of the best chromosomes. The

artificial parents are generated with the best genes and

putting them together. Better solutions, escaping from

local optima and faster convergence are some of the

advantages of MGA which are very vital in the online

identification process. These advantages will be

illustrated by examples [51].

For the identification process, a part of the input/

output data is used to obtain all the unknown

parameters using MGA. In the next step, using these

initial estimations, the recursive least squares (RLS)

algorithm is used to update and optimize them using

the rest of data. The effective combination of these two

algorithms provides the ability to track the nonlinear

time-variable behavior of the system. The proposed

online system identification structure is shown in

Fig. 3.

3.1 MISO Hammerstein model using BBPs

Considering Eq. (15), Eq. (7) becomes:

yðtÞ ¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj

Xd

l¼0

dlBl;dðuðtÞÞ
 !

ð20Þ

Equation (20) for MISO mode can be written in the

following form:

yðtÞ ¼ �
Xn

i¼1

aiD
ai yðtÞþ

þ
Xm1

j1¼0

bj1Dbj1

Xd

l¼0

dlBl;dðu1ðtÞÞ
 !

þ ::: þ
Xmr

jr¼0

bjrD
bjr

Xd

l¼0

dlBl;dðurðtÞÞ
 !

ð21Þ

According to Eq. (9), in the general case, for BBP

of d degree, we have:

yðtÞ ¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm1

j1¼1

bj1Dbj1

Xd

l1¼0

hl1u
l1 þ :::

þ
Xmr

jr¼1

bjrD
bjr

Xd

lr¼0

hlru
lr

ð22Þ

Using Grunwald–Letnikov estimation:

yðk þ 1Þ ¼ �
Xn

i¼1

a0iYiðkÞ

þ
Xm

j¼0

Xd

l¼0

b10jlðF1jlðkÞÞ þ :::þ
Xd

l¼0

br0jlðFrjlðkÞÞ
 !

ð23Þ

where

a0
i ¼

ai

hai

1þ
Pn

k¼1

ak

hak

; bv0jl

¼
bjhlv

hbj

1þ
Pn

k¼1

ak

hak

1� i� n; 1� j�m; 0� l� d,

1� v� r
ð24Þ

YiðkÞ ¼
XN

j¼1

�1ð Þ j ai

j

� �
yðk þ 1� jÞ;

FvjlðkÞ ¼
XN

i¼0

�1ð Þi bi

jv

� �
uvðk þ 1� iÞð Þl

F1� Fv�Fr

ð25Þ

If we consider the measured data uðtÞ and y�ðtÞ ¼
yðtÞ þ pðtÞ where pðtÞ is the disturbance signal,

Eqs. (3–43) can be rewritten as follows:

y�ðk þ 1Þ ¼ �
Xn

i¼1

a0iY
�
i ðkÞþ

þ
Xm1

j¼0

Xd

l¼0

b10jlðF1jlðkÞÞ þ :::þ
Xmr

j¼0

Xd

l¼0

br0jlðFrjlðkÞÞ þ eðk þ 1Þ

ð26Þ

while

Y�
i ðkÞ ¼

XN

j¼1

�1ð Þ j ai

j

� �
y�ðk þ 1� jÞ ð27Þ
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eðk þ 1Þ ¼ pðk þ 1Þ

þ
Xn

i¼1

a0
i

XN

j¼1

�1ð Þ j ai

j

� �
pðk þ 1� jÞ

ð28Þ

Equation (26) is linear with respect to coefficients

and can be expressed as follows:

yðk þ 1Þ ¼ hT/ðkÞ þ eðk þ 1Þ ð29Þ

which:

h ¼ a01; . . .; a0n; b1
0
00; . . .; b100d; :::; b10m10

; . . .; b10md; :::; br000; . . .;
h

br00d; :::; br0m0; . . .; br0md

�T

ð30Þ

/ðkÞ ¼ �Y�
1 ðkÞ; . . .;�Y�

n ðkÞ;F100ðkÞ; . . .;F10dðkÞ; . . .;F1m0ðkÞ; . . .
�

;

F1mdðkÞ; . . .;Fr00ðkÞ; . . .;Fr0dðkÞ; . . .;Frm0ðkÞ; . . .;FrmdðkÞ�T

ð31Þ

The estimation vector ĥk is obtained by minimizing

the following quadratic least squares criterion:

ĥk ¼ argmin
h

1

k

Xk

i¼1

yðiÞ � ŷði; hÞ½ �2 ð32Þ

Fig. 3 Online system

identification block diagram
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The solution to this problem can be obtained by the

least squares estimation:

ĥk ¼
Xk

i¼1

/ði � 1Þ/Tði � 1Þ
" #�1Xk

i¼1

/ði � 1ÞyðiÞ

ð33Þ

provided that there is the inverse

Pk

i¼1

/ði � 1Þ/Tði � 1Þ
� 	�1

.

In order to provide the online identification possi-

bility, the recursive algorithms are required. For this

purpose, a recursive version of Eq. (33) is proposed,

which can be written as follows:

ĥkþ1 ¼ ĥk þ Gk/ðkÞeðk þ 1Þ

Gkþ1 ¼ Gk �
Gk/ðkÞ/TðkÞGk

1þ /TðkÞGk/ðkÞ

eðk þ 1Þ ¼ yðk þ 1Þ � ĥT
k /ðkÞ

1þ /TðkÞGk/ðkÞ

8
>>>>><

>>>>>:

ð34Þ

where the initial value of the adaptation gain matrix Gk

is generally selected as:

G0 ¼
1

c
I; 0\c � 1 ð35Þ

For static systems with slow-varying parameters, a

forgetting factor k; 0\k\1 can be considered. There-

fore, the RLS algorithm is converted as:

ĥkþ1 ¼ ĥk þ Gk/ðkÞeðk þ 1Þ

Gkþ1 ¼
1

k
Gk �

Gk/ðkÞ/TðkÞGk

kþ /TðkÞGk/ðkÞ

� 	

eðk þ 1Þ ¼ yðk þ 1Þ � ĥT
k /ðkÞ

1þ /TðkÞGk/ðkÞ

8
>>>>>><

>>>>>>:

ð36Þ

Using this recursive algorithm, the coefficients

a0
i; bv0jl are determined; then, the values of ai; bj can be

obtained using Eq. (24). Finally, Eq. (23) is used to

obtain the estimated output values. The convergence

of RLS algorithm in the reference [51] has been

proven.

3.2 MISO Hammerstein model using RBFNN

As mentioned, in order to increase the accuracy of

system dynamics investigation, time-delay informa-

tion must be considered in practical processes or

systems identification. In this case, the system is

considered with time delays in the inputs. It is modeled

as follows:

yðtÞ þ
Xn

i¼1

aiD
ai yðtÞ ¼

Xm

j¼0

bjD
bjðw1ðt � c1Þ þ . . .þ wrðt � crÞÞ

wkðt � ckÞ ¼ f ðukðt � ckÞÞ

ð37Þ

where yðtÞ is system output, wkðtÞ; k ¼ 1; 2; . . .; r are

RBFNN outputs and the inputs to the linear dynamics

section. ck; k ¼ 1; 2; . . .; r are time delays and n;m are

the input and output delays for the linear subsystem.

Nonlinear static functions in this case are considered

as follows:

wkðt � ckÞ ¼ fk ukðt � ckÞð Þ

¼ x0k þ
XM

h¼1

xhk/hkðukðt � ckÞÞ ð38Þ

which u1; u2; . . .; ur define inputs. As shown in the

following equation, /hkð:Þ; h ¼ 1; . . .;M; k ¼ 1; . . .; r

are Gaussian functions related to kth input. Also,

xhkð:Þ; h ¼ 1; . . .;M; k ¼ 1; . . .; r are the connection

weights from hth hidden node to the output and related

to the kth input that must be determined. M is the

number of RBFs.

/hkðukðtÞÞ ¼ exp � ukðtÞ � chkk k2
.
d2hk

� �n o
ð39Þ

chk; dhk; h ¼ 1; . . .;M; k ¼ 1; . . .; r are the centers

and widths of the hth RBF hidden unit associated with

kth input. :k k defines the Euclidean norm.

Also, the linear subsystem is considered as follows:
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GðsÞ ¼ BðsÞ
AðsÞ ¼

bmsbm þ � � � þ b1s
b1 þ b0s

b0

1þ ansan þ � � � þ a1sa1
ð40Þ

which a1; . . .; an; b0; . . .; bm 2 R are coefficients

and a1; . . .; an; b0; . . .; bm 2 R are the fractional orders.

Considering Eqs. (38) to (40), the input–output

relationship is equal to:

yðtÞ ¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj

Xr

k¼1

XM

h¼0

xhk/hkðukðt � cÞÞð Þ
 !

¼

�
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj x01/01ðu1ðt � cÞÞ þ . . .ð

þxM1/M1ðu1ðt � cÞÞ þ . . .þ x0r/0rðurðt � cÞÞ
þ . . .þxMr/Mrðurðt � cÞÞÞ

ð41Þ

If the measured inputs and outputs are uðtÞ and

y�ðtÞ ¼ yðtÞ þ qðtÞ, respectively, which qðtÞ is a

random Gaussian noise with zero mean and r2

variance, Eq. (41) is rewritten as follows:

y�ðtÞ ¼ �
Xn

i¼1

aiD
ai y�ðtÞ þ

Xm

j¼0

bjD
bj

Xr

k¼1

XM

h¼0

xhk/hkðukðt � ckÞÞð Þ
 !

¼

¼ �
Xn

i¼1

aiD
ai y�ðtÞ þ

Xm

j¼0

bjD
bj x01/01ðu1ðt � c1ÞÞ þ . . .þð

þ xM1/M1ðu1ðt � c1ÞÞ þ . . .þ x0r/0rðurðt � crÞÞ þ . . .þxMr/Mrðurðt � crÞÞÞ þ qðtÞ

ð42Þ

Unknown parameters are divided into two subcat-

egories: The first subset includes time delays

ck; k ¼ 1; 2; . . .; r, fractional orders

a1; . . .; an; b0; . . .; bm, and centers and widths of RBF

units dhk; chk; h ¼ 0; . . .;M; k ¼ 1; . . .; r. And the sec-

ond category includes the coefficients of the transfer

function a1; . . .; an; b0; . . .; bm and the connection

weights xhk �ð Þ; h ¼ 1; . . .;M; k ¼ 1; . . .; r from the

jth hidden node to the output. In this paper, input/

output data are divided into two parts. The first part is

used to obtain both sets of unknown parameters using

MGA. Then, using these estimations, RLS algorithm

uses the I/O data second part to update and optimize

the second subcategory of unknown parameters.

The standard RLS algorithm needs to set initial

values for unknown parameters. In the standard

method, these initial values are calculated using the

batch least squares algorithm from multiple proto-

types. In this method, the regressors dimension of the

known parameters determines the number of samples

required to determine the unique solution. In this

paper, MGA is used for this task.

In order to use the output error estimation method,

the input–output relationship (41) must be written in

regression form:

yðtÞ ¼ zTðtÞhþ vðtÞ ð43Þ

where z is known parameters including input–output

data:

zðtÞ ¼ zT
a ðtÞ; zT

b0
ðtÞ; zT

b1
ðtÞ; . . .; zT

br
ðtÞ; 1

h iT

ð44Þ

zaðtÞ ¼ �Da1y�ðtÞ;�Da2y�ðtÞ; . . .;�Dan y�ðtÞ½ �T

ð45Þ

zbj
ðtÞ ¼ Dbj/1ðu1ðt � cÞÞ;Dbj/2ðu2ðt � cÞÞ;

�
. . .;

Dbj/rðurðt � cÞÞ
�

ð46Þ

That:

/kðukðt � cÞÞ ¼ ½/0kðukðt � cÞÞ; . . .;/Mkðukðt
� cÞÞ�; k

¼ 1; . . .; r ð47Þ

And h shows unknown parameters:

h ¼ hT
a ; h

T
b0
; hT

b1
; . . .; hT

br
; hx0

h iT

ð48Þ

Including:

ha ¼ a1; a2; . . .; an½ �T ð49Þ
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hbj
¼ hbj;1

; hbj;2
; . . .; hbj;M

� �T¼ bjx1; bjx2; . . .; bjxM

� �T

ð50Þ

hx0
¼ brx0½ � ð51Þ

Which in (50):

xh ¼ xh1;xh2; . . .;xhr½ �; h ¼ 1; . . .;M ð52Þ

Provided that
Pk

i¼1

zði � 1ÞzTði � 1Þ
� 	�1

has a defin-

able value, solving this problem using the LS estima-

tion is:

ĥk ¼
Xk

i¼1

zði � 1ÞzTði � 1Þ
" #�1Xk

i¼1

zði � 1ÞyðiÞ

ð53Þ

When the parameters matrix z is singular or poorly

conditioned, its inverse calculation will be very

difficult. To avoid the problem of inverse calculation

in online identification, the recursive version of

Eq. (53) is written as follows [51].

ĥðkÞ ¼ ĥðk � 1Þ þ LðkÞeðkÞ
eðkÞ ¼ yðkÞ � zTðkÞĥðk � 1Þ

PðkÞ ¼ Pðk � 1Þ � Pðk � 1ÞzðkÞzTðkÞPðk � 1Þ
1þ zTðkÞPðk � 1ÞzðkÞ

LðkÞ ¼ Pðk � 1ÞzðkÞ
1þ zTðkÞPðk � 1ÞzðkÞ

:

8
>>>>>>>><

>>>>>>>>:

ð54Þ

In general, the initial value of the adaptation gain

matrix P is selected as follows [51]:

P0 ¼
1

g
I; 0\g � 1 ð55Þ

Without losing the generality, we assume that

b̂rðkÞ ¼ 1:

ĥbr
ðkÞ ¼ x̂1ðkÞ; x̂2ðkÞ; :::; x̂MðkÞ½ �T

ĥx0
ðkÞ ¼ x̂0ðkÞ



ð56Þ

The unknown coefficients ai; i ¼ 1; :::; n are

obtained directly from ĥa. The bj; 0� j�m values

are calculated using linear least squares, assuming

b̂rðkÞ ¼ 1 as the following:

b̂jðkÞ ¼
XM

h¼1

ĥbr;h
ðkÞĥbj;h

ðkÞ
,
XM

h¼1

ĥ2br;h
ðkÞ ; j

¼ 0; 1; . . .;m � 1 ð57Þ

3.3 MISO Hammerstein model using MRBFNN

In this case, Eq. (41) is modified as:

yðtÞ ¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj

Xr

k¼1

XM

h¼0

xhk/kðukðt � ckÞÞð Þ
 !

¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj x01/1ðu1ðt � c1ÞÞ þ . . .ð

þxM1/1ðu1ðt � c1ÞÞ þ . . .þ x0r/rðurðt � crÞÞ þ . . .þxMr/rðurðt � crÞÞÞ

¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj ðx01 þ . . .þ xM1Þ/1ðu1ðt � c1ÞÞ þ . . .ð

þ ðx0r þ :::þ xMrÞ/rðurðt � crÞÞÞ

¼ �
Xn

i¼1

aiD
ai yðtÞ þ

Xm

j¼0

bjD
bj X1/1ðu1ðt � c1ÞÞ þ . . .ð þ Xr/rðurðt � crÞÞÞ

ð58Þ

If the measured inputs and outputs are uðtÞ and

y�ðtÞ ¼ yðtÞ þ qðtÞ, respectively, which qðtÞ is a

random Gaussian noise with zero mean and r2

variance, Eq. (58) is rewritten as follows:

y�ðtÞ¼�
Xn

i¼1

aiD
ai y�ðtÞþ

Xm

j¼0

bjD
bj

Xr

k¼1

XM

h¼0

xhk/hkðukðt� ckÞÞð Þ
 !

¼�
Xn

i¼1

aiD
ai y�ðtÞþ

Xm

j¼0

bjD
bj x01/01ðu1ðt� c1ÞÞþ . . .ð

þxM1/M1ðu1ðt�c1ÞÞþ . . .þx0r/0rðurðt�crÞÞþ . . .þxMr/Mrðurðt�crÞÞÞþqðtÞ

ð59Þ

And the relation (46) is modified as:

zbj
ðtÞ ¼ Dbj/1ðu1ðt � cÞÞ;Dbj/2ðu2ðt � cÞÞ;

�

. . .;Dbj/rðurðt � cÞÞ
�T ð60Þ

In this case, time delays ck; k ¼ 1; 2; . . .; r, frac-

tional orders a1; . . .; an; b0; . . .; bm, and centers and

widths of RBF units dhk; chk; h ¼ 0; . . .;M; k ¼
1; . . .; r are identified using MGA. And an initial

estimation for the coefficients of the transfer function

a1; . . .; an; b0; . . .; bm and the connection weights from
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the jth hidden node to the output xhk �ð Þ; h ¼
1; . . .;M; k ¼ 1; . . .; r are obtained using this evolu-

tionary algorithm. Then, these estimations are updated

and optimized using RLS algorithm.

In comparison with classic RBFNN which the

number of unknown parameters is equal to 3M þ 1

(i.e., chk; dhk;xhk; ck and h ¼ 1; . . .;M where M is the

data samples number), their number in modified

RBFNN is equal to 4 (i.e. dk; ck;Xk; ck).

4 Simulation results

The main reason for using the recursive method is the

ability to generalize to online identification. In order to

demonstrate the ability of online identification, two

examples have been considered:

1. Hammerstein model with piecewise nonlinear

characteristic such as dead-zone characteristic

[52]

2. Continuous-time linear parameter-varying (CT

LPV) nonlinear benchmark system [53]

Both systems have been identified online using all

three presented structures. One hundred samples were

used to estimate the prototype. Then, by adding any

input/output data in online mode, the model is updated

using RLS. In the online mode, the MGA is executed

only once at the beginning of the detection process and

then only the LS algorithm is executed recursively.

Therefore, all that is required in each instance is the

recursive formula of the LS algorithm.

In addition, it is considered a case in which with

adding each input / output data, MGA runs in a small

number of generations, i.e., 15 generations. In this

case, the MGA updates all the unknown parameters in

each sampling starting from the best chromosome of

the last run in the previous sampling (instead of

starting from random chromosomes). Then, RLS goes

one step further and updates the connection coeffi-

cients and weights.

4.1 Hammerstein model with piecewise nonlinear

characteristic

In this Hammerstein model, the recursive relation

forms the linear dynamic part:

yðkÞ ¼ 1:6961yðk � 1Þ � 0:8651yðk � 2Þ
þ 0:5895hðk � 1Þ þ 0:4701hðk � 2Þ ð61Þ

And the discrete nonlinear part is described by the

following equation:

NðuÞ ¼
u þ 0:28 u� � 0:28
0 �0:28� u� 0:28
u � 0:28 u� 0:28

8
<

: ð62Þ

Actual output and estimated output in the last

sample (using 200 sampled data) for the Hammerstein

model with Bezier–Bernstein polynomials in Fig. 4,

for the Hammerstein model with RBFNN in Fig. 5 and

withMRBFNN, is shown in Fig. 6. The corresponding

estimation error using the three nonlinear functions

Bezier–Bernstein, RBFNN and MRBFNN is pre-

sented in Figs. 7, 8 and 9, respectively.

Fig. 4 The actual (blue line) and estimated (red dashed line) outputs using Bezier–Bernstein polynomial—Example 1. (Color

figure online)
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Fig. 5 The actual (blue line) and estimated (red dashed line) outputs using RBFNN—Example 1. (Color figure online)

Fig. 6 The actual (blue line) and estimated (red dashed line) outputs using MRBFNN—Example 1. (Color figure online)

Fig. 7 The estimation error using BBP—Example 1
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In order to compare the estimation accuracy of

three different structures, the changes of estimation

error during the identification process (in different

samples) in these three structures are shown in

Figs. 10, 11 and 12, and the values of these errors

are given in Table 1.

Fig. 8 The estimation error using RBFNN—Example 1

Fig. 9 The estimation error using MRBFNN—Example 1
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Fig. 10 The MSE estimation error with high noise using three different structures—Example 1
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Fig. 11 The RMS estimation error with high noise using three different structures—Example 1
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The comparison of the estimation errors in Table 1

and corresponding Figs. 10, 11 to 12 shows the

superiority of identification accuracy using the

MRBFNN in Hammerstein model over the two other

structures.

Also, in order to compare the parameters conver-

gence speed in three different structures, the variations

of the identified parameters for the Hammerstein

Fig. 12 The d estimation error with high noise using three different structures—Example 1

Table 1 The estimation error comparison between three pre-

sented structures—Example 1

Nonlinear static part MSE RMS d

BBP 0.0038477 0.06203 0.21222

RBFNN 0.0088902 0.094288 0.29976

MRBFNN 0.0014219 0.037708 0.11377
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model with Bezier–Bernstein polynomials in Figs. 13

and 14, for the Hammerstein model with RBFNN in

Figs. 15, 16 and 17 and for the Hammerstein model

with MRBFNN are presented in Figs. 18, 19 and 20.

The comparison of the figures shows that the

identification process of the Hammerstein model with

MRBFNN has the highest convergence speed due to

the smaller number of unknown parameters identified

between the three proposed structures.

Fig. 13 The estimation of transfer function coefficients and fractional orders using BBP—Example 1

Fig. 14 The estimation of polynomial weights using BBP—Example 1
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Fig. 15 The estimation of transfer function coefficients and fractional orders using RBFNN—Example 1

Fig. 16 The estimation of NN weights using RBFNN—Example 1
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Fig. 17 The estimation of NN centers and widths using RBFNN—Example 1

Fig. 18 The estimation of transfer function coefficients and fractional orders using MRBFNN—Example 1
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4.2 Continuous-time linear parameter-varying

(CT LPV) nonlinear benchmark system

The second system is a benchmark problem proposed

by Rao and Garnier in [54]. This problem is inspired

by the ‘‘moving pole’’ parameter-varying system, a

fourth-order system with non-minimum phase freez-

ing dynamics and complex poles pair dependent to p

parameter. This system is defined as follows:

Fig. 19 The estimation of NN weights using MRBFNN—Example 1

Fig. 20 The estimation of NN centers and widths using MRBFNN—Example 1
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A0ðd; pÞv0ðtÞ ¼ B0ðd; pÞuðtÞ
yðtÞ ¼ v0ðtÞ þ v0ðtÞ

(
ð63Þ

where the d operator is a time derivative, p is a time-

dependent programming variable, A0 and B0 are

polynomials of d with coefficients a0
i and b0

i . These

coefficients are functions of p; v0 is a process with

semi-static noise with limited and unrelated spectral

density as follows:

v0ðtÞ ¼ H0ðqÞe0ðtÞ ¼
C0 q�1ð Þ
D0 q�1ð Þ e0ðtÞ ð64Þ

The e0ðtÞ is a white noise process with a mean of

zero, q�1 is the backward time shift operator, C0 and

D0 are polynomials with constant coefficients. The

values of the parameters used in this paper are as

follows [53]:

A0ðd; pÞ ¼ d4 þ a01ðpÞd3 þ a02ðpÞd2 þ a03ðpÞd þ a0
4ðpÞ

B0ðd; pÞ ¼ b00ðpÞd þ b0
1ðpÞ

H0ðqÞ ¼
1

1� q�1 þ 0:2q�2

8
>>><

>>>:
ð65Þ

For coefficients:

a0
1ðpÞ ¼ 5þ 0:25p a02ðpÞ ¼ 408þ 3p þ 0:25p2

a0
3ðpÞ ¼ 416þ 108p þ p2 a04ðpÞ ¼ 1600þ 800p þ 100p2

b0
0ðpÞ ¼ �6400� 3200p � 400p2 b01ðpÞ ¼ 1600þ 800p þ 100p2

ð66Þ

The input signal is a uniform distribution sequence

in the interval ½�1; 1�, p is selected as pðtÞ ¼ sinðptÞ,
and the sampling time is 1ms.

Actual output and estimated output in the last

sample (using 500 sampled data) for the Hammerstein

model with Buzzer–Bernstein polynomials are shown

in Fig. 21, for the Hammerstein model with RBFNN in

Fig. 22 and for the MRBFNN in Fig. 23. The corre-

sponding estimation error using the three nonlinear

functions Bezier–Bernstein, RBFNN andMRBFNN is

presented in Figs. 24, 25 and 26, respectively.

Fig. 21 The actual (blue line) and estimated (red dashed line) outputs using BBP—example 2. (Color figure online)

Fig. 22 The actual (blue line) and estimated (red dashed line) outputs using RBFNN—example 2. (Color figure online)
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Fig. 23 The actual (blue line) and estimated (red dashed line) outputs using MRBFNN—example 2. (Color figure online)

Fig. 24 The estimation error using BBP—Example 2

Fig. 25 The estimation error using RBFNN—Example 2
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In order to compare the accuracy of estimation with

three different structures, the variations of estimation

error during the identification process (in different

samples) in these three structures are shown in

Figs. 27, 28 and 29 and the values of these errors are

given in Table 2.

Fig. 26 The estimation error using MRBFNN—Example 2

Fig. 27 The MSE estimation error with high noise using three different structures—Example 2
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Fig. 28 The RMS estimation error with high noise using three different structures—Example 2
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The comparison of the results of estimation errors

in Table 2 and the corresponding Figs. 26, 27 and

28 shows the superiority of identification accuracy

in the Hammerstein model using the MRBFNN

compared to the Hammerstein model with the

classic RBFNN.

Also, in order to compare the convergence velocity

of the parameters in three different structures, the

Fig. 29 The d estimation error with high noise using three different structures—Example 2

Table 2 The estimation error comparison between three pre-

sented structures—Example 2

Nonlinear static part MSE RMS d

BBP 0.00057078 0.023891 0.14321

RBFNN 0.00071952 0.026824 0.15532

MRBFNN 0.00067751 0.026029 0.15569
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variations of the identified parameters for Hammer-

stein model with Bezier–Bernstein polynomials are

presented in Figs. 30 and 31, for Hammerstein model

with RBFNN in Figs. 32, 33 and 34 and for the

Hammerstein model with MRBFNN in Figs. 35, 36

and 37. The comparison of the figures shows that the

process of identifying the Hammerstein model with

MRBFNN has the highest convergence speed between

the three proposed structures, due to the smaller

number of unknown parameters identified.

Fig. 30 The estimation of transfer function coefficients and fractional orders using BBP—Example 2

Fig. 31 The estimation of polynomial weights using BBP—Example 2

Fig. 32 The estimation of transfer function coefficients and fractional orders using RBFNN—Example 2
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Fig. 33 The estimation of NN weights using RBFNN—Example 2

Fig. 34 The estimation of NN centers and widths using RBFNN—Example 2

Fig. 35 The estimation of transfer function coefficients and fractional orders using MRBFNN—Example 2
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5 Conclusion

In this paper, a numerical example and a benchmark

problem were introduced to evaluate the accuracy of

the proposed online identification method. Then, each

of the three proposed structures was used to identify

these systems and the results were presented. These

results confirm the ability of the proposed method to

accurately identify the system and eliminate noise. A

comparison is made between the online identification

of the three proposed structures in terms of conver-

gence speed and estimation accuracy, which shows the

relative superiority of accuracy using the modified

one. This comparison shows that using the Hammer-

stein model with the MRBFNN, the accuracy of

estimation and the speed of convergence of the

parameters in the online mode increase compared to

the use of the classical NN. The estimation accuracy of

the modified NN in the first example is 63.05% higher

than the Bezier–Bernstein polynomial and 18.7%

lower in the second example. Considering the speed of

convergence of the modified NN compared to the use

of Bezier–Bernstein polynomials, the use of the

Hammerstein structure with the modified NN is

recommended.
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