
Nonlinear Dyn (2023) 111:7859–7882
https://doi.org/10.1007/s11071-023-08230-2

ORIGINAL PAPER

3D variable-structure chaotic system and its application
in color image encryption with new Rubik’s Cube-like
permutation

Jiuyang Xin · Hanping Hu · Jun Zheng

Received: 27 September 2022 / Accepted: 30 December 2022 / Published online: 10 January 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract Nowadays, images have an increasingly
deep impact on human life, so it is essential to encrypt
images. Among various image encryption methods,
chaotic encryption is particularly prominent due to the
unpredictability and initial state sensitivity of chaos.
The security of chaos-based cryptosystems depends
largely on the performance of the adopted chaotic
systems. This paper proposes a three-dimensional
variable-structure chaotic system (3DVSCS) whose
structure is time-varying. The distinguished dynam-
ical characteristics of 3DVSCS are verified by var-
ious metrics, such as lyapunov exponent, approxi-
mate entropy, etc. Taking full advantage of the chaotic
sequences generated by the 3DVSCS, a novel cryp-
tosystem (3DVSCS-IES) with the confusion–diffusion
architecture is presented. To further enhance secu-
rity, a novel Rubik’s Cube-like permutation method is
designed to severely scramble adjacent pixels, and an
iterative diffusion algorithm is employed to completely
infect the entire cipher image with a slight change in
the plaintext image. The security analyses show that
the proposed image encryption algorithm owns bet-
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ter security performance than some typical state-of-art
methods.
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1 Introduction

Images are playing an increasingly important role in
human life. The rapid development of sharing plat-
forms on social networking sites has resulted in an ever-
increasing amount of image data [1]. Most of the mas-
sive image data are stored in plaintext to save the cost of
storage and computing resources, which poses a huge
security risk. For example, some people use other peo-
ple’s photos to take away the express delivery of the par-
ties through facial recognition. Therefore, it is crucial
to protect the images [2,3]. Methods to protect digital
images can be divided into two categories: (1) Informa-
tionhiding, includingwatermarking [4], anonymity [5],
and steganography [6]. (2) Encryption [7], including
conventional encryption [8] and other methods, such as
chaotic encryption [9]. Of the two categories, encryp-
tion is the more straightforward approach.

In order to encrypt an image, one approach is to
treat the pixels of the plain image as a stream of binary
data, which is then encrypted using traditional text
encryptionmethods, such as RSA [10], data encryption
standard (DES) [11], advanced encryption standard
(AES) [12], and International Data Encryption Algo-
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rithm (IDEA) [13]. The purpose of this approach is to
utilize the existing text encryptionmethods for encrypt-
ing images, as an alternative to developing new meth-
ods specifically for image encryption. However, unlike
text encryption, images have some inherent character-
istics, including large data volume, high correlation
between adjacent pixels, and strong redundancy [14].
To solve this problem, many encryption techniques
have been proposed, such as chaos encryption [15],
permutation encryption [16], optical-based encryp-
tion [17], and DNA-based encryption [18]. Among
these techniques, chaos encryption has received exten-
sive attention due to its outstanding performance.

The chaos-based image encryption method draws
on the sound characteristics of chaos theory to build
an encryption system [19]. The advantages of a chaos-
based image encryption system include large key space,
simple implementation, and fast encryption speed.
However, the security of most encryption schemes
depends heavily on the performance of the chaotic sys-
tem used by the encryption system [20].

Chaos possesses many unique properties that can
satisfy the requirements of image encryption, such
as good randomness, unpredictability, and initial state
sensitivity [21,22]. In a chaos-based encryption scheme,
the security level strongly relies on the complexity and
performance of the core chaotic system [23]. How-
ever, existing chaotic maps may exhibit shortcom-
ings in different aspects when implemented in digital
computers and digital circuits [24–27]. Firstly, most
of the existing chaotic systems have a single struc-
ture and lack of change, so it is difficult to resist
phase space reconstruction and parameter identifica-
tion attacks [28]. Secondly, many existing chaotic sys-
tems have weak chaotic performance, which is char-
acterized by short periods, non-ergodicity, low linear
complexity, etc. Moreover, their chaotic ranges are
either narrow or discontinuous. If a chaotic map has
narrow or discontinuous chaotic ranges, its chaos prop-
erties may be destroyed when its parameters are dis-
turbed by certain external factors such as noise [29].

In order to improve the above shortcomings, most
of the schemes obviously increase the implementation
cost. Based on this, we propose a 3D variable-structure
chaotic system (3DVSCS) which is low in cost and
easy to control. The 3DVSCS constructs a safe and
controllable time-varying chaotic source to ensure that
its output has non-stationary statistical characteristics.
Compared with slow parameter changes, the structural

transformations in chaotic systems reflect the abrupt
change of dynamical behaviors, which can produce
more complex non-stationary characteristics. Variable
structure and nonstationarity make the 3DVSCS resis-
tant to mathematical analysis and statistical analysis.

Taking 3DVSCS as the nonlinear chaotic source, a
3DVSCS-based image encryption system (3DVSCS-
IES) composed of a new Rubik’s Cube-like permuta-
tion method and an iterative diffusion algorithm is pre-
sented, where permutation is used to severely scram-
ble adjacent pixels, and diffusion is employed to com-
pletely infect the entire cipher image with a small
change in the plaintext image. The contributions and
novelty of this work are summarized as follows.

(1) The 3DVSCS is first presented to obtain higher
complexity and security thanfixed-structure chaotic
systems and variable parameter systems;

(2) The variable-structure chaotic system is heuristic,
which can be easily extended to any complex sys-
tem;

(3) A new Rubik’s Cube-like permutation is intro-
duced, which has lower implementation cost and
better pixel scrambling effect compared with other
permutation schemes;

(4) Based on the 3DVSCS, an image encryption system
(3DVSCS-IES) composed of a new Rubik’s Cube-
like permutation method and an iterative diffusion
algorithm is proposed. Security analysis demon-
strates that 3DVSCS-IES can achieve a high level
of security.

The remainder of this paper is organized as follows.
Section 2 gives the 3DVSCS model and mathemati-
cally analyzes its chaotic behavior. In Sect. 3, the per-
formance of the chaotic map generated by 3DVSCS on
a series of chaotic metrics is presented. Based on the
3DVSCS, Sect. 4 raises the model of 3DVSCS-IES.
In Sect. 5, the simulation results of 3DVSCS-IES are
shown. Section 6 verifies the security of the proposed
encryption system and its resistance to various types of
attacks. In Sect. 7, the conclusion is given.

2 3DVSCS

This section introduces the model and theoretical anal-
ysis of 3DVSCS. A concrete method to generate the
3DVSCS map is also given.
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2.1 Mathematical model of 3DVSCS

3DVSCS is presented to obtain a chaotic map with
a more extensive chaotic range and more complex
chaotic behavior. The simple mathematical model of
3DVSCS is as follows:

xn+1 = Wi xn mod 1, i ∈ {1, 2}, (1)

where x = (x, y, z)T , is the state vector of the chaotic
system, mod is the modulo function used to constrain
the phase space of state variable. W1 and W2 are the
parameter matrices of the system. Different parameter
matrices correspond to different structures. Wi can be
expressed as follows:
⎡
⎢⎢⎣

w
(i)
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Then, the above Eq. (1) can also be transformed into
another form:
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, i ∈ {1, 2} (2)

As can be seen from the formula, 3DVSCS is first
stretched by multiplying the parameter matrix of the
current iteration by the state variables of the system
and then folded by the boundary function. In this way,
complex chaotic behavior can be obtained.

2.2 Theoretical analysis

The basic feature of chaotic system is the extreme sen-
sitivity of the system to the initial value. The trajecto-
ries generated by two initial values that are almost the
same are separated exponentially over time. The Lya-
punov exponent (LE) is an indicator that quantitatively
describes this phenomenon. Chaos in the sense of LE
can be defined as Definition 1

Definition 1 A discrete system is said to be chaotic in
the sense of LE if it satisfies the two conditions:

(1) it has at least one positive LE;
(2) its phase space region is globally bounded.

For a chaotic map x → f (x), LE can be defined as
follows:

LE = lim
n→∞

1

n

n−1∑
i=0

ln | f ′(xi )|, (3)

as for 3DVSCS, the LEs can be calculated as:

LEk = lim
n→∞

1

n

n−1∑
j=0

ln |λx j
k |, (4)

where λ
x j
k is the kth eigenvalue of the Jacobian matrix

at the j th iteration of 3DVSCS. The Jacobian matrix
of 3DVSCS described in Eq. (2) can be expressed as:

J(x j ) =

⎡
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which is exactly the same as the parametermatrixWi . It
can be concluded that the value of the Jacobian matrix
of 3DVSCS is equal to the value of the parametermatrix
of the current iteration of the system. Then the LEs of
3DVSCS can also be expressed as:

LEk = lim
n→∞

1

n

⎛
⎝

n1−1∑
j=0

ln |λ(1)
k | +
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n
ln |λ(2)

k |, (5)

where n1 and n2 are respectively the number of times
W1 and W2 are used as parameter matrices in the iter-
ation.

For a square matrix, the trace is equal to the sum of
all eigenvalues. Therefore, the sum of all eigenvalues
of the parameter matrix Wi is equal to the trace tr(Wi )

of Wi :

λ
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11 + w
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greater than 1, this leads to
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which suggests that at least one of λ
(i)
1 , λ

(i)
2 , λ

(i)
3 has

a value greater than 1. It is easy to get λ
(1)
1 > 1 and

λ
(2)
1 > 1, which means that at least one LE is positive

according to Eq. (5). It can be concluded that the pro-
posed 3DVSCS satisfies condition (1) in Definition 1
if the diagonal elements of Wi are all greater than 1.

The modulo function makes the 3D chaotic systems
in Eq. (2) fold over bounded phase space. That is, the
phase space region of 3DVSCS is globally bounded and
thus satisfies condition (2) of Definition 1. In summary,
Proposal 1 is given for the 3DVSCSparametermatrices
tomake sure the systemexhibits chaotic characteristics.

Proposition 1 The 3D parameter matrices W1,W2 of
the 3D variable-structure chaotic system in Eq. (1)
should satisfy the following two conditions, respec-
tively:

W1 : wi i ≥ wi j + 3, i = [1, 2, 3], j �= i, w > 1

W2 : wi i ≤ wi j − 3, i = [1, 2, 3], j �= i, w > 1

Among the two matrices W1,W2 in Proposition 1, W1

is characterized by larger diagonal elements, and W2

is characterized by smaller diagonal elements. Taking
W1 and W2 as parameter matrices, two different struc-
tures of the chaotic system are obtained, and then by
alternately usingW1 andW2 in the iteration, the chaotic
system with variable structure is realized.

2.3 Method to generated 3DVSCS map

In order to construct two parameter matrices W1 and
W2 that satisfy Proposal 1, five parameters o, r1, r2, d1,
and d2 are used, where o ∈ (0,∞) is used as the cen-
ter element w22 of W1 and W2. r1, r2 ∈ (0,∞) are
used to generate the other two diagonal elements. The
other elements ofW1 andW2 are generated by d1, d2 ∈
(0, 1). This generation method can be described as:

W1 =
⎡
⎣
r1o + 4 r1od1 + 1 r1od2 + 1
od1 + 1 o + 4 od2 + 1
r2od1 + 1 r2od2 + 1 r2o + 4

⎤
⎦

W2 =
⎡
⎣
r1o + 1 r1o(d1 + 1) + 4 r1o(d2 + 1) + 4
o(d1 + 1) + 4 o + 1 o(d2 + 1) + 4
r2o(d1 + 1) + 4 r2o(d2 + 1) + 4 r2o + 1

⎤
⎦

(6)

The transformation of the chaotic system structure is
achieved by using different parameter matrices in dif-
ferent iterations.W1 is set as the parametermatrixwhen

xi < 0.5, and W2 is set as the parameter matrix when
xi ≥ 0.5. The two matrices W1 and W2 constitute a
dual form, so the generated variable-structure chaotic
system can possess relatively balanced dynamics. The
detailed chaotic map generated by 3DVSCS is as fol-
lows:

xn+1 =
{
W1xn mod 1, xn < 0.5

W2xn mod 1, xn ≥ 0.5
(7)

3 Performance evaluation of 3DVSCS map

This section shows the performance of the chaotic map
generated by 3DVSCS on different aspects, including
phase diagram, bifurcation diagram, lyapunov expo-
nent, approximate entropy and randomness test.

3.1 Phase diagram

Phase diagram is a method to describe the dynamic
behavior of a chaotic system directly. The phase
diagram of a chaotic system is its unclosed trajec-
tory in a two-dimensional phase plane or a three-
dimensional phase space. Systems with complex phase
diagrams usually have complex chaotic behaviors.
For the 3DVSCS map in Eq. (7), the initial values
(x0, y0, z0) are set as (0.01, 0.02, 0.03), and the param-
eters (o, r1, r2, d1, d2) are set as (101, 5.1, 3.8, 0.8, 0.6).
The 2D and 3D phase diagrams of the 3DVSCS map
presented in Fig. 1 are all noise-like patterns, which
means that the chaotic behavior of this variable struc-
ture system is sufficiently complex.

3.2 Bifurcation diagram

The bifurcation diagram shows the dynamical evolu-
tion of the system under different control parameters
by plotting the values of system variables under differ-
ent parameters. By observing the bifurcation diagram,
we can clearly get the chaotic range of the system on
certain parameter. For 3DVSCS in this section, the ini-
tial values (x0, y0, z0) are set as (0.01, 0.02, 0.03), and
the values of parameters (o, r1, r2, d1, d2) are set to
(101, 5.1, 3.8, 0.8, 0.6) by default. Figure 2 gives the
bifurcation diagrams of 3DVSCS for different param-
eters. It can be seen from the figure that 3DVSCS
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Fig. 1 Phase diagrams of
3DVSCS map

exhibits chaotic behavior under all parameters within
the value range, which means that when the parameters
of 3DVSCS can be used as equally strong keys in the
encryption system without weak keys.

3.3 Lyapunov exponent

The Lyapunov exponent (LE) is an important quanti-
tative index to measure the chaotic characteristics of
the system, which characterizes the average exponen-
tial rate of convergence or divergence of the system
between adjacent orbitals in the phase space. Whether
there is dynamic chaos in the system can be judged
intuitively by whether the maximum LE is greater
than zero. A positive LE means that in the phase
space of the system, no matter how small the initial
distance between the two trajectories is, the differ-
ence will become unpredictable with an exponential
rate increase over time, which is the phenomenon of
chaos. Figure 3 depicts the Lyapunov exponents of
3DVSCS map for different parameters and compares
them with the Lyapunov exponents of different mul-

tidimensional maps. For 3DVSCS in this section, the
initial values (x0, y0, z0) are set as (0.01, 0.02, 0.03),
and the values of parameters (o, r1, r2, d1, d2) are set
to (101, 5.1, 3.8, 0.8, 0.6) by default. Figure 3a–e are
the Lyapunov exponent plots for the five parameters,
respectively. Figure 3f–h are the Lyapunov exponent
diagrams of LSM [43], CSCM [33] and LSCM [20],
respectively. As can be seen from the figure, 3DVSCS
possesses three positive and high Lyapunov exponents
for all parameters. This illustrates that the newly gen-
erated chaotic map exhibits hyperchaos. And com-
pared with different chaotic systems, 3DVSCS always
exhibits hyperchaos in its parameter range, and theLya-
punov exponents of 3DVSCS are larger, which means
higher chaos. It can be concluded that 3DVSCS can
generate chaotic maps with hyperchaotic behavior.

3.4 Complexity analysis

Approximate entropy (ApEn) is a nonlinear dynamic
indicator used to quantify the regularity and unpre-
dictability of fluctuations in time series. It uses a non-
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Fig. 2 Bifurcation diagrams of 3DVSCS map with different parameters

negative number to represent the complexity of a time
series, reflecting the possibility of new information
occurring in the time series. The more complex the
time series, the larger the approximate entropy. ApEn
is defined as follows:

Definition 2 Given a time series {x1, x2, . . . , xN } and
pre-specified parameters m and r , where m is the
embedding dimension, and r is the similarity tolerance,
also known as the filtering level, the ApEn of this series
is defined as:

{
ApEn = limN→∞[φm(r) − φm+1(r)],
φm(r) = 1

N−m+1

∑N−m+1
i=1 lnCm

i (r),
(8)

where Cm
i is obtained by counting the number of vec-

tors having d[X (i), X ( j)] less than r for each value of i
and then calculating the ratio of this number to the total
number of distances. d[X (i), X ( j)] is the Chebyshev
distance between X (i) and X ( j).

Figure 4 shows the comparison of ApEn values of
3DVSCS and different chaotic maps. For 3DVSCS in
this section, the initial values and the parameter set-
tings are the same as in Sect. 3.3. Figure 4a–c describes

the ApEn values when the parameters o, r1, and d1
are changedwhile other parameters remain unchanged,
respectively. Figure 4d–f are the ApEn values of LSM,
CSCM and LSCM, respectively. As can be seen from
the figure, 3DVSCS has highApEn values in all param-
eter ranges, which are more stable than those of dif-
ferent chaotic maps. The conclusion is that the novel
3DVSCS map can generate sequences with high com-
plexity over a wide range of parameters.

3.5 Randomness test for 3DVSCS

In this section, two test suites NIST SP800-22 and
TestU01 are used to verify the randomness of the
chaotic sequences generatedby3DVSCS.NISTSP800-
22 is a standard for the randomness of test sequences
published by the National Institute of Standards and
Technology. At present, this standard has been interna-
tionally recognized, including 15 items such as runs test
and linear complexity test. Each test result corresponds
to a calculated normalized P value, and the P value is
compared with 0.01. If the P value is greater than 0.01,
it means that the test requirements are met, otherwise
it is a failure. Selecting random parameters and initial
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Fig. 3 Lyapunov exponents of different maps. a–e 3DVSCS; f LSM; g CSCM; h LSCM

values, the 3DVSCS map generates 1000 sequences of
length 106, and the values in the sequences are sim-
ply quantized, where values greater than 0.5 are quan-
tized to 1, and other values are quantized to 0. These
sequences are subjected to the NIST test suite, and the
test results are shown in Table 1. TestU01 is a more
stringent randomness test suite that contains multiple
sets of tests, each of which assesses the randomness of
the sequence from a different aspect. The sets of tests
used for testing the randomness of binary sequences
are Alphabit, Rabbit, and BlockAlphabit. In this exper-
iment, limited to the storage of the computer, the binary
sequences of length 220, 225, and 228 generated by

3DVSCS are used to carry out the TestU01 test, and
the results are shown in Table 2. From the results in the
two tables, it can be concluded that the sequences gen-
erated by 3DVSCS pass all the tests. In summary, the
proposed 3DVSCS can generate sequences with high
randomness, which are obviously adequate for image
encryption.

4 3DVSCS-IES

By using the 3D chaotic system, this section raises a
3DVSCS-based image encryption system (3DVSCS-
IES). It uses the classic confusion–diffusion structure,
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Fig. 4 Approximate entropy of different maps. a–c 3DVSCS; d LSM; e CSCM; f LSCM

Table 1 Results of the NIST SP800-22 test suite

Statistical test p-value Pass rate Result

Frequency 0.206103 0.996 Sucess

BlockFrequency 0.412939 0.992 Sucess

CumulativeSums forward 0.517509 0.990 Sucess

CumulativeSums reverse 0.527450 0.994 Sucess

Runs 0.416251 0.986 Sucess

LongestRun 0.653244 0.996 Sucess

Rank 0.582809 0.998 Sucess

FFT 0.578869 0.990 Sucess

NonOverlappingTemplate 0.413036 0.988 Sucess

OverlappingTemplate 0.498931 0.991 Sucess

Universal 0.48764 0.996 Sucess

ApproximateEntropy 0.541599 0.992 Sucess

RandomExcursions 0.479646 0.989 Sucess

RandomExcursionsVariant 0.459153 0.991 Sucess

Serial 0.573903 0.991 Sucess

LinearComplexity 0.381075 0.996 Sucess
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Table 2 Results of the TestU01 test suite

Bits length 220 bits 225 bits 228 bits

Alphabit

Pass ratio 17/17 17/17 17/17

Rabbit

Pass ratio 38/38 39/39 40/40

BlockAlphabit

Pass ratio 102/102 102/102 102/102

which is well-known for its high-security performance.
The structure of 3DVSCS-IES is illustrated in Fig. 5, in
which the security key generates the initial states and
control parameters of 3DVSCS. 3DVSCS is iterated to
obtain chaotic sequences (x, y, z), which together with
the security key generate the initial values and param-
eters of the logistic map. Then the sequences (x, y, z)
generated by 3DVSCS are converted into (xa, ya, za)
and (xb, yb, zb), these two sequences are used to control
the cyclic shift distance in the proposed Rubik’s Cube-
like confusion and the pixel change in the iterative dif-
fusion method, respectively. The sequence generated
by the logistic map is sorted to obtain the sequence c
that controls the rotation order of the Rubik’s Cube-like
confusion method. 3DVSCS-IES performs confusion–
diffusion operation two times in total, which is enough
to result in high cryptographic security.

4.1 Generate initial states and parameters

A security key that is too shortmakes the image encryp-
tion system vulnerable to brute-force attacks. In this
paper, the length of the secure key is set to 256 bits, and
its structure is illustrated in Fig. 6. The security key is
divided into eight parts: K = {x0, y0, z0, o, r, d, a,m},
each of which is 32 bits long, and r, d, a,m all con-
clude two 16-bit strings, r = (r1, r2), d = (d1, d2),
a = (a1, a2), m = (m1,m2).

The variables x0, y0, z0 are all fixed-point numbers
within [0, 1), the value of them can be obtained from
a 32-bit sequence by V = ∑32

n=1 Bitn × 2−n . o is
fixed-point number with eight binary digits before the
decimal point, the value of it is obtained by V =∑8

n=1 Bitn × 28−n + ∑32
n=9 Bitn × 2−(n−8). More-

over, r1, r2 are fixed-point numbers with one binary
digit before the decimal point, which can be calcu-
lated by V = Bit1 + ∑16

n=2 Bitn × 2−(n−1). d1, d2

are fixed-point numbers in the range of [0, 1), each
of them can be obtained by V = ∑16

n=1 Bitn × 2−n .
a1, a2,m1,m2 are all integer numbers which can be
gained by V = ∑16

n=1 Bitn × 216−n .
(x0, y0, z0) and (o, r, d) are the initial values and the

parameters of the 3DVSCS chaotic map, respectively.
The initial value a0 of the logistic map is generated by
a as follows.

a0 = x(a1) + y(a1) + z(a1) + x(a2) + y(a2) + z(a2)

6
.

And the parameter of the Logistic map will be obtained
by the following formula.

μ = 3.57 + 0.43

× x(m1) + y(m1) + z(m1) + x(m2) + y(m2) + z(m2)

6
,

since the logistic map has chaotic behavior when the
parameter μ ∈ (3.5699456, 4]. Using all the initial
states and parameters obtained by thesemethods above,
sufficiently complex chaotic sequences can be gener-
ated for image confusion and diffusion.

4.2 Rubik’s Cube-like confusion method

The Rubik’s Cube-like confusion is raised with refer-
ence to the rotation of the Rubik’s Cube in three planes.
Figure 7 shows the rotation of a third-order Rubik’s
Cube in three planes. As is depicted in this figure, the
operation of the Rubik’s Cube can be divided into three
types, (a) rotate the x0z plane; (b) rotate the y0z plane;
(c) rotate the x0y plane.

For an M × N × 3 color RGB image, the rotation
method of the Rubik’s Cube cannot be used directly
because M and N are generally not equal to 3. In order
to implement a Rubik’s Cube rotation operation on the
image, a Rubik’s Cube-like rotation (RCLR) is raised.
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Fig. 5 The structure of 3DVSCS-IES

Fig. 6 Key structure of
3DVSCS-IES

Fig. 7 Three types of
operations on the Rubik’s
Cube

Fig. 8 Rubik’s Cube-like rotation

As shown in Fig. 8, each matrix can be divided into
	min(M, N )/2
 rings, and if min(M, N ) is odd, there
is also a one-dimensional array in the matrix. Let d
denote the total number of rings and one-dimensional
arrays of a matrix T , and then use a sequence s of
length d to set the cyclic shift distance of each ring
and one-dimensional array to achieve the RCLR oper-
ation of the matrix. The RCLR operation is presented
as: RCLR(T, s).

The entire flow of Rubik’s Cube-like confusion is
described below.

Step 1 For the M × N × 3 input pixel matrix D of
Rubik’s Cube confusion, there are 3 matrix slices of
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M × N size on the x0z plane,M matrix slices of N ×3
size on the x0y plane, and N matrix slices of M × N
size on the y0z plane, these matrix slices are labeled
and arranged as D1 · · · D3, D4 · · · D3+M , D4+M · · ·
D3+M+N . The d of the slice matrix on the three planes
is represented by dx , dy , and dz respectively, where d
is the total number of rings and one-dimensional arrays
in the slice matrix.

Step 2 Iterate the 3DVSCS map M × N × 2+ 1000
times and discard the first 1000 times to avoid the influ-
ence of the transient state. Then we get three sequences
x, y and z, which are further scaled to obtain three inte-
ger sequences xa, ya, za as follows.

⎧⎪⎨
⎪⎩

xa = �2 × (M + N ) × x(1 : 3 × max(M, N ) × 2)�
ya = �2 × (M + N ) × y(1 : 3 × max(M, N ) × 2)�
za = �2 × (M + N ) × z(1 : 3 × max(M, N ) × 2)�

(9)

Step 3 Since the rotation of each layer of the Rubik’s
Cube is out of order, a random sequence needs to be
used to control the rotation order of the pixel matrix
slices. Iterate the Logistic map (M + N + 3) × 2 +
1000 times and discard the first 1000 times to avoid the
influence of the transient state. Divide the generated
sequence into two parts and sort each part separately to
obtain the index sequence c, and the two parts in c are
used for 2 rounds of confusion–diffusion operation.

Step 4 Perform RCLR operations on each slice of
D in the order specified by sequence c. The detailed
process is as follows,

Dn+1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RCLR(Dcn
n , xa(1 + (n − 1)

×dx : n × dx )), 1 < cn ≤ 3

RCLR(Dcn
n , ya(1 + (n − 1)

×dy : n × dy)), 3 < cn ≤ 3 + M

RCLR(Dcn
n , za(1 + (n − 1) 3 + M < cn

×dz : n × dz)), ≤ 3 + M + N

(10)

where n is from 1 to 3 + M + N , and dx , dy, dz are
the d values of the slice matrices on the three planes
of D respectively. Dcn

n represents the cn-th slice of the
matrix D at the n-th rotation. The confusion result P is
equal to DM+N+4.

To further illustrate the Rubik’s Cube-like confu-
sion, an image of size 4× 3× 3 is used as a numerical

example. Suppose that the three 3DVSCS sequences
have been obtained as: xa = {3, 1, 4, 2, 5, 3}, ya =
{2, 3, 1, 4, 3, 2, 4, 5}, za = {1, 3, 2, 4, 3, 2}, and for
convenience, the sequence c is given as c = {1, 2, 3, 4,
5, 6, 7, 8, 9, 10}, that is, the rotation of the three planes
is performed sequentially. The whole process is shown
in Fig. 9.

– Figure 9a gives the slice matrices (D1, D2, D3)

on the x0z surface of the initial image. The outer-
most circle of D1 is (11, 23, 15, 18, 61, 64, 58, 71,
54, 24), and the correspondingvalue in the sequence
xa representing the shift distance is 3. Then, the out-
ermost circle performs a cyclic shift of distance 3 to
obtain the sequence (71, 54, 24, 11, 23, 15, 18, 61,
64, 58). By performing this Rubik’s Cube-like rota-
tion determined by the sequence xa on the three
matrices D1, D2, and D3, respectively, the result
of the rotation is obtained and displayed in Fig. 9b.

– The four slice matrices (D4, D5, D6, D7) on the
x0y surface of the pixel matrix obtained after
the rotation of the x0z surface are shown in
Fig. 9c. The outermost circle of the D4 matrix
is (71, 54, 24, 54, 48, 85, 96, 34), and the corre-
sponding value in the sequence ya representing
the shift distance is 2. Then, the outermost cir-
cle performs a cyclic shift of distance 2 to obtain
the sequence (96, 34, 71, 54, 24, 54, 48, 85). By
performing this Rubik’s Cube-like rotation deter-
mined by the sequence ya on the four matrices
D4, D5, D6, and D7, respectively, the result of the
rotation is obtained and displayed in Fig. 9d.

– The three slice matrices (D8, D9, D10) on the
y0z surface of the pixel matrix obtained after
the rotation of the x0y surface are shown in
Fig. 9e. The outermost circle of the D8 matrix
is (96, 85, 48, 47, 21, 15, 43, 52, 74, 43), and the
corresponding value in the sequence za represent-
ing the shift distance is 1. Then, the outermost circle
performs a cyclic shift of distance 1 to obtain the
sequence (43, 96, 85, 48, 47, 21, 15, 43, 52, 74). By
performing this Rubik’s Cube-like rotation on the
three matrices D8, D9, D10, respectively, whose
cyclic shift distance is determined by the sequence
za , the result of the rotation is obtained and dis-
played in Fig. 9f.
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Fig. 9 The Rubik’s Cube-like confusion example

4.3 Iterative diffusion

Merely shuffling the positions of adjacent pixels does
not provide sufficient security. In order to hide the sta-
tistical properties of plaintext, a diffusion operation
is also required. In 3DVSCS-IES, an iterative diffu-
sion method is applied to ensure that small changes
in the plaintext image can result in a completely dif-
ferent ciphertext image. By further scaling the three
sequences x, y, z generated by the 3DVSCSmap as fol-
lows, we get three chaotic sequences xb, yb, zb which
are respectively used to change the pixel values of the
three color channels.

⎧⎪⎨
⎪⎩

xb = �M × N × x(1 : 2 × M × N )�
yb = �M × N × y(1 : 2 × M × N )�
zb = �M × N × z(1 : 2 × M × N )�

(11)

The current pixel is then changed by the previous pixel
and the corresponding chaotic sequence value. Suppose
both permutation result P and diffusion result D are
of size M × N × 3, and transform all channels of P

and D into sequences of length M × N , denoted by
PR, PG , PB , DR, DG , DB . The iterative diffusion can
be described as follows:

R : DR(n) = PR(n) + xb(n)] mod 256,

DR(n) = DR(n − 1) + PR(n) + xb(n) mod 256,

n = 1

n > 1

G : DG(n) = DR(M ∗ N ) + PG(n) + yb(n) mod 256,

DG(n) = DG(n − 1) + PG(n) + yb(n) mod 256,

n = 1

n > 1

B : DB(n) = DG(M ∗ N ) + PB(n) + zb(n) mod 256,

DB(n) = DB(n − 1) + PB(n) + zb(n) mod 256,

n = 1

n > 1
,

(12)

where the first pixel in the G channel of P is diffused
by the last pixel in the R channel of P. Similarly, the
first pixel in the B channel of P is diffused by the last
pixel in the G channel of P. By this operation, subtle
changes that occur in the R channel can be passed to
the G and B channels.
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4.4 Decryption process

3DVSCS-IES iterates the confusion–diffusion opera-
tion two times in the encryption process, so in the
decryption process, it is necessary to perform the
inverse operation of diffusion and then the inverse oper-
ation of confusion on the cipher image, and cycle the
above operations two times to obtain the plain image.

The diffusion process is from the confusion result
P to the diffusion result D, then the inverse process of
diffusion is the process from D to P, where in the first
iteration of decryption, the diffusion resultD represents
the cipher image. Still assuming that the size of P and
D are both M × N × 3, and transform all channels
of P and D into sequences of length M × N denoted
by PR, PG , PB , DR, DG , DB . The inverse operation of
the iterative diffusion is described as follows.

B : PB(n) = DB(n) − DB(n − 1) − zb(n) mod 256,

PB(n) = DB(n) − DG(M ∗ N ) − zb(n) mod 256,

n > 1

n = 1

G : PG(n) = DG(n) − DG(n − 1) − yb(n) mod 256,

PG(n) = DG(n) − DR(M ∗ N ) − yb(n) mod 256,

n > 1

n = 1

R : PR(n) = DR(n) − DR(n − 1) − xb(n) mod 256,

PR(n) = DR(n) − xb(n) mod 256,

n > 1

n = 1
(13)

The confusion process is from the plain image or
the result D of the diffusion operation of the previous
encryption iteration to the confusion result P, then the
inverse operation of confusion in the decryption pro-
cess is to obtainD from P, whereD here represents the
plain image in the second decryption iteration.

Same as the operation in the encryption process, P
is divided and arranged into P1 · · · P3, P4 · · · P3+M ,

P4+M · · · P3+M+N , chaotic sequences xa, ya, za are
generated by 3DVSCS, and the d of the slice matrix
on the three planes is represented by dx, dy, and dz
respectively, where d is the total number of rings and
one-dimensional arrays in the slice matrix. We denote
the inverse operation of RCLR as RCLR−1(T, s),
which cyclically shifts the rings and the possibly one-
dimensional array of thematrix T in the opposite direc-
tion of RCLR by the distance specified by the control
sequence s. The inverse operation of Rubik’s Cube-like
confusion is described below.

Pn−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RCLR−1(Pcn
n , za(1 + (n − 1) 3 + M < cn

×dz : n × dz)), ≤ 3 + M + N

RCLR−1(Pcn
n , ya(1 + (n − 1)

×dy : n × dy)), 3 < cn ≤ 3 + M

RCLR−1(Pcn
n , xa(1 + (n − 1)

×dx : n × dx )), 1 < cn ≤ 3

(14)

where n is from 3 + M + N to 1, Pcn
n represents the

cn-th slice of the matrix P after rotation 3+M+N −n
times. The resultD of this reverse process of confusion
is equal to P0.

5 Simulation result

MatlabR2019a is used to implement the proposed
image encryption system on a private computer config-
ured as intel(R) Core(TM) i7-10700, CPU 2.90GHZ,
memory 16GB, operation system Microsoft Win-
dow10. Test images in this section include Lena(256×
256), Peppers(512 × 512), Mandrill(512 × 512), and
San Diego(1024 × 1024). The 256-bit long key used
in this simulation is:

1E3A2453543FD22EB3FC48

A71E A26C34FD4A2E9136D90AF99B6BD6

4A24F5C6E7.

The simulation results are shown in Fig. 10, where the
plain images are in the first column, the cipher images
are in the second column, and the decrypt images are in
the third column. It can be seen that the cipher images
are all noise-like images and the decrypt images are the
same as the plain images. Thus it can be concluded that
our image encryption system can successfully encrypt
and decrypt color images.

6 Security analysis

This section verifies the security of the proposed
encryption system and its resistance to various types
of attacks.
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Fig. 10 Simulation results
of 3DVSCS-IES

6.1 Key space

The key space refers to the set of all possible keys, and
the size of the key space depends on the length of the
security key, which is one of themost important charac-
teristics that determine the strength of a cryptosystem.
For a binary security keyof lengthL, its key space size is
2L . If an attacker wants to attack the encryption system
utilizing brute force, theoretically, it needs to calculate

2L times to ensure the success of the attack. Generally,
the key space should be larger than 2100 to provide high-
security performance. 3DVSCS-IES employs keys of
length 256, which can provide a key space with the size
of 2256 that is much larger than 2100 and can effectively
resist brute force attacks.
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Fig. 11 Key sensitivity
analysis in encryption
process

6.2 Key sensitivity

A qualified image encryption algorithm needs to be
sensitive to keys in both the encryption process and
the decryption process. Otherwise, there may be many
equivalent keys, which seriously reduce the key space.
Key sensitivity canbequantifiedby calculating the ratio
of pixel grayscale differences between the ciphertext
image generated under the slightly changed key and
the ciphertext image generated with the original key.
In the experiment, Lena(256 × 256) is chosen as the
initial image, and the key given in Sect. 5 is used as the
initial key, K1. Two slightly changed keys K2, K3 are
generated by changing one bit of K1:

K1 =1E3A2453543FD22EB3FC48A71

E A26C34FD4A2E9136D90AF99B6

BD64A24F5C6E7

K2 =3E3A2453543FD22EB3FC48A71

E A26C34FD4A2E9136D90AF99B6

BD64A24F5C6E7

K3 =1E3A2453543FD22EB3FC48A71

E A26C34FD4A2E9136D90AF99B6

BD64A24F5C6E6

The result of the key sensitivity analysis in the encryp-
tion process is shown in Fig. 11, where (a), (b), and

(c) are the cipher images of Lena generated by K1, K2,
K3. (d), (e) and (f) are the difference between the three
ciphertext images and the cipher image generated by
the initial key, respectively. Table 3 lists the pixel gray-
ness change ratio between the cipher image generated
under the slightly changed key and the cipher image
generated by the original key K1. From Fig. 11 and
Table 3, it can be observed that small changes to the key
during encryption can result in a completely different
cipher image, and the pixel grayness change ratios of
the three color channels are all above 99%, so it can be
concluded that 3DVSCS-IES has high key sensitivity
in the encryption process.

The key sensitivity in the decryption process is ana-
lyzed by using K2 and K3 to decrypt the cipher image
generated by the initial key K1 in Fig. 10b. The result is
shown in Fig. 12, where (a), (b), and (c) are the images
decrypted from Fig. 10b using K1, K2, and K3, respec-
tively. Table 4 lists the pixel grayness change ratio
between the image decrypted by the slightly changed
key and the image decrypted correctly by the original
key K1. In Fig. 12 and Table 4, the small changes to the
key during decryption can result in a completely dif-
ferent decrypted image, and the pixel grayness change
ratios of the three color channels are all above 99%.
Thus 3DVSCS-IES has high key sensitivity in the
decryption process.
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Table 3 Pixel grayness change ratio of the cipher images

Image Key Pixel grayness change ratio
Red component Green component Blue component

Figure 10a K1 0 0 0

K2 99.6613 99.6124 99.6246

K3 99.6002 99.6262 99.6078

Fig. 12 Key sensitivity
analysis in decryption
process

Table 4 Pixel grayness change ratio of the decrypted images

Image Key Pixel grayness change ratio
Red component Green component Blue component

Figure 10b K1 0 0 0

K2 99.6170 99.6201 99.6170

K3 99.5972 99.6582 99.6094

We can summarize that 3DVSCS-IES owns high key
security in both the encryption process and the decryp-
tion process.

6.3 The equality in key strength

Equal key strength means that all keys are required to
be equally strong, preventing attackers from obtaining
partial information of the plain image by decrypting the
cipher image with keys close to the real key. Moreover,
equal key strength can effectively avoid the avalanche
effect (whenever the key used for decryption is close
to the real key, the difference between the plaintext and
the recovered plaintext tends to 0) [30,31].

To evaluate the key equivalence of 3DVSCS-IES,
we use K1 as the real key to encrypt Lena, use different
keys around K1 to try to recover the plain image, and
then calculate the Bit Error Ratio (BER) between the
recovery result of each different key and Lena. The
results are shown in Fig. 13, where keyi refers to the
key obtained by inverting the i-th bit of the real key.

It can be clearly seen that even if there is only 1 bit
difference from the real key, the BER value remains
around 0.5. No matter how close to the correct key, it
is impossible to obtain any partial information of the
plain image, which means that 3DVSCS-IES has equal
key strength.

6.4 Histogram analysis

The image histogram describes the distribution of pixel
values in an image. For an RGB image, the three chan-
nels can be regarded as three M × N matrices, and the
value range of each element in the matrices is [0, 255],
then the image histogram h(g) is defined as the number
of elements with pixel value g. The pixel distribution
of a typical color image is generally uneven, and when
it is encrypted, the original pixel distribution should be
broken to present a uniform distribution, which means
that the distribution information is hidden. Figure 14
shows the histograms of Lena and its cipher image,
where (a), (b), (c) are the histograms of the three color
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Fig. 13 BER value of keys around K1

channels of Lena, and (d), (e), (f) are the histograms of
the three color channels of the cipher image of Lena.
We can obtain that the plain image has an uneven distri-
bution while the ciphertext image has a uniform pixel
distribution. Conclusively, 3DVSCS-IES can generate
cipher images that hide the pixel distributions of the
plain images.

6.5 Differential attack

Differential attack is a common way of cracking cipher
images, and its essence is a selective plaintext attack.
The attacker first makes minor changes to the plaintext
image and then uses the proposed encryption method
to encrypt the original plain image and the altered plain
image separately. By comparing the two cipher images,
the attacker can analyze the relationship between the
original image and the cipher image, thereby crack-
ing the cipher image. When the difference between the
two cipher images is huge, it is difficult for the attacker
to find the connection between the plain image and
the cipher image, which makes it difficult to perform
differential attacks. Therefore, whether an encryption
method can resist differential attacks can be judged by
its sensitivity to the plain image. The ability of encryp-
tion methods to resist differential attacks can be quan-
tified by the number of pixels change rate (NPCR) and
the unified average changing intensity (UACI) which
are obtained by measuring the cipher images of the
original plain image and slightly modified plain image.
Equations (15)–(17) give the method to calculate the

values of NPCR and UACI.

NPCR =
∑

i, j D(i, j)

M × N
× 100%, (15)

D(i, j) =
{
1, C(i, j) �= C ′(i, j)
0, C(i, j) = C ′(i, j)

, (16)

UACI = 1

M × N

×
⎡
⎣∑

i, j

|C(i, j) − C ′(i, j)|
255

⎤
⎦ × 100%,

(17)

where C and C ′ are the cipher images of the original
plain image and the altered plain image, respectively,
and M × N is the size of each channel of the cipher
images. For an image with an 8-bit grayscale value,
the ideal NPCR value is 99.6094% and the ideal UACI
value is 33.4635%. The closer the calculated values
are to these two ideal values, the stronger the ability
of the encryption method to resist differential attacks.
The NPCR and UACI values of different test images
are given in Table 5, and the NPCR and UACI val-
ues of our method and some other methods are com-
pared in Table 6. It can be seen from the two tables
that 3DVSCS-IES has values of NPCR and UACI that
are closer to the theoretical values, which means our
method is better at resisting differential attacks.

6.6 Correlation analysis

The correlation of adjacent pixels reflects the degree of
correlation of pixel values in adjacent positions of the
image. A qualified image encryption algorithm should
reduce the correlation of adjacent pixels and try to
achieve zero correlation to prevent attackers from ana-
lyzing the correlation of neighboring pixels to obtain
adequate information about the image. The correlation
coefficients rx,y can be calculated as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rx,y = E((x−E(x))(y−E(y)))√
D(x)D(y)

,

E(x) = 1
N

∑N
i=1 xi ,

D(x) = 1
N

∑N
i=1(xi − E(x))2,

(18)

where xi and yi are a couple of adjacent pixels, E(x)
and D(x) are the expectation and variance of variable
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Fig. 14 Histograms of
Lena and its ciper image: a
Red component of Lena; b
Green component of Lena; c
Blue component of Lena; d
Red component of ciper
image; e Green component
of ciper image; f Blue
component of ciper image
(color figure online)

Table 5 NPCR and UACI results for different images

Image NPCR (%) UACI (%)
Red Green Blue Red Green Blue

Lena 99.6140 99.6017 99.6140 33.5627 33.5218 33.4339

Peppers 99.5899 99.6037 99.6090 33.4482 33.4100 33.5403

Mandrill 99.6299 99.6037 99.6090 33.4236 33.4326 33.4886

San Diego 99.5971 99.6157 99.6060 33.4308 33.4589 33.4183

Mean 99.6077 99.6062 99.6095 33.4663 33.4558 33.4703

Table 6 Comparison of NPCR and UACI results with other methods

Method NPCR (%) UACI (%)
Red Green Blue Red Green Blue

Ours 99.6077 99.6062 99.6095 33.4663 33.4558 33.4703

[32] 99.6182 99.611 99.6114 33.4775 33.46 33.4564

[33] 99.6025 99.6077 99.6123 33.4710 33.4632 33.4597

[34] 99.60 99.61 99.60 33.55 33.44 33.45

[35] 99.6821 99.6827 99.6811 33.5002 33.4993 33.5167

[36] 99.73 99.66 99.68 33.26 34.13 33.28

[37] 99.6106 99.6085 99.6107 33.4784 33.4582 33.4673

x, respectively, and rx,y is the correlation coefficient.
Generally, three aspects of the horizontal, vertical, and
diagonal pixels of the image should be analyzed. Fig-
ure 15 gives the pixel distribution of the plain image
Lena and its cipher image inH(horizontal), V(vertical),
and D(diagonal) directions, where (a) shows the hori-
zontal direction of red component of the plain image,
(b) is the vertical direction of green component of the

plain image, (c) depicts the diagonal direction of blue
component of the plain image, (d) draws the horizon-
tal direction of red component of the cipher image,
(e) is the vertical direction of green component of the
cipher image, and (f) shows the diagonal direction of
blue component of the cipher image. It can be seen that
the pixel distribution of the plaintext image is concen-
trated near the diagonal, which means that the adja-
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Fig. 15 Pixels distribution of Lena and its ciper image: a hori-
zontal direction of red component of Lena; b vertical direction
of green component of Lena; c diagonal direction of blue com-
ponent of Lena; d horizontal direction of red component of the

ciper image; e vertical direction of green component of the ciper
image; f diagonal direction of blue component of the ciper image
(color figure online)

cent pixels have a high correlation. In contrast, the
pixel distribution of the ciphertext image is close to a
uniform distribution, and the correlation is effectively
removed. Table 7 lists the correlation coefficients of dif-
ferent images before and after encryption, and Table 8
compares the correlation coefficients of 3DVSCS-IES
and other encryption algorithms after encrypting Lena.
Obviously, the proposed encryption method can signif-
icantly reduce the correlation between adjacent pixels
in cipher images, and our method has lower correlation
coefficients relative to the other methods listed. It can
be concluded that 3DVSCS-IES is better in removing
the correlation of adjacent pixels.

6.7 Information entropy

Mathematically, information entropy is the expectation
of the amount of information. It is an indicator used
to evaluate and measure the amount of information in
a piece of information and is often used to measure
the randomness of cipher images. It is calculated as

follows:

H(m) =
2n−1∑
i=0

p(mi ) log
1

p(mi )
, (19)

where p(mi ) means the probability of mi . For a dig-
ital image with a grayscale pixel value of 8 bits, the
ideal information entropy should be 8. Table 9 gives the
information entropy values of the cipher images gener-
ated by the 3DVSCS-IES and other methods. The table
shows that the values of these information entropies are
all close to the ideal value, and our method is signifi-
cantly more relative to the ideal value than other meth-
ods, which means that 3DVSCS-IES has high security.

6.8 Noise and occlusion attack analysis

Images will inevitably suffer from data loss or noise
during physical transmission, and if the encryption
method is not robust, accurate plaintext informa-
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Table 7 Correlation coefficients of different images before and after encryption

Image Direction Correlation coefficients
Plain image Cipher image
Red Green Blue Red Green Blue

Lena H 0.9507 0.9318 0.9128 0.0006 − 0.0004 0.0001

V 0.9755 0.9691 0.9482 − 0.0012 − 0.0007 0.0005

D 0.9242 0.9098 0.8970 0.0008 0.0007 0.0006

Peppers H 0.9621 0.9789 0.9616 − 0.0005 − 0.0004 − 0.0006

V 0.9646 0.9774 0.9628 0.0004 0.0002 0.0003

D 0.9513 0.9599 0.9401 0.0007 0.0004 0.0006

Mandrill H 0.9224 0.8631 0.9079 − 0.0003 0.0008 0.0008

V 0.8624 0.7584 0.8788 − 0.0002 − 0.0002 0.0008

D 0.8495 0.7317 0.8368 − 0.0011 0.0005 0.0025

San Diego H 0.9254 0.9178 0.9067 − 0.0003 0.0006 0.0019

V 0.9220 0.9151 0.9048 0.0003 0.0007 0.0025

D 0.9032 0.8946 0.8822 − 0.004 0.0002 − 0.0003

Table 8 Comparing results of correlation coefficients for Lena

Method Correlation coefficients
Horizontal Vertical Diagonal Average

Plain image 0.9318 0.9643 0.9103 0.9355

Ours 0.0003 0.0008 0.0007 0.0006

[33] 0.003 0.0002 0.0001 0.0011

[34] − 0.0027 0.0033 − 0.0035 0.0031

[38] 0.0016 0.0011 0.0011 0.0013

[39] 0.0076 0.0055 0.0032 0.0054

[40] 0.0173 0.0143 0.0085 0.0134

[41] 0.0002 0.0022 − 0.0015 0.0013

[42] 0.0048 0.0029 0.0031 0.0036

Table 9 Information entropy of cipher images of different encryption methods

Image Information entropy
R G B

Lena 7.9976 7.9973 7.9971

Peppers 7.9991 7.9992 7.9992

Mandrill 7.9992 7.9993 7.9991

San Diego 7.9998 7.9998 7.9998

Lena [32] 7.9912 7.9913 7.9914

Lena [34] 7.9973 7.9969 7.9971

Lena [43] 7.9974 7.9974 7.9974
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Fig. 16 The resistance to
noise and occlusion attack:
a noisy images by SPN with
density = 0.005; b noisy
images by SN with density
= 0.001; c noisy images by
GN with density = 0.0005;
d decrypted image of (a); e
decrypted image of (b); f
decrypted image of (c); g
stripe clipping image; h
corner clipping image; i
center clipping image; j
decrypted image of (g); k
decrypted image of (h); l
decrypted image of (i)
(color figure online)
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Table 10 Running time of different images

Image Size Encryption time (s) Decryption time (s)

Lena 256 × 256 0.426247 0.457733

Peppers 512 × 512 0.801175 0.893177

Mandrill 512 × 512 0.922003 0.841457

San Diego 1024 × 1024 2.425249 2.416450

Table 11 Running time of different algorithms

Method Encryption time (s) Decryption time (s)

Ours 0.922003 0.841457

[32] 1.796105 0.847575

[33] 1.305322 1.026494

[34] 1.431 1.633

[44] 1.4933 7.8065

[45] 1.1168 3.2687

[46] 8.6078 9.6359

tion cannot be obtained after decryption. A qualified
encryption algorithm is resistant to data loss and noise,
and Fig. 16 shows the decryption results of the cipher
images of Lena after suffering data loss or noise, where
(a), (b), (c) are the noisy cipher images contaminated
by Salt & Pepper noise (SPN) with density = 0.005,
Speckle noise (SN) with density = 0.001, and Gaussian
noise (GN)with density = 0.0005, respectively. (d), (e),
(f) are the decrypted images of (a), (b), and (c), respec-
tively. (g) is the stripe clipping image, (h) is the corner
clipping image, and (i) is the center clipping image. (j),
(k), and (l) are the decrypted image of (g), (h), and (i),
respectively. It can be seen that the cropped or noised
cipher image can still retain the primary information of
the plain image after decryption. Therefore, the raised
encryption algorithm is highly resistant to noise and
occlusion attacks.

6.9 Runtime analysis

In addition to security, encryption and decryption speed
is also an important aspect in measuring the perfor-
mance of an encryption algorithm. Table 10 lists the
time required to encrypt and decrypt different images
using 3DVSCS-IES, and Table 11 compares the run-
ning time of 3DVSCS-IES with other algorithms on

Peppers(512 × 512). As can be seen from the table,
our encryption algorithm has excellent running speed
compared with other encryption methods.

7 Conclusion

This paper presents a 3DVSCS that has innovative and
mutational dynamical behaviors. The structure is trans-
formed by switching two coupling matrices in each
iteration. The chaotic performance of 3DVSCS is ana-
lyzed by the phase diagram, bifurcation diagram, lya-
punov exponent, approximate entropy, and randomness
test. The analysis results demonstrate that 3DVSCS has
complex chaotic behavior and can be applied to encryp-
tion algorithms. By using 3DVSCS as the core chaotic
map, we further propose an image encryption algo-
rithm, 3DVSCS-IES, which follows the well-known
confusion–diffusion mechanism. Because the gener-
ated chaotic sequences have good properties, a bet-
ter efficiency Rubik’s Cube-like permutation method
and an iterative diffusion algorithm are raised to real-
ize confusion and diffusion, respectively. The simu-
lation results show that 3DVSCS-IES can effectively
encrypt and decrypt color images of different sizes.
Then various security tests on the presented cryptosys-
tem are performed, including key space, key sensitivity,
key strength equality, histogram analysis, the ability to
defend the differential attack, correlation analysis, and
information entropy.Comparisonswith some advanced
methods are also given. The analysis and comparison
results show that 3DVSCS-IES has high-security per-
formance and surpasses some typical state-of-art meth-
ods. Our future work will investigate more complex
variable structure mechanisms on chaotic systems and
corresponding hardware implementation.
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