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Abstract When taking a memristor as a coupler to

connect two memristive systems, the intricate initial

condition-dependent coexisting and synchronous behav-

iors could be achieved, which have not been comprehen-

sively concerned in literature. This work presents a

memristor-coupled homogeneous network consisting of

two identical non-autonomous memristive Fitzhugh–

Nagumo models and investigates its coexisting and

synchronous behaviors. Kinetic analysis shows that the

network can exhibit hidden extreme multistability similar

to that of the individual non-autonomous memristive

Fitzhugh–Nagumo model. Coexisting hidden hyper-

chaotic, chaotic, periodic, and quasi-periodic attractors

are numerically revealed, and their synchronicities are

controlled by the initial condition and coupling strength of

the coupling memristor. The synchronous effects of the

coupling strength and initial conditions of the network are

numerically revealed using normalized mean synchro-

nization errors. Complete and parallel-offset synchronous

behaviors are realized with a large positive coupling

strength and a negative initial condition of the coupling

memristor. In addition to these two synchronous behav-

iors, phase synchronization is easily achieved due to the

existence of external stimuli. These synchronous states are

flexibly controlled by the initial conditions. Furthermore,

an analog circuit is designed for the memristor-coupled

homogenous network and circuit simulations are per-

formed to verify the numerical results.

Keywords Homogenous network � Memristor

coupler � Synchronization � Fitzhugh–Nagumo model �
Hidden extreme multistability

1 Introduction

Memristor, the fourth basic circuit element described by

the relationship between magnetic flux and electric

charge, exhibits special nonlinear memristance or mem-

ductance nonlinearity controlled by the inner electric

charge or magnetic flux variable [1]. Owing to this inner

state variable, the memristor has been used as a critical

building block for the construction of novel chaotic

oscillating circuits [2, 3]. Various memristive circuits and

systems with complex dynamical behaviors, such as self-

excited or hidden extreme multistability [4, 5], multi-

scroll or multi-wing chaotic attractors [6, 7], hyperchaotic

attractors [8, 9], and conservative chaotic motions

[10, 11], have been proposed for theoretical investigations

and physical applications. The natural plasticity of

memristor gives it unique advantages in simulating

biological neuron synapses [12, 13] and constructing

neuromorphic circuits or artificial neural networks

[14, 15].
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Initial condition-dependent multistability with the

coexistence of multiple disconnected attractors is

relatively easy to achieve in memristor-based circuits

and systems. These coexisting multiple-stable states

can provide great flexibility for chaos-based applica-

tions [16, 17]. Hence, exploring the synchronous

control strategies and detailed synchronicities of these

coexisting behaviors is of great importance. Aiming at

different application requirements, researchers have

proposed a variety of synchronization control strate-

gies, including sliding mode control, impulse control,

adaptive control, and finite time control, and achieved

important research achievements [18–21]. Memristor

shows dynamic constraint relationships among the port

voltage, port current, and inner electric charge or

magnetic flux variable. It can provide a new coupling

synchronization scheme for nonlinear dynamical cir-

cuits and systems [22–24]. When a memristor is

connected between two dynamical circuits or systems

as a nonlinear coupler, the synchronization error

controls its inner state variable in real time to adjust

the signal exchanged between the coupled circuits or

systems and promote synchronization. Some examples

of such memristor-coupled networks include memris-

tor-coupled chaotic circuits or systems [22, 23], locally

active memristor-coupled neural networks [25], and

memristor synapse-coupled neural networks with

electromagnetic induction [26, 27].

Memristive couplers have multiple effects on the

formed networks. In addition to the coupling strengths,

the initial conditions of their inner state variables

greatly affect the synchronization performances of the

coupled networks [28, 29]. For memristor-based

subsystems, the dependence of synchronous behaviors

on the initial conditions of the coupled network

becomes complicated. The coupling strength and

initial condition of the coupling memristor and the

initial conditions of the coupled subsystems exert

remarkable influence on the synchronous behaviors of

the memristor-coupled network. Given that the attrac-

tors of memristive systems can be offset-boosted in the

phase space by the initial conditions [30], the special

parallel-offset synchronization behaviors could be

obtained in the memristor-coupled memristive sys-

tems [31]. However, these phenomena have not been

comprehensively investigated. Therefore, this work

proposes a memristor-coupled homogeneous network

consisting of two identical non-autonomous memris-

tive Fitzhugh–Nagumo models and studies its initial

condition-sensitive coexisting and synchronous

behaviors. The proposed network exhibits hidden

extreme multistability similar to that of the individual

Fitzhugh–Nagumo model. For these hidden coexisting

behaviors, the complete, parallel-offset, and phase

synchronization behaviors related to the coupling

strength and initial conditions of the memristor-

coupled network are numerically revealed and exper-

imentally verified.

The remainder of this paper is arranged as follows.

Section 2 shows the mathematical model of the

proposed memristor-coupled homogeneous network

and studies its equilibrium state and stability. Sec-

tion 3 describes the exploration of hidden extreme

multistability. Section 4 presents the investigation of

coexisting synchronous behaviors. Section 5 performs

PSIM (power simulation) circuit simulations to con-

firm the numerical simulations. Finally, Sect. 6 con-

cludes the whole paper.

2 Mathematical models and equilibrium points

The 3D non-autonomous memristive Fitzhugh–

Nagumo circuit proposed in [32] is selected as the

subsystem of the coupled network. Its dimensionless

mathematical model is described as

_x ¼ yþ ða� b tanhuÞxþ H cosðFtÞ;
_y ¼ �cx� cy;

_u ¼ �dx:

8
><

>:
ð1Þ

An ideal memristor with smooth hyperbolic tangent

memductance nonlinearity W(u) = a – btanhu is

adopted to implement the specific cubic nonlinearity

of the Fitzhugh–Nagumo circuit. When Hcos(Ft) =

0, system (1) has no equilibrium point. When

Hcos(Ft) = 0, the system has a line equilibrium set.

With the evolution of time, the equilibrium state of

system (1) switches between no equilibrium points and

the line equilibrium set. For the selected system

parameters a = 0.5, b = 0.5, c = 1, d = 1, H = 1.8,

and F = 1, this system is proven to generate hidden

extreme multistability by employing the incremental

flux-charge analysis method [4].

When two identical systems as described in (1) are

bidirectionally coupled by a memristor with the same

smooth hyperbolic tangent memductance nonlinearity,
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a 7D homogenous network can be formulated as

follows

_x1 ¼ y1 þ ð0:5 � 0:5 tanhu1Þx1 þ 1:8 cosðtÞ

� kð1 � tanhu3Þðx1 � x2Þ;

_y1 ¼ �x1 � y1;

_u1 ¼ �x1;

_x2 ¼ y2 þ ð0:5 � 0:5 tanhu2Þx2 þ 1:8 cosðtÞ

þ kð1 � tanhu3Þðx1 � x2Þ;

_y2 ¼ �x2 � y2;

_u2 ¼ �x2;

_u3 ¼ x1 � x2:

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð2Þ

The system control parameters of the two subsys-

tems are kept unchanged, and the kinetic and syn-

chronous effects of coupling strength k, initial

condition u30 of the coupling memristor, and six

initial conditions x10, y10, u10, x20, y20, and u20 of the

two subsystems are investigated.

Similar to the individual subsystem (1), the mem-

ristor-coupled network (2) possesses no equilibrium

points for 1.8cos(t) = 0 and has a space equilibrium

set S = (0, 0, c1, 0, 0, c2, c3) for 1.8cos(t) = 0. The

stability of this space equilibrium set is hard to

determine due to the existence of zero eigenvalues.

As a solution, network (2) is reconstituted in the

integral domain via incremental integral transforma-

tion [33]. With this method, the parameterized con-

version of initial conditions can be achieved and the

equilibrium points of the original dynamical system

can be reformed to facilitate the theoretical analyses. A

4D dimensionality reduction model is then formulated

as follows

_X1 ¼ Y1 þ 0:5X1 þ 0:5 ln coshð�X1 þ u10Þ

� 0:5 ln coshu10 þ 1:8 sinðtÞ

� kðX1 � X2Þ þ k ln coshðX1 � X2 þ u30Þ

� k ln coshu30 þ x10;

_Y1 ¼ �X1 � Y1 þ y10;

_X2 ¼ Y2 þ 0:5X2 þ 0:5 ln coshð�X2 þ u20Þ

� 0:5 ln coshu20 þ 1:8 sinðtÞ

þ kðX1 � X2Þ � k ln coshðX1 � X2 þ u30Þ

þ k ln coshu30 þ x20;

_Y2 ¼ �X2 � Y2 þ y20:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

The state variables X1, Y1, X2, and Y2 are the

incremental integrals of x1, y1, x2, and y2 in the time

interval of [0, s]. The constants x10, y10, u10, x20, y20,

u20, and u30 indicate the seven initial conditions of

network (2). Moreover, the inner state variables of the

three memristors, i.e., u1, u2, and u3, are expressed as

functions of the newly introduced state variables X1,

X2, and their initial conditions u10, u20, and u30.

Therefore, the reconstituted system (3) is reduced in

dimension.

In (3), the equilibrium points of the memristor-

coupled network (2) are formulated as time-varying

determined equilibrium points P = (n1, y10 - n1, n2,

y20 - n2). The values of n1 and n2 are solutions of the

following two equations

� n1 þ ln coshð�n1 þ u10Þ þ 3:6 sinðtÞ � 2kðn1 � n2Þ

þ 2k ln coshðn1 � n2 þ u30Þ � 2k ln coshu30 þ 2ðx10 þ y10Þ

� ln coshu10 ¼ 0;

� n2 þ ln coshð�n2 þ u20Þ þ 3:6 sinðtÞ þ 2kðn1 � n2Þ

� 2k ln coshðn1 � n2 þ u30Þþ2k ln coshu30 þ 2ðx20 þ y20Þ

� ln coshu20 ¼ 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð4Þ

Denoting

f1 ¼ �n1 þ ln coshð�n1 þ u10Þ � 2kðn1 � n2Þ
þ 2k ln coshðn1 � n2 þ u30Þ � 2k ln coshu30

þ 2ðx10 þ y10Þ � ln coshu10

ð5aÞ

f2 ¼ �n2 þ ln coshð�n2 þ u20Þ þ 2kðn1 � n2Þ
� 2k ln coshðn1 � n2 þ u30Þþ2k ln coshu30

þ 2ðx20 þ y20Þ � ln coshu20;

ð5bÞ

and using the graphic analytic method, n1 and n2 are

solved by inspecting the intersection points of two

function curves of f1 ? 3.6sin(t) = 0 and

f2 ? 3.6sin(t) = 0. Take k = ± 1 as two examples.

The curves of these two functions are depicted at

sin(t) = 0 and ± 1 as shown in Fig. 1. During simu-

lations, the seven initial condition constants are

specified as x10 = 0.01 and y10 = u10 = x20 =

y20 = u20 = u30 = 0. Note that f1 ? 3.6sin(t) = 0 has

no solutions when k = 1 and 3.6sin(t) ? 3.6, and

f2 ? 3.6sin(t) = 0 has no solutions when k = - 1 and

3.6sin(t) ? 3.6. For k[ 0, the function curves of
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f1 ? 3.6sin(t) = 0 and f2 ? 3.6sin(t) = 0 are mono-

tonically increased and could have one or no inter-

section point, as shown in Fig. 1a. For k\ 0, the two

function curves are non-monotonically increased and

may have one, two, or no intersection points as

depicted in Fig. 1b.

When denoting

h1 ¼ 0:5 � 0:5 tanhð�n1 þ u10Þ;
h2 ¼ 0:5 � 0:5 tanhð�n2 þ u20Þ;
h3 ¼ k � k tanhðn1 � n2 þ u30Þ;

ð6Þ

the characteristic polynomial at equilibrium state P is

deduced as

k4 þ a3k
3 þ a2k

2 þ a1kþ a0 ¼ 0; ð7Þ

with

a3 ¼ �h1 � h2 þ 2h3 þ 2;

a2 ¼ h1h2 � h1h3 � h2h3 � 2h1 � 2h2 þ 4h3 þ 3;

a1 ¼ 2h1h2 � 2h1h3 � 2h2h3 � 2h1 � 2h2 þ 4h3 þ 2;

a0 ¼ h1h2 � h1h3 � h2h3 � h1 � h2 þ 2h3 þ 1:

ð8Þ

If the following conditions

a1ða2a3 � a1Þ � a0a
2
3 [ 0

ai [ 0 ði ¼ 0; 1; 2; 3Þ

(

ð9Þ

are all satisfied, the equilibrium points P should be

stable and the generated dynamics is hidden. Given

that the function tanh(•) is bounded within (- 1, 1),

the three functions h1, h2, and h3 in (6) are bounded

within (0, 1), (0, 1), and (0, 2 k), respectively, for the

positive coupling strength k. The Routh–Hurwitz

criteria described in (9) are numerically evaluated

within these bounded regions. The results demonstrate

that all the conditions given in (9) are satisfied,

indicating that the memristor-coupled network (2)

maintains the hidden property of the individual system

when the positive coupling strength k is assigned. For

clear illustrations, the characteristics of equilibrium

points for k = - 1, 0.5, and 1 are listed in Table 1,

where USF and SNF represent unstable saddle focus

and stable node focus, respectively. They verify the

aforementioned theoretical deductions. If the negative

coupling strength k is selected, self-excited dynamical

behaviors could be obtained due to the existence of

unstable equilibrium points. However, numerical

simulations reveal that the memristor-coupled net-

work easily tends to be unbounded when the negative

coupling strength k is chosen.

3 Hidden extreme multistability of the memristor-

coupled homogenous network

This section discusses the hidden extreme multista-

bility of the memristor-coupled homogenous network.

The differential equations of network (2) are solved

using the MATLAB ODE45 algorithm with a time

step of 0.01, and the Lyapunov exponents (LEs) are

calculated by the ODE45-based Wolf’s Jacobian

matrix method.

3.1 Coexisting behaviors induced by the coupling

memristor

The coexisting behaviors induced by the coupling

memristor are examined by taking coupling strength

k and initial condition u30 as two varying parameters.

The initial conditions of the two subsystems are fixed

as (x10, y10, u10, x20, y20, u20) = (0.01, 0, 0, 0, 0, 0).

The varying parameters k and u30 are adjusted in the

regions of [- 0.05, 0.2] and [- 1, 6], respectively.

The 2D bifurcation diagram of network (2) is

plotted in Fig. 2a by checking the periodicities of state

Fig. 1 Graphical

representations for the

intersection points of two

function curves

f1 ? 3.6sin(t) = 0 and

f2 ? 3.6sin(t) = 0, a k = 1;

b k = - 1
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variable u1. The chaotic (CH), periodic, and

unbounded (UB) behaviors are indicated by different

colors. The labels P2, P3, P4, P6, and P8 represent

periodic behaviors with different periodicities. The

label MP represents the multi-period behaviors, whose

periodicities are between 9 and 15. If the periodicity

goes beyond 15, the corresponding dynamical behav-

iors are identified as chaotic ones and labeled as CH in

Fig. 2a. Meanwhile, the dynamical regions in the k-

u30 plane are further distinguished by the signs of LEs

and illustrated in Fig. 2b for intuitive comparisons. In

Fig. 2b, the periodic (PE) region covers the P2 to MP

regions of Fig. 2a. The hyperchaotic (HCH) behav-

iors, which have two positive, three zero, and two

negative LEs, are distinguished from the chaotic ones.

The dynamical patterns in Fig. 2a, b match well with

each other. In the 2D bifurcation diagram of Fig. 2a,

the hyperchaotic and chaotic behaviors are not distin-

guished from each other and the periodic phenomena

that only occur in extremely narrow parameter regions

are not displayed. The 2D bifurcation plots given in

later sections follow the same principle.

As shown in Fig. 2, the homogeneous network

easily goes infinite when the negative k is assigned. If

Table 1 Characteristics of reformed equilibrium points for different values of k

k 3.6sin(t) Coordinates Eigenvalues Stabilities

- 1 - 3.6 (- 2.1395, 2.1395, - 2.1297, 2.1297) k1 = 1.6570, k2,3 = - 0.4931 ± j0.8620, k4 = - 0.6236 USF

(- 1.4954,1.4954, - 2.7615, 2.7615) k1,2 = - 0.3390 ± j0.7504, k3,4 = - 0.4879 ± j0.8589 SNF

- 1.8 (- 1.2026, 1.2026, - 1.1935, 1.1935) k1 = 1.7362, k2,3 = - 0.4583 ± j0.8405, k4 = - 0.6345 USF

(- 0.4149, 0.4149, - 1.8756, 1.8756) k1,2 = - 0.2804 ± j0.6944, k3,4 = - 0.4541 ± j0.8378 SNF

0 (0.0067, - 0.0067, 0.0134, - 0.0134) k1 = 2.2066, k2,3 = - 0.2475 ± j0.6586, k4 = - 0.6881 USF

1.8 No equilibrium point - -

3.6 No equilibrium point - -

0.5 - 3.6 (- 2.1321, 2.1321, - 2.1372, 2.1372) k1,2 = - 0.4931 ± j0.8620, k3,4 = - 0.9906 ± j1.0000 SNF

- 1.8 (- 1.1954, 1.1954, - 1.2006, 1.2006) k1,2 = - 0.4583 ± j0.8405, k3,4 = - 0.9557 ± j0.9990 SNF

0 (0.0134, - 0.0134, 0.0067, - 0.0067) k1,2 = - 0.2475 ± j0.6586, k3,4 = - 0.7441 ± j0.9667 SNF

1.8 No equilibrium point - -

3.6 No equilibrium point - -

1 - 3.6 (- 2.1329, 2.1329, - 2.1363, 2.1363) k1,2 = - 0.4931 ± j0.8620, k3,4 = - 1.4897 ± j0.8719 SNF

- 1.8 (- 1.1963, 1.1963, - 1.1997, 1.1997) k1,2 = - 0.4583 ± j0.8405, k3,4 = - 1.4549 ± j0.8906 SNF

0 (0.0121, - 0.0121, 0.0080, - 0.0080) k1,2 = - 1.2434 ± j0.9699, k3,4 = - 0.2475 ± j0.6586 SNF

1.8 No equilibrium point - -

3.6 No equilibrium point - -

Fig. 2 Bifurcation plots in the k-u30 plane with fixed subsystems’ initial conditions (x10, y10, u10, x20, y20, u20) = (0.01, 0, 0, 0, 0, 0),

a 2D bifurcation diagram, b distributions of dynamical behaviors distinguished by the sign of LEs
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the two subsystems are weakly coupled, hyperchaotic

behaviors tend to occur. The chaotic or periodic

behaviors emerge as the positive coupling strength

k increases gradually. k = 0.05 and 0.2 are taken as the

representative cases to explore the detailed bifurcation

behaviors induced by the coupling memristor coeffi-

cients. The 1D bifurcation diagrams (top) and the

corresponding first four LE spectra (bottom) are

presented in Fig. 3. The hyperchaotic, chaotic, and

periodic behaviors and the period-doubling bifurca-

tion, tangential bifurcation, and crisis scenarios, are

illustrated. They further verify the dynamical evolu-

tion characteristics revealed in Fig. 2.

As u30 approaches 0 or becomes negative, the

bifurcation plots of u1 and u2 tend to overlap.

Meanwhile, the bifurcation plot of u3 tends to be

constant. According to the seventh equation of (2), the

time derivation of u3 equals the difference between x1

and x2, indicating that u3 tends to be constant when the

two subsystems reach complete synchronization, i.e.,

x1 - x2 = 0. These phenomena indicate that the two

subsystems can achieve complete synchronization for

small or negative u30 when a positive k is selected.

This synchronous region becomes enlarged with the

increase of the coupling strength k.

Take k = 0.2 as an example. Four different sets of

phase diagrams and time-domain waveforms are

plotted in Fig. 4 for u30 = - 1, 2.5, 3.5, and 4.8.

Figure 4a shows the chaotic motions at u30 = - 1

with one positive, three zero, and three negative LEs.

In this case, the phase trajectories and time-domain

waveforms of the two subsystems fit together, indi-

cating the generation of completely synchronized

chaotic motions. Figure 4b exhibits asynchronous

periodic behavior at u30 = 2.5 with three zero and

four negative LEs; Fig. 4c displays asynchronous

hyperchaotic behavior at u30 = 3.5 with two positive,

three zero, and two negative LEs; and Fig. 4d shows

asynchronous quasi-periodic behavior at u30 = 4.8

with four zero and three negative LEs. For u30 = 3.5,

the memristor-coupled network reaches complete

synchronization in partial periods, as illustrated by

the time-domain waveforms in Fig. 4c.

3.2 Coexisting behaviors induced

by the subsystems’ initial conditions

The coexisting behaviors induced by the initial

conditions of the two subsystems are examined by

setting the coupling memristor-related coefficients as

k = 0.2 and u30 = 0. The subsystems’ initial condi-

tions are set as (x10, 0, u10, 0, 0, 0), and the examined

initial conditions x10 and u10 are varied in the range of

[- 1, 1].

The 2D bifurcation plot in the x10-u10 plane is

depicted in Fig. 5a. The chaotic (red) and periodic

(magenta, yellow, blue, light blue, and green) behav-

iors with different topological structures or locations

coexist in the memristor-based homogenous network.

In addition, Fig. 5b displays the 2D bifurcation plot in

the u10-u20 plane for the subsystems’ initial condi-

tions (0.01, 0, u10, 0, 0, u20). It also reveals coexisting

chaotic and periodic behaviors with different topolog-

ical structures or locations. Similar to Fig. 2a, the

coexisting phenomena that occur only in extremely

narrow initial condition regions are ignored in Fig. 5.

Corresponding to Fig. 5a, the representative phase

portraits for coexisting attractors with varied x10 and

fixed u10 = 0 are plotted in Fig. 6a. Meanwhile, the

representative phase portraits for coexisting attractors

of Fig. 5b are depicted in Fig. 6b with varied u10 and

fixed u20 = 0. With the variation of initial condition

Fig. 3 1D bifurcation plots

induced by u30 with fixed

subsystems’ initial

conditions (x10, y10, u10, x20,

y20, u20) = (0.01, 0, 0, 0, 0,

0), a k = 0.05, b k = 0.2
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x10 or u10, the dynamical behaviors of two subsystems

are changed. Moreover, the attractor position of the

first subsystem shifts along the u1-coordinate, as

reflected by the relative positions between the red

(subsystem 1) and blue (subsystem 2) trajectories.

This phenomenon may be related to the space

equilibrium set S = (0, 0, c1, 0, 0, c2, c3) that exists

at Hcos(Ft) = 0. For dynamical systems with the line

or space equilibrium sets, the generated attractors are

located around one nearby equilibrium point around

the assigned initial conditions. Correspondingly, the

generated attractors move along the axis or plane

where the equilibrium points are located. However, in

network (2), the equilibrium state switches between a

space equilibrium set and no equilibrium points

because the stimulus Hcos(Ft) is not always equal to

zero. Thus, the cause of attractors’ displacement

cannot be explicitly identified and still needs further

exploration.

The dynamics of the memristor-coupled homoge-

nous network is flexibly controlled by the initial

conditions of the coupling memristor and two subsys-

tems. In particular, the complete period-doubling

bifurcation routes are found with the variations of x10,

u10, u20, and u30, leading to the generation of hidden

extreme multistability [34] with infinite hidden coex-

isting attractors. The detailed synchronous behaviors of

these coexisting attractors are discussed in Sect. 4.

Fig. 4 Phase portraits in the x1-u1 and x2-u2 planes for the representative dynamical behaviors with fixed subsystems’ initial conditions

(x10, y10, u10, x20, y20, u20) = (0.01, 0, 0, 0, 0, 0) and coupling strength k = 0.2, a u30 = - 1, b u30 = 2.5, c u30 = 3.5, d u30 = 4.8

Fig. 5 2D bifurcation plots induced by the subsystems’ initial conditions with fixed k = 0.2 and u30 = 0, a 2D bifurcation plot in the

x10-u10 plane for (x10, 0, u10, 0, 0, 0), b 2D bifurcation plot in the u10-u20 plane for (0.01, 0, u10, 0, 0, u20)
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4 Synchronous behaviors of the memristor-

coupled homogenous network

This section depicts the synchronicities of the mem-

ristor-coupled homogenous network (2) using several

numerical measures.

4.1 Complete synchronization

As revealed in Figs. 3 and 4, the memristor-coupled

network (2) can achieve complete synchronization

states when only a minor initial condition mismatch

occurs between the two subsystems. In this case, the

synchronization error of two subsystems is quantita-

tively evaluated using the normalized mean synchro-

nization error [28, 35] defined as

E ¼ 1

N

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1ðnÞ � x2ðnÞ½ �2þ y1ðnÞ � y2ðnÞ½ �2þ u1ðnÞ � u2ðnÞ½ �2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1ðnÞ2 þ y1ðnÞ2 þ u1ðnÞ2 þ x2ðnÞ2 þ y2ðnÞ2 þ u2ðnÞ2
q

ð10Þ

where xj(n), yj(n), and uj(n) (j = 1, 2) are the sampling

values of state variables within a certain time interval.

N samples are used to calculate the normalized mean

synchronization error. If E approaches 0, complete

synchronization is realized.

For the fixed subsystems’ initial conditions (x10,

y10, u10, x20, y20, u20) = (0.01, 0, 0, 0, 0, 0), the

normalized mean synchronization errors in the k-u30

plane are calculated using the data samples within the

time interval of [3900, 4000]. The obtained results are

presented in Fig. 7a. The red area indicates that the

normalized mean synchronization error E is close to 0

and the complete synchronization state is achieved.

The other colored areas indicate that E is positive and

the two coupled subsystems are out of synchroniza-

tion. We can find that the memristor-coupled network

(2) realizes complete synchronization with a larger

positive coupling strength k and a more negative

memristor initial condition u30.

As revealed in Figs. 5 and 6, infinite coexisting

attractors controlled by the subsystems’ initial condi-

tions are observed in the memristor-coupled homoge-

nous network. Their synchronization states are of

particular interest for understanding the synchronici-

ties of memristor-coupled network (2). For coexisting

attractors revealed in Fig. 5a, the normalized mean

synchronization errors in the x10-u10 plane are

presented in Fig. 7b. Network (2) can reach complete

synchronization when the initial conditions x10 and

u10 are located in the red region nearby the diagonal

line. The non-memristor initial condition x10 and

memristor initial condition u10 show different shifting

effects on the phase space positions of the generated

attractors [36]. Their shifting effects cancel each other

out when x10 and u10 are properly tuned. For example,

if x10 is specified as - 0.8, - 0.5, and - 0.2, zero

E can be achieved by optimizing u10 as - 0.93, -

0.57, and - 0.226, respectively. Therefore,

Fig. 6 Phase portraits in the x1(x2) -u1(u2) planes for the coexisting attractors induced by the subsystems’ initial conditions with fixed

k = 0.2 and u30 = 0, a x10 = - 1, - 0.2, 0, and 0.4 for (x10, 0, 0, 0, 0, 0), b u10 = - 1, - 0.5, 0.4, and 1 for (0.01, 0, u10, 0, 0, 0)
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completely synchronized periodic and chaotic

motions can be obtained.

However, when large positive coupling strengths

and negative coupling memristor initial conditions are

selected, i.e., k = 5 and u30 = - 5, the synchroniza-

tion error significantly decreases as illustrated in

Fig. 7c. The red complete synchronization region in

the x10-u10 plane migrates to the vicinity of u10 = 0

and its scope is slightly expanded. This finding further

verifies the synchronous effects of the coupling

memristor coefficients.

4.2 Parallel-offset synchronization

In addition to the complete synchronization behaviors,

parallel-offset synchronization behaviors could be

expected, that is, the state variables x1(x2) and y1(y2)

fit each other perfectly but the state variables u1 and

u2 oscillate synchronously with a certain position

offset determined by the initial condition mismatches

between the two subsystems. The synchronization

errors of the non-memristor state variables x1(x2) and

y1(y2) can be evaluated by the normalized mean

synchronization error E0 defined as

E0 ¼ 1

N

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1ðnÞ � x2ðnÞ½ �2þ y1ðnÞ � y2ðnÞ½ �2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1ðnÞ2 þ y1ðnÞ2 þ x2ðnÞ2 þ y2ðnÞ2
q

ð11Þ

The parallel-offset synchronization behaviors are

examined by comparing the normalized mean syn-

chronization errors E and E0.

When the subsystems’ initial conditions are fixed as

(x10, y10, u10, x20, y20, u20) = (0.01, 0, 0.3, 0, 0, 0),

initial condition mismatches are observed between the

two subsystems. Figure 8a displays the 1D plots of

E and E0 depicted within k = [0, 5] for u30 = 0

and - 5, and Fig. 8b presents the 1D plots of E and E0

depicted within u30 = [- 5, 4] for k = 0.2 and 5. For

fixed u30 = 0 and - 5, E tends to be a nonzero

constant, and E0 gradually reaches 0 with the increase

of k. When the positive coupling strength k is large

enough, the error between state variables x1(x2) and

y1(y2) asymptotically approaches zero and that

between u1 and u2 oscillates around a constant. This

finding indicates the generation of parallel-offset

synchronization. The synchronization error between

x1(x2) and y1(y2) continuously decreases with the

increase of k. For fixed k = 0.2 and 5 in Fig. 8b, the

memristor-coupled network enters a parallel-offset

synchronization state when u30 decreases below a

certain threshold. Afterward, u30 no longer has a

significant influence on the synchronization errors.

In Fig. 9a, the distribution of E0 in the x10-u10 plane

is depicted with fixed k = 5 and u30 = - 5. It

demonstrates the parallel-offset synchronization

regions in the x10-u10 plane when initial condition

mismatches occur between the two subsystems. Note

that the complete synchronization is a special case of

the parallel-offset synchronization. Excluding the red

complete synchronization regions depicted in Fig. 7c,

the remaining blue regions can be identified as

parallel-offset synchronization regions. The corre-

sponding 2D bifurcation plot is depicted in Fig. 9b to

reveal the dynamical behaviors within the parallel-

Fig. 7 The complete synchronization areas depicted by the

normalized mean synchronization error E, a the distribution of

E in the k-u30 plane for (x10, y10, u10, x20, y20, u20) = (0.01, 0, 0,

0, 0, 0), b the distribution of E in the x10-u10 plane for (x10, 0,

u10, 0, 0, 0), k = 0.2 and u30 = 0, c the distribution of E in the

x10-u10 plane for (x10, 0, u10, 0, 0, 0), k = 5 and u30 = - 5
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offset synchronization regions. From these two fig-

ures, parallel-offset synchronized chaotic and periodic

behaviors are discovered.

The phase portraits and time-domain waveforms of

three representative synchronous behaviors of Figs. 7

and 9 are illustrated in Fig. 10a, b, respectively. In

detail, Fig. 10a1, b1 shows the phase portraits and

time waveforms for the completely synchronized

periodic behavior occurring at k = 0.2 and (x10, y10,

u10, x20, y20, u20, u30) = (- 0.5, 0, - 0.57, 0, 0, 0, 0).

When k = 5, u30 = - 5 are assigned and the other

initial conditions remain unchanged, the dynamics

turns into parallel-offset synchronized periodic behav-

ior as depicted in Fig. 10a2, b2. Furthermore, when

k = 5 and u30 = - 5 remain unchanged and

x10 = 0.01 and u10 = 0.3 are specified, a parallel-

offset synchronized chaotic behavior is obtained as

shown in Fig. 10a3, b3. These results demonstrate that

the synchronous behaviors of the memristor-coupled

homogenous network are flexibly controlled by the

coefficients of coupling memristor and the initial

conditions of the two subsystems.

4.3 Phase synchronization

Phase synchronization can easily be achieved beyond

the complete and parallel-offset synchronization

regions. In this case, the phases of two subsystems

become locked and their amplitudes remain highly

uncorrelated [37]. Using the method described in [25],

the phase of a periodic or chaotic motion can be

defined as

hðtÞ ¼ 2pnþ 2p
t � tn

tnþ1 � tn
; tn\t\tnþ1ð Þ ð12Þ

where tn is the time of the n-th crossing of the motion

on an appropriate Poincare section. Successive cross-

ing with the Poincare section can be associated with a

phase increase of 2p and the phases in between are

computed with a linear interpolation as described in

(12). Then, the phase synchronization can be identified

by detecting the phase difference between two coupled

subsystems.

The phase difference Dh1(t) = hx1(t) - hx2(t) cal-

culated from the x1 and x2 components of network (2)

is mainly examined. Its time-domain waveforms are

Fig.8 Normalized mean

synchronization errors E and

E0 depicted concerning k or

u30 for (x10, y10, u10, x20,

y20, u20) = (0.01, 0, 0.3, 0,

0, 0), a plots about variable

k with fixed u30 = 0 and

u30 = - 5, b plots about

variable u30 with fixed

k = 0.2 and k = 5

Fig. 9 Coexisting and synchronous dynamical behaviors in the x10-u10 plane with k = 5, u30 = - 5, and (x10, y10, u10, x20, y20,

u20) = (x10, 0, u10, 0, 0, 0), a normalized mean synchronization error E0 in the x10-u10 plane, b 2D bifurcation plot in the x10 – u10 plane
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plotted under different sets of control parameters as

shown in Fig. 11. Corresponding to the asynchronous

motion depicted in Fig. 4c for k = 0.2 and (x10, y10,

u10, x20, y20, u20, u30) = (0.01, 0, 0, 0, 0, 0, 3.5), the

time evolution of phase difference D1h(t) is depicted

by a red line in Fig. 11a. The phase difference between

x1(t) and x2(t) fluctuates around zero and the ampli-

tudes of their trajectories are uncorrelated in most time

regions, indicating the generation of phase synchro-

nization. When k = 0.2 is assigned and the initial

conditions are tuned as (0.01, 0, 1, 0, 0, 0, 0) and (- 1,

0, 1, 0, 0, 0, 0), the phase errors are illustrated by the

green and black lines in Fig. 11a. The fluctuation

amplitudes of phase errors are bounded within rela-

tively small values and directed by the initial condi-

tions of network (2). However, when y1, y2 or u1, u2

are taken as the analytic targets, the calculated

phase differences Dh2(t) = hy1(t) - hy2(t) and

Dh3(t) = hu1(t) - hu2(t) are slightly different from

Dh1(t) as depicted in Fig. 11a. Their time-domain

waveforms are illustrated in Fig. 11b, c, respectively.

In summary, the natural frequencies of two subsys-

tems are easily correlated due to the same stimulus of

1.8 cos(t) and their phase difference can be limited

within an arbitrary constant.

When the stimulus frequency of the first subsystem

is maintained as F1 = 1 and that of the second

subsystem is slightly increased to F2 = 1.01, the

frequency correlation breaks and the phases of the

two subsystems become unlocked. The blue trajectory

in Fig. 12a depicts the linearly decreased phase

difference Dh1(t) for k = 0.2 and (x10, y10, u10, x20,

y20, u20, u30) = (0.01, 0, 0, 0, 0, 0, 3.5). In this case,

the two subsystems are asynchronous. If the coupling

memristor coefficients are changed to u30 = - 5 and

k = 5, the memristor-coupled network (2) enters an

imperfect phase synchronization state with perfect

synchronization epochs interrupted by regular phase

slips. The corresponding time evolution of Dh1(t) is

given at the bottom of Fig. 12a. In these two cases, the

Fig.10 Phase portraits and time-domain waveforms of typical

synchronous behaviors with varied k and initial conditions (x10,

y10, u10, x20, y20, u20, u30) = (x10, 0, u10, 0, 0, 0, u30), a1 and b1
complete synchronization for k = 0.2, x10 = - 0.5,

u10 = - 0.57, u30 = 0, a2 and b2 parallel-offset synchroniza-

tion for k = 5, x10 = - 0.5, u10 = - 0.57, and u30 = - 5, a3
and b3 parallel-offset synchronization for k = 5, x10 = 0.01,

u10 = 0.3, and u30 = - 5
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evolution patterns of Dh1(t), Dh2(t), and Dh3(t) are

consistent.

In another case, we set k = 0.2 and (x10, y10, u10,

x20, y20, u20, u30) = (- 1, 0, 1, 0, 0, 0, 0). The state

variables x1 and x2 are imperfectly synchronized with

22p phase jumps, as shown by the blue line of

Fig. 12b. However, the other two pairs of state

variables are out of synchronization because their

phase differences linearly decrease as depicted by the

red and black lines of Fig. 12b. If u30 and k are

adjusted as - 5 and 5, respectively, the whole

network can reach imperfect phase synchronization

and the amplitude of the phase jumps is reduced to 2p,

as shown in Fig. 12c.

5 Circuit realization and PSIM simulations

In this section, the synchronous behaviors of the

memristor-coupled network are equivalently verified

in an analog circuit through PSIM circuit simulations.

The PSIM software is commonly used to verify initial

condition-sensitive dynamical behaviors [38, 39].

The implementation circuit of network (2) is

designed as depicted in Fig. 13. It consists of seven

integrators, an inverse addition circuit, four inverters,

three hyperbolic tangent function converters, and four

multipliers. The circuit equations for the seven

capacitor voltages vx1, vy1, vu1, vx2, vy2, vu2, and vu3

are established as

Fig. 11 Phase synchronization with the same stimulus frequency F = 1, a time evolutions of phase difference Dh1(t), b time evolutions

of phase difference Dh2(t), c time evolutions of phase difference Dh3(t)

Fig. 12 Phase synchronization with different stimulus frequen-

cies F1 = 1 and F2 = 1.01, a asynchronous motion and

imperfect phase synchronization with regular phase slips,

b imperfectly synchronized x1 and x2 state variables with 22p
phase jumps, and asynchronous y1, y2, and u1,u2 state variables,

c imperfect phase synchronization with - 2p phase jumps
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RC
dvx1

dt
¼ vy1 þ

R

Ra
ð1 � tanh vu1Þvx1 þ 1:8 cosð2pftÞ

� R

Rk
ð1 � tanh vu3Þðvx1 � vx2Þ;

RC
dvy1

dt
¼ �vx1 � vy1;

RC
dvu1

dt
¼ �vx1;

RC
dvx2

dt
¼ vy2 þ

R

Ra
ð1 � tanh vu2Þvx2 þ 1:8 cosð2pftÞ

þ R

Rk
ð1 � tanh vu3Þðvx1 � vx2Þ;

RC
dvy2

dt
¼ �vx2 � vy2;

RC
dvu2

dt
¼ �vx2;

RC
dvu3

dt
¼ vx1 � vx2:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

In Fig. 13, the gains of four multipliers M1, M2, M3,

and M4 are set as 1. The time-constant-related circuit

elements are optimized as R = 10 kX and C = 100 nF.

Other circuit elements are calculated as Ra = R/

0.5 = 20 kX, Rk = 10/k kX, f = F/(2pRC) = 159 Hz.

The memristor Rk and initial conditions of seven

capacitor voltages vx1(0), vy1(0), vu1(0), vx2(0), vy2(0),

vu2(0), and vu3(0) are the main control parameters of

this equivalent realization circuit.

Referring to Fig. 13, a circuit simulation model is

established using PSIM software, in which the hyper-

bolic tangent function is realized by the editable math

function modules. The simulation control parameters

‘‘time step’’, ‘‘total time’’, and ‘‘print time’’ are

adjusted to 10 ls, 600 ms, and 400 ms, respectively.

The three representative synchronous behaviors

demonstrated in Fig. 10 are measured by adjusting

Rk and seven initial capacitor voltages as Rk = 50 kX,

(- 0.5 V, 0 V, - 0.57 V, 0 V, 0 V, 0 V, 0 V), then

as Rk = 2 kX, (- 0.5 V, 0 V, - 0.57 V, 0 V, 0 V,

0 V, - 5 V), and finally as Rk = 2 kX, (0.01 V, 0 V,

0.3 V, 0 V, 0 V, 0 V, - 5 V). The captured phase

portraits and time-domain waveforms are presented in

Fig. 14(a) and (b), respectively. The circuit simulation

results in Fig. 14 agree well with the numerical

simulation results in Fig. 10, implying the feasibility

of the implementation circuit and verifying the

Fig. 13 Circuit schematics for the equivalent realization circuits of network (2)
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correctness of theoretical and numerical analysis

results.

6 Conclusion

This work investigated the initial condition-sensitive

coexisting and synchronous behaviors of a memristor-

coupled homogeneous network consisting of two

identical non-autonomous memristive Fitzhugh–

Nagumo models. Affected by the external cosine

stimuli, this homogenous network possesses a space

equilibrium set S = (0, 0, c1, 0, 0, c2, c3) at discrete

time points satisfying 1.8cos(t) = 0; otherwise, it has

no equilibrium points. Similar to memristive systems

with the line, plane, or space equilibrium sets, the

memristor-coupled homogeneous network exhibits

extreme multistability with coexisting hyperchaotic,

chaotic, periodic, and quasi-periodic attractors. More-

over, a 4D dimensionality reduction model was built

through incremental integral transformation, based on

which the revealed extreme multistability phe-

nomenon was proved to be hidden by stability

analyses of the reformed equilibrium points. Numer-

ical simulations demonstrated that the synchronicities

of these coexisting hidden behaviors depend not only

on the initial condition and coupling strength of the

coupling memristor but also on the subsystems’ initial

conditions. When large positive coupling strengths

and negative coupling memristor initial conditions are

chosen, the two coupled Fitzhugh–Nagumo models

can enter complete or parallel-offset synchronization

states with properly selected subsystems’ initial con-

ditions. In addition to these two synchronous behav-

iors, phase synchronization can easily be achieved due

to the existence of external stimuli. This initial

condition-sensitive synchronization property can ben-

efit the flexible control of the coupled homogeneous

network.

In this study, only a pair of state variables is

concerned in the coupling channel. The constructed

network exhibits various coexisting and synchronous

behaviors flexibly controlled by the coupling strength

and initial conditions of the network. Future research

will focus on introducing more than a pair of state

variables in the coupling channel.

Fig. 14 PSIM circuit simulation results with fixed initial

conditions vy1(0) = vx2(0) = vy2(0) = vu2(0) = 0 V, (a1) and

(b1) complete synchronization for Rk = 50 kX, vx1(0) = –

0.5 V, vu1(0) = –0.57 V, and vu3(0) = 0 V, a2 and b2

Parallel-offset synchronization for Rk = 2 kX, vx1(0) = –0.5 V,

vu1(0) = –0.57 V, and vu3(0) = –5 V, a3 and b3 Parallel-offset

synchronization for Rk = 2 kX, vx1(0) = 0.01 V, vu1(0) = 0.3 V,

and vu3(0) = –5 V
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