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Abstract Embedded NiTiNOL-steel wire ropes are

proposed as a nonlinear damper for a composite

laminated cylindrical shell. Its dynamic responses to

axial harmonic excitations are analyzed with a focus

on vibration reduction performance. A coupled

dynamic model, a set of partial differential equations

with boundary conditions, is derived from the gener-

alized Hamilton’s principle and Donnell’s first shear

deformation theory. The model is discretized into a

series of nonlinear ordinary differential equations via

the Galerkin truncation. The discretized model is

validated by the finite element method in the sense of

the natural frequencies of the shell without the ropes

and the force responses of the shell with ropes. Based

on the results based on the Galerkin truncation, the

amplitude reduction rate changing with the excitation

frequency curve reveals, the vibration reduction

effects of the excitation amplitude, the length to the

radius ratio, and the composite layering for different

configurations of the NiTiNOL-steel wire ropes. The

investigation demonstrates that the S3b NiTiNOL-

steel wire ropes achieve the best vibration reduction.

Keywords Nonlinear vibration reduction �
Composite laminated cylindrical shell � NiTiNOL-

steel wire ropes � First shear deformation theory �
Galerkin discretized � Amplitude reduction rate

1 Introduction

As a kind of designable material structure, composite

laminated shells are widely used in aerospace engi-

neering. One representative application is the fairing

shell of a rocket launcher. The fairing shell consists of

a cylindrical section, a frustoconical section, and a

nose. The complex working environment requires

fairing with high strength, lightweight, corrosion

resistance, and impact resistance. However, although

the composite laminated shells can meet the strength

requirement, low-frequency longitudinal coupled

vibration often occurs during rocket launching. The

vibration not only damages the interior spacecraft but

also causes extreme discomfort to the astronauts, the

understanding and reductions in layered and compos-

ite shells vibration have become a significant issue in

the aerospace field.

Although the vibrations of composite laminated

plates and shells have been widely investigated, as

comprehensively reviewed by Sayyad et al. [1, 2] and

Kumar et al. [3], the investigations on vibration

reduction in composite shells are somewhat limited.
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All available works on composite laminated plates are

active vibration control. In many practical circum-

stances including spacecraft launching, passive vibra-

tion reductions are feasible and reliable. Caresta et al.

[4] proposed a passive vibration isolation method to

reduce the radiated sound pressure of a submarine

modeled as a reinforced cylindrical hull and revealed

the effectiveness of the passive isolation of the end cap

from the main hull. Gao et al. [5] proposed a passive

vibration reduction method by depositing a hard

coating on both sides of a composite laminated

cylindrical shell. Cao et al. [6] investigated the free

vibration of a cylindrical shell with passive damping

layers and the influence of damping layer thickness on

frequency parameters and loss factors. Zheng et al. [7]

investigated the passive vibration reduction and the

layout optimization of cylindrical shells embedded

with passive constrained damping layer (PCDL) under

broadband transverse excitation. Zheng et al. [8]

investigated the dynamic characteristics of a cylindri-

cal shell embedded with multiple passive damping

layers (MPCDL) and demonstrated the improvement

of vibration suppression due to the increased layers.

Niu et al. [9] investigated the mixed vibration control

of cylindrical shells by electromagnetic confinement

layer damping (EMCLD) consisting of an electro-

magnet layer, permanent magnet layer, and viscoelas-

tic damping layer. They demonstrated the apparent

energy dissipation in the passive mode of the EMCLD.

Plattenburg et al. [10] designed a dimensionless

performance index to compare the responses of the

same thin cylindrical shell under active vibration

reduction and passive vibration reduction, respec-

tively, and proposed a vibration control design

scheme finally. Huang et al. [11] introduced the

curved beam periodic structure into the transmission

path of the internal vibration isolation system to

reduce the vibration of the receiving column shell

structure in a passive broadband manner. Abdoun et al.

[12] investigated the passive vibration control,

response curve and equivalent damping characteristics

of a sandwich viscoelastic shell in a large frequency

range. Jin et al. [13] established a three-layer passive

constrained damping layer (PCDL) cylindrical shell

with a general elastic constrained boundary and

investigated its passive vibration reduction character-

istics. Finally, the effects of layer thickness and shear

parameters on natural frequency and loss factor were

explained in detail. Deng et al. [14] verified that the

acoustic black hole (ABH) is a very effective passive

vibration reduction method for cylindrical shells.

Actually, the passive control of cylindrical shells is

rare. No research has been reported on the passive

control of composite laminated cylindrical shells.

Among various passive vibration reduction

approaches, shape memory alloy (SMA) can serve as

a nonlinear damper. NiTiNOL-steel wire ropes belong

to novel SMA. It is made of multiple wire ropes

twisted together. Different wire numbers and twisting

methods can form different types of wire ropes. They

all have shape memory properties, high strength,

pseudoelasticity, and high damping provided by

mutual frictions among the wires [15–17]. Generally,

the investigation on shape memory alloy are based on

various constitutive models reflecting its super elas-

ticity and hysteresis. For example, Pariza et al. [18]

developed the Brinson model to express its constitu-

tive relation to investigate the buckling problem of

shape memory alloy plates subjected to uniform and

linearly distributed in-plane loads. Nekouei et al.

[19, 20] used Brinson’s one-dimensional constitutive

law to explore the dynamic behavior of shape memory

carbon fiber reinforced laminated composite cylindri-

cal shells and conical shells under uniform tempera-

ture change, and found that a small amount of carbon

fiber could improve the Fundamental frequency and

vibration control. However, a NiTiNOL-steel wire

rope is usually regarded as a nonlinear damping

device, with constitutive models yielding the restoring

and damping forces that are experimental defined.

Carboni et al. [21, 22] proposed a new absorber based

on the restoring and damping force of NiTiNOL-steel

wire rope, designed a set of devices to extend the

Bouc-Wen model through experiments, and obtained

the restoring and damping force model of NiTiNOL-

steel wire rope. Carboni et al. [23, 24] established a

nonlinear hysteresis beam model based on geometri-

cally accurate plane beam theory, combined it with the

Bouc-Wen model, and finally added the hysteresis

behavior to the restoring and damping force model of

NiTiNOL-steel wire rope. Niu et al. [25] proposed a

nonlinear vibration isolator composed of a compliant

mechanism with negative stiffness and a wire rope

with hysteresis damping. Zhang et al. [26] proposed a

novel nonlinear energy sink device for spacecraft, and

the damping is produced by NiTiNOL-steel wire

ropes. The generalized vibration transmissibility is

used to describe the vibration isolation effect of the
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device, and the research shows that the device can

effectively reduce the excessive vibration of the

spacecraft. Zheng et al. [27] coupled NiTiNOL-steel

wire rope as a nonlinear damper with the composite

laminated beam model to suppress the vibration of the

laminated composite beams. The amplitude-frequency

responses curve obtained by the Galerkin method and

the harmonic balance method demonstrated the vibra-

tion reduction effectiveness of the NiTiNOL-steel

wire rope. As a nonlinear damping, NiTiNOL-steel

wire ropes are limited to reduce vibration of composite

laminated beams. It is not clear if NiTiNOL-steel wire

ropes can work more sophisticated models such as a

composite laminated shell. To explore the possibility,

the present investigation focuses on the passive

vibration reduction in a composite laminated cylin-

drical shell with embedded NiTiNOL-steel wire ropes.

The organization of this manuscript is as follows.

Section 2 develops the dynamic model of a composite

laminated cylindrical shell embedded with the NiTi-

NOL-steel wire ropes. Section 3 solves the Galerkin

truncated governing equations with the finite element

validations and examines the effects of different

NiTiNOL-steel wire ropes parameters on vibration

reduction. Section 4 ends the manuscript with con-

cluding remarks.

2 Formulations

Consider a composite laminated cylindrical shell

(CLCS) with the length L, the radius R, and the

thickness h, and four NiTiNOL-steel steel wire ropes.

Four NiTiNOL-steel wire ropes are distributed on the

mid-surface of the CLCS in a 90-ring array.

As shown in Fig. 1a, a cylindrical coordinate

system is located at the center of the CLCS, where

x ¼ 0. The structure is axisymmetric, but its deforma-

tion is asymmetric because its vibration mode has both

beam bending mode and shell breathing mode. The

displacements of arbitrary points on the shell are

determined by three independent coordinate compo-

nents x, h, and z. The coordinates x, h, and z represent

the axial, circumferential and radial directions of the

cylindrical coordinate system, respectively. Internal

forces of the CLCS are axial force Nxx, bending

moment Mxx and Mhh, transverse shear force Qx and

Qh, circumferential shear force Nxh, torsional moment

Mxh. Displacements u, v, w of arbitrary points on the

CLCS are in the axial, the circumferential and the

radial directions, respectively. As shown in Fig. 1b,

four NiTiNOL-steel wire ropes are located on the mid-

surface of the CLCS symmetrically along the axial

direction.

2.1 Coordinating equation and constitutive

equation

According to Donnell’s first-order shear deformation

theory, the displacement of an arbitrary point on the

CLCS can be assumed to be

u x; h; z; tð Þ ¼ u0 x; h; tð Þ þ zux x; h; tð Þ; ð1aÞ

v x; h; z; tð Þ ¼ v0 x; h; tð Þ þ zuh x; h; tð Þ; ð1bÞ

w x; h; z; tð Þ ¼ w0 x; h; tð Þ ð1cÞ

where u0, v0, w0 are the axial, the circumferential and

the radial displacements of arbitrary points on the mid-

surface of the CLCS, ux and uh represent the rotation

angles of the transverse normal respect to the x-axis

and h-axis.

Similarly, the strain at an arbitrary point on the

CLCS obeys the following relationship with the strain

at an arbitrary point on the mid-surface of the CLCS

exx ¼ exx;0 þ zvxx; ð2aÞ

ehh ¼ ehh;0 þ zvhh; ð2bÞ

cxh ¼ cxh;0 þ zvxh ð2cÞ

where exx;0, ehh;0 and cxh;0 are the strain at an arbitrary

point on the mid-surface, vxx, vhh, and vxh are the

curvature changes and satisfying

vxx ¼
oux

ox
¼ � o2w

ox2
; ð3aÞ

vhh ¼
ouh

Roh
¼ � o2w

R2oh2
; ð3bÞ

vxh ¼
oux

Roh
þ ouh

ox
¼ � 2o2w

Roxoh
ð3cÞ

For small deformations, the coordination equation

of arbitrary points on the mid-surface of the CLCS can

be simplified as
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exx;0 ¼ ou0

ox
; ð4aÞ

ehh;0 ¼ ov0

Roh
þ w0

R
; ð4bÞ

cxh;0 ¼ ov0

ox
þ ou0

Roh
ð4cÞ

The constitutive relationship of a single layer

zk\z\zkþ1 is considered. The generalized Hooke’s

law leads to the stress–strain relationship

rxx
rhh
sxh

8
<

:

9
=

;

kð Þ

¼
Q11 Q12 Q16

Q21 Q22 Q26

Q61 Q62 Q66

2

4

3

5

kð Þ exx
ehh
cxh

8
<

:

9
=

;

kð Þ

ð5Þ

where k represents the kth layer, Q
kð Þ

is the transfor-

mation stiffness matrix for the stress–strain relation-

ship of the kth layer. For orthotropic materials, the

transformation stiffness matrix can be expressed as

[28]

Q11 Q12 Q16

Q21 Q22 Q26

Q61 Q62 Q66

2

4

3

5

kð Þ

¼ T
Q11 Q12 0

Q21 Q22 0

0 0 Q66

2

4

3

5

kð Þ

TT

ð6Þ

where Q kð Þ is the stiffness matrix, T is the transfor-

mation matrix. T can be written as

T ¼
cos2 að Þ sin2 að Þ �2 cos að Þ sin að Þ
sin2 að Þ cos2 að Þ 2 cos að Þ sin að Þ

cos að Þ sin að Þ � cos að Þ sin að Þ cos2 að Þ � sin2 að Þ

2

6
4

3

7
5

ð7Þ

where a is the angle between the principle direction of

a layer of the CLCS and the x-axis. The coefficients

Q
kð Þ
ij in the stiffness matrix can be expressed as

Q
kð Þ

11 ¼ E1

1 � l12l21

;Q
kð Þ

12 ¼ Q
ðkÞ
21 ¼ l12E2

1 � l12l21

;Q
kð Þ

22

¼ E2

1 � l12l21

;Q
kð Þ

66 ¼ G12

ð8Þ

Among them, E1 and E2 represent the Young’s

elasticity modulus of a layer of materials in the

principle direction, and l21 and l21 are the corre-

sponding Poisson ratios, and G12 is the moduli of

rigidity. It is worth noting that E1 6¼ E2 for anisotropic

materials, but E1l21 ¼ E2l12.

2.2 Internal force equation

By integrating the stress in Eq. (5) on the section of the

cylindrical shell and in the thickness direction, the

internal forces and moments on the mid-surface of the

CLCS are

Fig. 1 Composite laminated cylindrical shell embedded with NiTiNOL-steel ropes; a Composite laminated cylindrical shell b The

NiTiNOL-steel wire ropes layout
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Nxx

Nhh

Nxh

Mxx

Mhh

Mxh

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼

A11 A12 0 B11 B12 0

A21 A22 0 B21 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B21 B22 0 D21 D22 0

0 0 B66 0 0 D66

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

exx;0
ehh;0
cxh;0
vxx
vhh
vxh

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

ð9Þ

Aij, Bij and Dij are, respectively, the stretch, the

coupling and the bending stiffness coefficients with

Aij ¼
XN

k¼1

Q
k

ij zkþ1 � zkð Þ;Bij

¼ 1

2

XN

k¼1

Q
k

ij z
2
kþ1 � z2

k

� �
;Dij ¼

1

3

XN

k¼1

Q
k

ij z
3
kþ1 � z3

k

� �

ð10Þ

where N is the total number of layers. Substituting

Eqs. (4a–4c) and (3a–3c) into Eq. (9) yields the

internal force equation

Nxx ¼ A11

ou0

ox
þ A12

ov0

Roh
þ w0

R

� �

þ B11

oux

ox

þ B12

ouh

Roh
; ð11aÞ

Nhh ¼ A12

ou0

ox
þ A22

ov0

Roh
þ w0

R

� �

þ B12

oux

ox

þ B22

ouh

Roh
; ð11bÞ

Nxh ¼ A66

ov0

ox
þ ou0

Roh

� �

þ B66

oux

Roh
þ ouh

ox

� �

;

ð11cÞ

Mxx ¼ B11

ou0

ox
þ B12

ov0

Roh
þ w0

R

� �

þ D11

oux

ox

þ D12

ouh

Roh
; ð11dÞ

Mhh ¼ B12

ou0

ox
þ B22

ov0

Roh
þ w0

R

� �

þ D12

oux

ox

þ D22

ouh

Roh
; ð11eÞ

Mxh ¼ B66

ov0

ox
þ ou0

Roh

� �

þ D66

oux

Roh
þ ouh

ox

� �

:

ð11fÞ

2.3 Application of the generalized Hamilton’s

principle

The high damping property of NiTiNOL-steel wire

rope is the key to reduce the shell vibration. Its

restoring and damping force model is necessary. A

NiTiNOL-steel wire rope is treated as a nonlinear

damping device. The restoring and damping force of

the NiTiNOL-steel wire rope is constituted by the

polynomial fitting of the extended Bouc-Wen model.

The extended Bouc-Wen model reflects the loading

and unloading process of the NiTiNOL-steel wire rope

with different configurations under static force

through experiments, and the parameters of the

restoring force are determined via its hysteresis curve.

Carboni et al. [18–21] revealed the nonlinear mechan-

ical hysteresis characteristics of NiTiNOL-steel wire

ropes by experimental investigations, and obtained the

restoring and damping force equation of NiTiNOL-

steel wire ropes via the extension of the Bouc-Wen

model with identified parameters of various configu-

rations of NiTiNOL-steel wire ropes. The restoring

and damping force fst is [21]

fst ¼ 1 � rð Þkcw
3 þ r kewþ zð Þ ð12Þ

where z is the hysteresis

dz

dx
¼ kdh xð Þ � cþ bsgn z

dw

dx

� �� �

zj jn
� �

dw

dx

h xð Þ ¼ 1 � ne�
w2

wc

8
><

>:

ð13Þ

To deal with transcendental functions in Eq. (12)

with Eq. (13), the restoring and damping force fst is

fitted into a polynomial

fst ¼ k1w0 þ k3w
3
0 þ c1

ow0

ot
þ r21w

2
0 þ r12w0

ow0

ot

� �2

ð14Þ

where k1, k3, c1, r21 and r12 are polynomial fitting

coefficients. Table 1 shows the fitted coefficient values

of several configurations of NiTiNOL-steel wire

ropes.

To establish the equation of motion via the

generalized Hamilton’s principle, it is necessary to

obtain the strain energy, the kinetic energy and the

work done by an external force. The total strain energy

of the CLCS is
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U ¼ 1

2

Z

S

Nxx;0exx;0 þ Nhh;0ehh;0 þ Nxh;0exh;0 þMxxvxx
�

þMhhvhh þMxhvxhÞdS
ð15Þ

where S represents the area of the mid-surface. The

total strain energy of the CLCS can be divided into

stretch strain energy Us, bending strain energy Ub and

coupling strain energy Uc [29]. Substituting

Eqs. (11a–11f), (3a–3c) and (4a–4c) into Eq. (15)

leads to

Us ¼
1

2

Z 2p

0

Z L

0

Z h
2

�h
2

A11

ou0

ox

� �2
"

þ2A12

ov0

Roh
þ w0

R

� �
ou0

ox
þ A22

ov0

Roh
þ w0

R

� �2

þ A66

ov0

ox
þ ou0

Roh

� �2
#

Rdzdhdx;

ð16aÞ

Ub ¼ 1

2

Z 2p

0

Z L

0

Z h
2

�h
2

D11

oux

ox

� �2

þ oux

ox

ouh

Roh

" #

þ 2D12

R

ouh

oh
oux

ox

"

þ D22

R2

ouh

oh

� �2

þD66

oux

Roh
þ ouh

ox

� �2
#

Rdzdhdx;

ð16bÞ

Uc ¼
1

2

Z 2p

0

Z L

0

Z h
2

�h
2

2B11

ou0

ox

oux

ox
þ 2B22

R2

ov0

oh
þ w0

� �
ouh

oh
þ 2B12

R

ouh

oh
ou0

ox

�

þ 2B12

R

ov0

oh
þ w0

� �
oux

ox
þ 2B66

oux

Roh
þ ouh

ox

� �
ov0

ox
þ ou0

Roh

� ��

Rdzdhdx:

ð16cÞ

The total kinetic energy T of the CLCS can also be

divided into three components: translational kinetic

energy Tt, rotational kinetic energy Tr, and coupled

kinetic energy Tc [29]. They can be expressed as

Tt ¼
1

2

Z 2p

0

Z L

0

Z h
2

�h
2

ou0

ot

� �2

þ ov0

ot

� �2

þ ow0

ot

� �2
" #

XN

k¼1

Z zkþ1

zk

qk

 !

Rdzdhdx;

ð17aÞ

Tr ¼
1

2

Z 2p

0

Z L

0

Z h
2

�h
2

oux

ot
þ ouh

ot

� �
XN

k¼1

Z zkþ1

zk

qkz
2

 !

Rdzdhdx;

ð17bÞ

Tc ¼
1

2

Z 2p

0

Z L

0

Z h
2

�h
2

ou0

ot

oux

ot
þ ov0

ot

ouh

ot

� �
XN

k¼1

Z zkþ1

zk

qkz

 !

Rdzdhdx:

ð17cÞ

Potential energy V yielded by restoring and damp-

ing force of NiTiNOL-steel wire ropes is

V ¼
Z L

0

4gfstw0dx ð18Þ

where F0 is the amplitude of basic excitation, f0 is the

frequency of basic excitation, and g ¼ 0:2 is the

NiTiNOL-steel modifying parameter.

The boundary potential energy Up of CLCS can

also be defined as [39]

Up ¼ 1

2

Z 2p

0

Z h
2

�h
2

ku0u
2
0 þ kv0v

2
0 þ kw0w

2
0 þ Kx0u

2
x

�

þ kuLu
2
0 þ kvLv

2
0 þ kwLw

2
0 þ KxLu

2
h

�
dzdh

ð19Þ

where ku0 is the linear axial spring stiffness coefficient,

kv0 is the linear circumferential spring stiffness

coefficient, kw0 is the linear radial spring stiffness

coefficient, and Kx0 is the linear torsion spring

stiffness coefficient where x ¼ 0. kuL is the linear

axial spring stiffness coefficient, kvL is the linear

circumferential spring stiffness coefficient, kwL is the

Table 1 Fitting coefficient

values of several NiTiNOL-

steel configurations [29]

k1 N/mð Þ k3 N/mð Þ c1 N � s/mð Þ r21 N � s/m3
� �

r12 N � s2/m3
� �

R-square

S1a – 4.097e8 122.4 1.699e6 - 6.515e4 0.9983

S2a 5966 – 52.09 1.259e5 - 9876 0.9986

S2b 4523 – 16.49 1.077e5 - 2608 0.9963

S3a 6016 3.229e7 49.96 3.396e5 - 2.26e4 0.9996

S3b 3962 7.299e7 124.70 6.446e5 - 2.998e4 0.9989

S3c 8535 4.222e7 104.80 6.114e4 - 2.761e4 0.9999
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linear radial spring stiffness coefficient, and KxL is the

linear torsion spring stiffness coefficient where x ¼ L.

The work done by the external harmonic excitation

f ¼ F0 sin 2pf0tð Þ on the bottom surface of the CLCS

can be calculated as

Wf ¼
Z 2p

0

F0 sin 2pf0tð Þu0Rdh ð20Þ

Simply supported at both ends (SS-SS), fixed at one

end and free at the other (C-F) are investigated.

According to the generalized Hamilton’s principle

Z t2

t1

d T � V � Uð Þ þ dW½ � dt ¼ 0 ð21Þ

Substituting Eqs. (16a–16c), (17a–17c), (18) and

(20) into Eq. (21), the variation of the total kinetic

energy of the CLCS is obtained

dT ¼
Z 2p

0

Z L

0

Z h
2

�h
2

ou0

ot
d

ou0

ot

� �

þ ov0

ot
d

ov0

ot

� �

þ ow0

ot
d

ow0

ot

� �� �

I0

�

þ 1

2

oux

ot
d

ou0

ot

� �

þ ou0

ot
d

oux

ot

� �� ��

þ ouh

ot
d

ov0

ot

� �

þ ov0

ot
d

ouh

ot

� �� ��

I1

þ 1

2
d

oux

ot

� �

þ d
ouh

ot

� �� �

I2

� �	

Rdzdhdx

ð22Þ

The variation of the total strain energy of the CLCS

is obtained

dU ¼ dUs þ dUb þ dUc ð23Þ

where

dUs ¼
Z 2p

0

Z L

0

Z h
2

�h
2

A11

ou0

ox
d

ou0

ox

� �

þ A12

1

R
d

ov0

oh

� �

þ 1

R
dw0

� �
ou0

ox

�

þ A12

ov0

Roh
þ w0

R

� �

d
ou0

ox

� �

þ A22

ov0

Roh
þ w0

R

� �
1

R
d

ov0

oh

� �

þ 1

R
dw0

� �

þ A66

ov0

ox
þ ou0

Roh

� �

d
ov0

ox

� �

þ 1

R
d

ou0

oh

� �� ��

dzdhdx;

ð24aÞ

dUb ¼
Z 2p

0

Z L

0

Z h
2

�h
2

D11

oux

ox
d

oux

ox

� �

þ D11

2

ouh

Roh
d

oux

ox

� �

þ oux

ox

1

R

ouh

ox

� �� ��

þD22

R2

ouh

oh
d

ouh

oh

� �

þ D66

oux

Roh
þ ouh

ox

� �
1

R
d

oux

oh

� �

þ d
ouh

ox

� �� �	

dzdhdx;

ð24bÞ

dUc ¼
Z 2p

0

Z L

0

Z h
2

�h
2

B11

oux

ox
d

ou0

ox

� �

þ ou0

ox
d

oux

ox

� �� �

þ d
ov0

oh

� �

þ dw0

� ���

ouh

oh
þ ov0

oh
þ w0

� �

d
ouh

oh

� ��
B22

R2
þ ou0

ox
d

ouh

oh

� �

þ ouh

oh
d

ou0

ox

� �� �

B12

R
þ oux

ox
d

ov0

oh

� �

v0 þ dw0

� �

þ ov0

oh
þ w0

� �

d
oux

ox

� �� �
B12

R
þ B66

1

R
d

oux

oh

� �

þ d
ouh

oh

� �� �
ov0

ox
þ ou0

Roh

� �

þ oux

Roh
þ ouh

ox

� ��

d
ov0

ox

� �

þ 1

R
d

ou0

oh

� �� ��	

dzdhdx

ð24cÞ

The variation of the potential energy yielded by the

four NiTiNOL-steel wire ropes is obtained

dV ¼
Z L

0

4gfstdw0dx ð25Þ

The total virtual work done by the external

harmonic excitation f is calculated

dW ¼
Z 2p

0

F0 sin 2pf0tð Þd u0ð ÞRdh ð26Þ

The nonlinear partial differential governing equa-

tions of the CLCS embedded with NiTiNOL-steel wire

rope are given as

oNxx

ox
þ oNxh

Roh
� F0 sin 2pf0tð Þ ¼ I0

o2u0

ot2
� I1

o3w0

oxot2
;

ð27aÞ

oNxh

Rox
þ oNhh

Roh
¼ I0

o2v0

ot2
� I1

o3w0

Rohot2
; ð27bÞ

�Nhh

R
þ fst ¼ I1

o2w0

ot2
; ð27cÞ

oMxx

ox
þ oMxh

Roh
¼ I1

o2u0

ot2
� I2

o3w0

oxot2
; ð27dÞ

oMxh

ox
þ oMhh

Roh
¼ I1

o2v0

ot2
� I2

o3w0

Rohot2
: ð27eÞ

Substituting the internal force Eqs. (11a–11f) and

the restoring and damping force Eq. (14) of the

NiTiNOL-steel wire ropes into Eqs. (27a–27e) leads

to the governing equations
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A11

o2u0

ox2
þ A12

o2v0

Roxoh
þ ow0

Rox

� �

� B11

o3w0

ox3

�B12

o3w0

R2oxoh2
þA66

o2v0

Roxoh
þ o2u0

R2oh2

� �

�B66

2o3w0

R2oxoh2

� �

� F0 sin 2pf0tð Þ ¼ I0
o2u0

ot2
� I1

o3w0

oxot2
;

ð28aÞ

A12

o2u0

Roxoh
þ A22

o2v0

R2oh2
þ ow0

R2oh

� �

� B12

o3w0

Rox2oh

�B22

o3w0

R3oh3
þ A66

o2v0

ox2
þ o2u0

Roxoh

� �

�B66

2o3w0

Rox2oh

� �

¼ I0
o2v0

ot2
� I1

o3w0

Rohot2
;

ð28bÞ

�A12

ou0

Rox
� A22

ov0

R2oh
þ w0

R2

� �

þ B12

R

o2w0

ox2

þ B22

R3

o2w0

oh2
þ 4gfst

¼ I0
o2w0

ot2
; ð28cÞ

B11

o2u0

ox2
þ B12

o2v0

Roxoh
þ ow0

Rox

� �

� D11

o3w0

ox3

�D12

o3w0

R2oxoh2
� D66

o2v0

Roxoh
þ o2u0

R2oh2

� �

�2B66

o3w0

R2oxoh2
¼ I1

o2u0

ot2
� I2

o3w0

oxot2
;

ð28dÞ

B12

o2u0

Roxoh
þ B22

o2v0

R2oh2
þ ow0

R2oh

� �

� D12

o3w0

Rox2oh

�D22

o3w0

R3oh3
þ D66

o2v0

ox2
þ o2u0

Roxoh

� �

�2B66

o3w0

Rox2oh
¼ I1

o2v0

ot2
� I2

o3w0

Rohot2
:

ð28eÞ

3 Solutions

Four-term Galerkin truncation transforms the govern-

ing equations into a set of ordinary differential

equations. The displacement field of an arbitrary point

on the mid-surface of the CLCS is assumed to be an

approximate displacement function satisfying the

following boundary conditions.

Simple support at both ends (SS–SS)

u0 ¼ v0 ¼ w0 ¼ 0 Mxx ¼ Nxx ¼ 0
x ¼ 0

x ¼ L
ð29Þ

Fixed at one end and free at the other (C–F)

u0 ¼ v0 ¼ w0 ¼ ux ¼ uh ¼ 0 x ¼ 0

Nxx ¼ Nhh ¼ Nxh ¼ Mxx ¼ Mhh ¼ Mxh ¼ 0 x ¼ L
;

ð30Þ

The assumed displacement functions u0, v0, w0, ux

and uh are

u0 ¼
XM

m¼1

XN

n¼1

umn sð Þ cos
mpx
L


 �
cos nhð Þ; ð31aÞ

v0 ¼
XM

m¼1

XN

n¼1

vmn sð Þ sin
mpx
L


 �
sin nhð Þ; ð31bÞ

w0 ¼
XM

m¼1

XN

n¼1

wmn sð Þ sin
mpx
L


 �
cos nhð Þ; ð31cÞ

ux ¼ �
XM

m¼1

XN

n¼1

mp
L

wmn sð Þ cos
mpx
L


 �
cos nhð Þ;

ð31dÞ

uh ¼
XM

m¼1

XN

n¼1

n

R
wmn sð Þ sin

mpx
L


 �
sin nhð Þ ð31eÞ

where umn, vmn and wmn represent the displacement

shape functions with unknown time s in the axial

direction, circumferential direction and radial direc-

tion. m and n are the numbers of axial waves and

circumferential waves. M and N are the determined

terms of Galerkin truncation. The function satisfies the

boundary conditions that are simply supported at both

ends (SS–SS) as well as are free at one end and

clamped at the other end (C–F). For other elastic or

inelastic boundaries, the displacement function needs

to be adjusted to meet the requirements of the

corresponding boundary conditions.

Substituting Eqs. (31a–31e) into Eqs. (28a–28e)

leads to a set of ordinary differential equations when

M ¼ N ¼ 4
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X4

m¼1
n¼1

�A11m
2p2

L2
�A66n

2

R2

� �

umn sð Þþ A12mnp
RL

þA66mnp
RL

� �

vmn sð Þ
�

þ A12mp
RL

þB11m
3p3

L3
þB12mnp2

R2L
þB662mpn2

R2L

� �	

¼
P4

m¼1
n¼1

f þ I0d
2
umn

ds2
� I1mp

L

� �d
2
wmn

ds2

n o
;

ð32aÞ

X4

m¼1
n¼1

A12

mnp
RL

þA66

mnp
RL


 �
umn sð Þþ �A22

n2

R2
�A66

m2p2

L2

� �

vmn sð Þ
�

þ �A22

n2

R2
�B12

m2p2n

L2R
�B22

n3

R3
�B66

2m2p2

RL2

� �

wmn sð Þ
	

¼
P4

m¼1
n¼1

I0
d

2
vmn

ds2
þnI1

d
2
wmn

ds2

n o
;

ð32bÞ

X4

m¼1
n¼1

A12

mp
RL


 �
umn sð Þ þ �A22

n

R2


 �
vmn sð Þ

n

þ �A22

1

R2
� B12

m2p2

L2R
� B22

n2

R3

� �

wmn sð Þ
	

¼
P4

m¼1
n¼1

�4gfst þ I0
d

2
wmn

ds2

n o
;

ð32cÞ

X4

m¼1
n¼1

�B11

m2p2

L2
�D66

n2

R2

� �

umn sð Þþ B12

mnp
RL

þD66

mnp
RL


 �
vmn sð Þ

�

þ B12

mp
RL

þD11

m3p3

L3
þD12

mn2p

LR2
þ2B66

mn2p

LR2

� �

wmn sð Þ
	

¼
P4

m¼1
n¼1

I1
d

2
umn

ds2
þ mp

L

� �
I2

d
2
wmn

ds2

n o
;

ð32dÞ

X4

m¼1
n¼1

B12

mnp
RL

þD66

m2p2

L2

� �

umn sð Þþ �B22

n2

R2
�D66

m2p2

L2

� �

vmn sð Þ
�

þ �B22

n

R2
�D12

m2p2n

RL2
�D22

n3

R3
�2B66

m2np2

LR

� �

wmn sð Þ
	

¼
P4

m¼1
n¼1

I1
d

2
vmn

ds2
þnI2

d
2
wmn

ds2

n o
:

ð32eÞ

The standard nonlinear dynamic equations involv-

ing an inertia term, a damping term, a stiffness term,

and a nonlinear term due to the restoring and damping

force of the NiTiNOL-steel wire ropes are established

d2W

ds2
þ C

dW

ds
þKWþ A W;

dW

ds

� �

¼ F ð33Þ

where C is the damping matrix, K is the stiffness

matrix, A is the nonlinear coefficient matrix, F is the

external force column vector.

3.1 Modal analysis on the shell

without the NiTiNOL-steel wire ropes

and the finite element validations

According to the CLCS parameters given in Table 2,

the frequency analysis and the modal analysis of the

composite laminated cylindrical shell without NiTi-

NOL-steel wire ropes are carried out by the discrete

Table 2 The parameters of composite laminated cylindrical

shell embedded with four NiTiNOL-steel wire ropes

Parameter Value Parameter Value

qi i ¼ 4ð Þ 1643 kg/m3 G12 4.36e9Pa

R 0.2 m G23 3.75e9Pa

L 0.6 m l12 0.33

h 0.002 m g 0.2

E1 152.4e9Pa a [0�, 90�, 0�, 90�]
E2 10.16e9Pa M;N 4

Table 3 Comparison of the natural frequencies and the relative errors obtained via the numerical method based on the Galerkin

truncation and the finite element method

n SS-SS C-F

GM FEM Relative error (%) GM FEM Relative error (%)

1 86.25 85.83 0.49 69.37 68.51 1.26

2 100.33 101.48 1.13 81.03 80.55 0.60

3 122.76 120.81 1.61 108.88 107.96 0.85

4 188.34 189.92 0.83 162.37 163.21 0.51
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reduced model after Galerkin truncation and validated

by the finite element method. The natural frequencies

are obtained via the two methods and are shown in

Table 3. It demonstrates the results obtained by the

two methods are relatively close, and the relative

errors of the frequencies under the two boundaries are

around 1%.

Figure 2 shows the first four-term vibration modes

of the composite laminated cylindrical shell without

the NiTiNOL-steel wire ropes under SS-SS and C-F

Fig. 2 The first four-term

vibration modes of the

composite laminated

cylindrical shell without

NiTiNOL-steel wire ropes:

a SS-SS boundary; b C–F

boundary

Fig. 3 Amplitude-frequency responses of CLCS and CLCS embedded with four NiTiNOL-steel wire ropes under axial harmonic

excitation: a SS–SS boundary; b C–F boundary
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boundaries. They are both manifested as breathing

modes.

3.2 Forced responses analysis on the shell

embedded with the NiTiNOL-steel wire ropes

and the finite element validations

Figure 3 depicts the amplitude-frequency responses of

the composite laminated cylindrical shell without

NiTiNOL-steel wire ropes and composite laminated

cylindrical shell embedded with four NiTiNOL-steel

wire ropes under the axial harmonic excitation

F ¼ F0 sin 2pf0sð Þ, the excitation amplitude

F0 ¼ 20 kN, and the frequency sweep range is

20 Hz; 200 Hz½ �. The response point is located at the

upper vertex of the mid-surface of the composite

laminated cylindrical shell where x ¼ L=2. Figure 3

illustrates the good consistency between the numerical

results based on the Galerkin truncation and the finite

element method, and the peak of amplitude-frequency

responses of CLCS embedded with S1a NiTiNOL-

steel wire ropes is much lower than the CLCS without

NiTiNOL-steel wire ropes under SS–SS boundary and

C–F boundary. Figure 3 demonstrates the damping

effectiveness of S1a NiTiNOL-steel wire ropes.

Figure 4 compares the time history responses and

amplitude-frequency responses of CLCS without

NiTiNOL-steel wire ropes and CLCS embedded with

Fig. 4 Responses of CLCS system and CLCS system embed-

ded with different configurations of NiTiNOL-steel wire ropes

under axial harmonic excitation: a T–S responses under SS–SS

boundary; b A–F responses under SS-SS boundary; c T–S

responses under C–F boundary; d A–F responses under C–F

boundary
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different configurations of NiTiNOL-steel wire ropes

under the axial harmonic excitation, and the amplitude

reduction rate is exploited to evaluate the vibration

reduction in different configurations of NiTiNOL-

steel wire ropes. In Fig. 4b, Under the SS–SS bound-

ary, the peak of the amplitude-frequency responses of

CLCS without NiTiNOL-steel wire ropes is

7.487 mm, the peak of the amplitude-frequency

responses of CLCS embedded with S3b NiTiNOL-

steel wire ropes is 0.908 mm, and the ARR is 87.87%.

In Fig. 4d, under the C–F boundary, the peak of the

amplitude-frequency responses of CLCS is 9.372 mm,

the peak of the amplitude-frequency responses of

CLCS embedded with S3b NiTiNOL-steel wire ropes

is 1.168 mm, and the amplitude reduction rate is

87.54%. Obviously, Fig. 4 reveal the different vibra-

tion reduction performance of different configurations

of NiTiNOL-steel wire ropes under the SS-SS bound-

ary and the C–F boundary. Among them, S3b performs

best in low-frequency passive vibration reduction,

followed by S3c, S1a, S3a, S2a and S2b via the

contrast of ARR.

3.3 Vibration reduction performance for different

parameters

In order to research the influencing factors of the

vibration reduction in the NiTiNOL-steel wire ropes,

this manuscript focuses on the influence of the

amplitude of the harmonic excitation F0, the ratio of

the length to the radius of the CLCS e, and the layer

method (layer angle and layer order) of the CLCS. Of

course, there are other influencing factors, such as the

working environment temperature T . As a shape

memory alloy, the NiTiNOL-steel wire ropes are

temperature-independent. However, the damping of

NiTiNOL-steel wire rope is produced by the internal

frictions among the wires instead of the shape memory

properties. Therefore, the based experimental works

[21] does not reveal the effects of the temperature. The

present investigation does not account for the effects

of the temperature.

The amplitude of the harmonic excitation is the

reflection of its excitation strength. Whether the

NiTiNOL-steel wire ropes can still maintain good

vibration reduction performance under high-intensity

excitation is worth investigated. This manuscript sets

the excitation amplitude range from 2 to 20 kN. The

relationship between the peak of amplitude-frequency

responses of CLCS without NiTiNOL-steel wire ropes

and varying harmonic excitation amplitude is pre-

sented in Fig. 5. As showed in Fig. 5, with the

increasing of the external excitation amplitude, the

peak value of the amplitude-frequency responses of

the CLCS without NiTiNOL-steel wire ropes also

increases drastically. When the excitation amplitude is

2 kN, the peak value is 3.744 mm; When the excita-

tion amplitude is 20 kN, the peak value is 37.437 mm.

Figure 6 depicts the amplitude-frequency

responses of CLCS embedded with different config-

urations of NiTiNOL-steel wire ropes with the vari-

able amplitudes of the harmonic excitation. Figure 6

reveals the reduced growth rate of the peak of the

amplitude-frequency responses of different configu-

rations of NiTiNOL-steel wire ropes. The peaks of the

amplitude-frequency responses of the CLCS embed-

ded with S1a, S2a, S2b, S3a, S3b and S3c NiTiNOL-

steel wire ropes are 4.186 mm, 11.494 mm,

13.805 mm, 8.707 mm, 1.925 mm and 1.977 mm

when the excitation amplitude is 20 kN. The ARR of

CLCS embedded with S3b NiTiNOL-steel wire ropes

is 94.86%. The ARR of CLCS embedded with S2b

NiTiNOL-steel wire ropes is 63.12%. Figure 6 pre-

sents the increasing trend of ARR about different

configurations NiTiNOL-steel wire ropes with the

increase in the amplitude of the harmonic excitation.

Figure 6 reveals better vibration reduction with a

larger amplitude of harmonic excitation, if the struc-

ture is not damaged.

Fig. 5 Amplitude-frequency responses of CLCS without

NiTiNOL-steel wire ropes

123

7192 J.-R. Xue et al.



Fig. 6 Amplitude-frequency responses curve of CLCS system embedded with NiTiNOL-steel wire ropes under different F0: a S1a;

b S2a; c S2b; d S3a; e S3b; f S3c
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Fig. 7 Amplitude-frequency responses curve of CLCS system with different e embedded with NiTiNOL-steel wire ropes: a S1a; b S2a;

c S2b; d S3a; e S3b; f S3c
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Fig. 8 Amplitude-frequency responses curve of CLCS system with different layup methods embedded with NiTiNOL-steel wire ropes:

a S1a; b S2a; c S2b; d S3a; e S3b; f S3c
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The ratio of the length to the radius of the CLCS

determines the characteristics of the low-frequency

vibration modes of the CLCS. Low-frequency vibra-

tion modes are more prone to transverse and longitu-

dinal bending vibration modes with larger e, and the

low-frequency vibration modes are more toward the

breathing vibration with the smaller e. Figure 7 depicts

the amplitude-frequency responses of the CLCS

without NiTiNOL-steel wire ropes and the CLCS

embedded with different configurations of NiTiNOL-

steel wire ropes under different e. Figure 7 presents the

increasing ARR with the increasing e.When the e ¼ 5,

the ARR of CLCS embedded with S3b NiTiNOL-steel

wire ropes is 93.91%, while the ARR of CLCS

embedded with S2b NiTiNOL-steel wire ropes is

58.34%.

This manuscript investigates a 4-layer CLCS with

the same material, so the layer method is determined

by the layer angle and layer order. The symmetrical

layer method of 0�; 90�; 90�; 0�½ �, the cross layer

method of 0�; 90�; 0�; 90�½ �, the symmetrical layer

method of 0�; 45�; 45�; 0�½ � and the crossed layer

method of 0�; 45�; 0�; 45�½ � are investigated,

respectively.

Figure 8 compares the amplitude-frequency

responses of CLCS embedded with different config-

urations of NiTiNOL-steel wire ropes under different

layer methods. Figure 8 demonstrates the little influ-

ence of the layer angle to vibration reduction under the

symmetrical layer, the larger influence to vibration

reduction under the crossed layer. Combining the layer

angle and layer order, Fig. 8 reveal that

0�; 45�; 0�; 45�½ � layer method can maximize the

vibration reduction. In this layer method, the ARR of

the CLCS embedded with S3b NiTiNOL-steel wire

ropes is 90.98%.

4 Conclusions

A composite laminated cylindrical shell embedded

with four NiTiNOL-steel wire ropes is investigated.

The NiTiNOL-steel wire ropes are located on the

middle surface of the cylindrical shell in a 90� annular

array along the axial direction. Donnell’s theory based

on first-order shear deformation theory is utilized to

model the shell. The restoring and damping force of

the NiTiNOL-steel wire ropes based on the Bouc-Wen

model and is fitted by a polynomial and coupled into

the governing equations of the shell. The fourth-term

Galerkin truncation transforms the governing equa-

tions into a set of ordinary differential equations.

Numerical results based on the Galerkin truncation

yield the natural frequencies, the vibrating modes and

the responses to harmonic excitations, and the out-

comes are verified by the finite element method.

The amplitude reduction rate of the first-order

resonance peak under the amplitude-frequency

responses is used to evaluate the vibration reduction

performance. For different configurations of NiTi-

NOL-steel wire ropes embedded in composite lami-

nated cylindrical shell and various related parameters,

the following conclusions are yielded: (1) Under the

simply supported (SS–SS) at both ends condition and

one end is fixed and the other end is free (C-F), S3b

NiTiNOL-steel wire ropes perform best in low-

frequency passive vibration reduction, followed by

S3c, S1a, S3a, S2a and S2b. (2) The larger external

excitation amplitude, the better vibration reduction

performance of the NiTiNOL-steel wire ropes. (3) The

NiTiNOL-steel wire ropes become more effective

with the increasing ratio of the shell length to the shell

radius. (4) The best layer method of the composite

laminated cylindrical shell is 0�; 45�; 0�; 45�½ �, for the

embedded S3b NiTiNOL-steel wire ropes.

In short, vibration reduction can be achieved by

using NiTiNOL-steel wire ropes as passive vibration

absorbers embedded in composite laminated cylindri-

cal shells. The investigation reveals a new possibility

to passively reduce vibration of composite laminated

shells.
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