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Abstract The Landau-Ginzburg-Higgs (LGH)

equation explains the ocean engineering models,

superconductivity and drift cyclotron waves in radi-

ally inhomogeneous plasma for coherent ion-cy-

clotron waves. In this paper, with a simple

modification of the Ablowitz-Kaup-Newell-Segur

(AKNS) formalism, the integrability of LGH equation

is proved by deriving the Lax pair. Hence for that, the

inverse scattering transformation (IST) is applied, and

the travelling wave solutions are obtained and graph-

ically represented in 2d and 3d profiles.

Keywords Landau-Ginzburg-Higgs (LGH)

equation � Lax pair � Inverse scattering
transformation � Solitons � AKNS formalism �
Travelling wave solutions

1 Introduction

Nonlinear evolution equations (NLEE’s) are one of

the most important fields of ocean engineeringmodels,

modern physics, through which physical phenomena

and other fields of modern physics are modeled.

Accordingly, many effective methods have been

established to obtain exact and explicit solutions of

this type of equation, such as: the improved Bernoulli

sub-equation function method [1, 2], the modified

simple equation method [3], solitary wave ansatz [4],

the extended tanh-function method [5, 6], the sine–

Gordon expansion method [7], the extended mapping

method [8], the first integral method [9], the improved

Kudryashov method [10, 11], the hyperbola function

method [12], the improved tanh-method [13], Hirota’s

bilinear method [14], Lie symmetry analysis [15, 16],

Bäcklund transformation method [17], Darboux trans-

formation method [18], inverse scattering transforma-

tion (IST) method [19–22], the G0=Gð Þ-expansion
method [23–25], the G0=G; 1=Gð Þ-expansion method

[26, 27], and reference therein.

One of the more general classes of NLEE’s with a

nonlinear term of any order is [28]:

uTT þ a1uXX þ a2uþ a3u
p þ a4u

2p�1 ¼ 0 ð1Þ

where a1; a2; a3; a4; and p 6¼ 1 are arbitrary constants.

When p ¼ 3 and a4 ¼ 0, the following special case is

stated

uTT þ auXX þ buþ cu3 ¼ 0 ð2Þ
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Depending on the arbitrary constants a; b and c,

typical forms of Eq. (2) are specified, one of them is

the Landau-Ginzburg-Higgs (LGH) equation. When

a ¼ �1; b ¼ �m2 and c ¼ n2, the LGH equation is

stated as

uTT � uXX � m2uþ n2u3 ¼ 0 ð3Þ

where uðX; TÞ symbolizes the electrostatic potential of

the ion-cyclotron wave, X and T stand for the

nonlinearized spatial and temporal coordinates and

m and n are real parameters. The LGH Eq. (3) was

formulated by Lev Devidovich Landau and Vitaly

Lazarevich Ginzburg with broad applications for the

internal processes of complex physical phenomena

which occur to explain superconductivity and drift

cyclotron waves in radially inhomogeneous plasma for

coherent ion-cyclotron waves [11]. Another typical

form of Eq. (2) can be stated, such as /4 equa-

tion(a ¼ �1; b ¼ 1; c ¼ �1), Klein–Gordon equation

(a ¼ �1; b ¼ m2; c ¼ n), Duffing equation (a ¼ 0

with b and c arbitrary), Sine–Gordon equation

(a ¼ �1; b ¼ 1; c ¼ �1=6) [8].

It is worth mentioning that there are many attempts

in the literature to obtain the exact solutions of Eq. (2),

as well as the special case of it, LGH Eq. (3), using

different analytical methods. Considering the more

general model in Eq. (2), there are different schemes

to obtain the exact and explicit solutions, such as the

extended mapping method, the hyperbola function

method, the Improved tanh-method, the modified

extended tanh-function method, a direct and unified

algebraic method [8, 12, 13, 16, 29], while for the

particular case, LGH Eq. (3), the travelling wave

solutions have been investigated in different contexts

using different approaches such as solitary wave

ansatz method in [4], the first integral method in [9],

the G0=G; 1=Gð Þ-expansion method in [26], the

improved Bernoulli sub-equation function (IBSEFM)

method in [1], the sine–Gordon expansion (SGE)

method in [7], the extended tanh scheme in [6], the

generalized Kudryashov technique in [11].

In this paper, under some conditions, the integra-

bility of LGH Eq. (3) is proved by deriving the Lax

pair using AKNS scheme. It is worth noting that, there

are many different methods for deducing the Lax pair

for integrable NLEE’s, such as the prolongation

method [30], the extended homogeneous balance

method [31], the singular manifold method [32–34],

and the AKNS approach [21, 22, 35]. Accordingly,

and using the inverse scattering transformation (IST)

method, we obtain a closed form solution to Eq. (3) of

type Kink soliton solution.

The residue of the paper is organized as follows: in

Sect. 2, we investigate the Lax pair for Eq. (3) using

AKNS approach. The inverse scattering transforma-

tion is applied to Eq. (3) in Sect. 3. In Sect. 4, the kink

type soliton solution is obtained and graphically

represented in 2d and 3d plots and a comparison

between our solution and different solutions in the

literature is represented in tabularized form.

2 The derivation of Lax pair

In this section, we derive the Lax pair in matrix form

for Eq. (3) by applying a simple modification of the

standard AKNS formalism.

Make the following transformation to Eq. (3):

x ¼ X þ T

2
; t ¼ X � T

2
ð4Þ

Then by chain rule, we have

o

oX
¼ ox

oX

o

ox
þ ot

oX

o

ot
¼ 1

2

o

ox
þ o

ot

� �

o

oT
¼ ox

oT

o

ox
þ ot

oT

o

ot
¼ 1

2

o

ox
� o

ot

� � ð5Þ

From which we have

o2u

oX2
¼ 1

4

o

ox
þ o

ot

� �
ou

ox
þ ou

ot

� �
¼ 1

4

o2u

ox2
þ 2

o2u

oxot
þ o2u

ot2

� �

o2u

oT2
¼ 1

4

o

ox
� o

ot

� �
ou

ox
� ou

ot

� �
¼ 1

4

o2u

ox2
� 2

o2u

oxot
þ o2u

ot2

� �

ð6Þ

According to the above, the differential terms can

be written in the form

uTT � uXX ¼ �uxt ð7Þ

Then Eq. (3) become

uxt ¼ �m2uþ n2u3 ð8Þ

Consider the following linear spectral problems

wx ¼
�iak qðx; tÞ
rðx; tÞ iak

� �
w ð9Þ
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wt ¼
A B
C �A

� �
w ð10Þ

where w x; tð Þ ¼ w1 x; tð Þ;w2 x; tð Þð ÞT and k is the

spectral parameter with kt ¼ 0.

From Eq. (9) we have

w1x ¼ �iakw1 þ qw2 ð11Þ

w2x ¼ rw1 þ iakw2 ð12Þ

and from Eq. (10) we have

w1t ¼ Aw1 þ Bw2 ð13Þ

w2t ¼ Cw1 � Aw2 ð14Þ

From Eqs. (11) and (13) we have

w1xt ¼ �iakAw1 � iakBw2 þ Cqw1 � Aqw2 þ qtw2

ð15Þ

w1tx ¼ �iakAw1 þ Aqw2 þ Axw1 þ Brw1 þ iakBw2

þ Bxw2

ð16Þ

From Eqs. (12) and (14) we have

w2xt ¼ Arw1 þ Brw2 þ rtw1 þ iakCw1 � iakAw2 ð17Þ

w2tx ¼ �iakCw1 þ Cqw2 þ Cxw1 � Arw1 � iakAw2 � Axw2 ð18Þ

The compatibility condition w1xt ¼ w1tx yields

Ax þ Br � Cqð Þw1 þ 2iakBþ 2Aqþ Bx � qtð Þw2 ¼ 0

ð19Þ

While the compatibility condition w2xt ¼ w2tx

yields

2iakC þ 2Ar � Cx þ rtð Þw1 þ Cq� Br � Axð Þw2 ¼ 0

ð20Þ

Equating the coefficients of w1 and w2 to zero, we

obtain the following system of equations

Ax ¼ qC � rB

Bx þ 2iakB ¼ qt � 2qA

Cx � 2iakC ¼ rt þ 2rA

ð21Þ

Now, expand A;B and C as follows

A ¼ aðx; tÞ
k

;B ¼ bðx; tÞ
k

;C ¼ cðx; tÞ
k

ð22Þ

Then

Ax ¼
ax
k
;Bx ¼

bx
k
;Cx ¼

cx
k

ð23Þ

Substituting from Eq. (23) into Eq. (21), we obtain

the following system of equations

ax ¼ qc� rb

2iab� qt þ
bx þ 2aq

k
¼ 0

�2iac� rt þ
cx � 2ar

k
¼ 0

ð24Þ

Equating the coefficients of k0 to zero gives

ax ¼ qc� rb ð25Þ

qt ¼ 2iab ð26Þ

rt ¼ �2iac ð27Þ

While equating the coefficients of k�1 to zero gives

bx þ 2aq ¼ 0 ð28Þ

cx � 2ar ¼ 0 ð29Þ

Multiply Eq. (30) by 2i, and use Eqs. (26, 27), we

have

2iax ¼ � 1

a
qrð Þt ð30Þ

Suppose the following quantities for

a; a x; tð Þ; b x; tð Þ; c x; tð Þ; qðx; tÞ and rðx; tÞ

a ¼ m2 ð31Þ

a x; tð Þ ¼ � i

4
1� 3n2

m2
u x; tð Þð Þ2 þ 3n4

2m4
u x; tð Þð Þ4

� �

ð32Þ

b x; tð Þ ¼ c x; tð Þ ¼ � i

4

ffiffiffi
6

p
n

m
u x; tð Þ �

ffiffiffi
6

p
n3

m3
u x; tð Þð Þ3

�

þ 3
ffiffiffi
6

p
n5

10m5
u x; tð Þð Þ5

�

ð33Þ

q x; tð Þ ¼ �r x; tð Þ ¼ �
ffiffiffi
6

p
n

2m
u x; tð Þð Þx ð34Þ

Under these considerations, Eq. (30) become
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Travelling wave solution for the Landau-Ginburg-Higgs model 7689



1

2

�6n2

m2
uþ 6n4

m4
u3

� �
ux ¼

3n2

m4
uxtux ð35Þ

i.e.,

uxt ¼
m4

6n2
�6n2

m2
uþ 6n4

m4
u3

� �
¼ �m2uþ n2u3 ð36Þ

which is the LGH equation given in Eq. (3). We also

noted that under the considerations given in Eqs. (31–

34), Eqs. (29) and (30) are satisfied. Therefore, The

Lax pair for LGH Eq. (3) can be written as

wx ¼
�im2k

�
ffiffiffi
6

p
n

2m
uxffiffiffi

6
p

n

2m
ux im2k

2
664

3
775w; ð37Þ

wt ¼
�i

4k

1� 3n2

m2
u2 þ 3n4

2m4
u4

ffiffiffi
6

p
n

m
u�

ffiffiffi
6

p
n3

m3
u3 þ 3

ffiffiffi
6

p
n5

10m5
u5ffiffiffi

6
p

n

m
u�

ffiffiffi
6

p
n3

m3
u3 þ 3

ffiffiffi
6

p
n5

10m5
u5 � 1� 3n2

m2
u2 þ 3n4

2m4
u4

� �
2
664

3
775w

ð38Þ

Remark (1) Under the assumptions given in

Eqs. (31–34), at xj j ! 1 with the initial condition

u ! 0, the limits of A;B and C defined in Eq. (22) are

evaluated as.

lim
x!�1

A ¼ lim
x!�1

� i

4k
1� 3n2

m2
u2 þ 3n4

2m4
u4

� �

¼ � i

4k
¼ dðkÞ ð39Þ

lim
x!�1

B ¼ lim
x!�1

C ¼ lim
x!�1

� i

4k

ffiffiffi
6

p
n

m
u�

ffiffiffi
6

p
n3

m3
u3 þ 3

ffiffiffi
6

p
n5

10m5
u5

� �
¼ 0

ð40Þ

3 The inverse scattering transformation for LGH

Eq. (3)

In this section, the inverse scattering transform (IST)

procedures will be followed for Eq. (3). Starting from

Eq. (9), which may be written in the form

o

ox
�q

r � o

ox

2
64

3
75w ¼ �iakw ð41Þ

Assume that q x; tð Þ; rðx; tÞ and it’s derivative with

respect to x are decay sufficiently rapidly as.

xj j ! 1, then we can introduce the following four

solutions to Eq. (9), which are defined by their

asymptotic behaviors at infinity as

wþ x;kð Þ� 1

0

� �
e�iakx;wþ x;kð Þ� 0

1

� �
eiakx;asx!1 ð42Þ

w� x;kð Þ� 1

0

� �
e�iakx;w� x;kð Þ� 0

�1

� �
eiakx;asx!�1 ð43Þ

These solutions may be written in matrix form as

Wþ ¼ w1þ w1þ
w2þ w2þ

� �
;W� ¼ w1� w1�

w2� w2�

� �
ð44Þ

Since solutions given in Eq. (42) and Eq. (43) are

linearly dependent, where there Wronskian denoted

W wþ;w�
� �

and W wþ;w�
� �

is equal to zero

W wþ;w�
� �

¼ w1þw2� � w2þw1�
¼ e�iakx

� �
0ð Þ � 0ð Þ e�iakx

� �
¼ 0 ð45Þ

W wþ;w�
� �

¼ w1þw2� � w2þw1�
¼ 0ð Þ �e�iakx

� �
� eiakx
� �

0ð Þ ¼ 0 ð46Þ

Then solutions Wþ and W� may be connected via

the scattering matrix denoted SðkÞ as follows

W� x; kð Þ ¼ Wþ x; kð ÞSðkÞ ð47Þ

i.e.,

w� ¼ awþ þ bwþ

w� ¼ bwþ � awþ
ð48Þ

where

S kð Þ ¼ aðkÞ bðkÞ
bðkÞ �aðkÞ

� �
ð49Þ

The solution Wþ x; kð Þ may always be represented

by an integral over an appropriate Kernel, while W�
can be obtained using the relation (47)

Wþ x; kð Þ ¼ W0 x; kð Þ þ
Z1

x

Kðx; kÞW0 x; kð Þdy ð50Þ

i.e.,
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w1þ w1þ
w2þ w2þ

� �
¼ e�iakx 0

0 eiakx

� �

þ
Z1

x

k11 k21
k12 k22

� �
e�iaky 0

0 eiaky

� �
dy

ð51Þ

where at xj j ! 1 and
R1
x

Kðx; kÞW0 x; kð Þdy ¼ 0 we

have Wþ x; kð Þ ¼ W0 x; kð Þ which describe the behav-

ior given in Eqs. (42,43). To find the equations

satisfied by the elements of Kðx; kÞ, it is necessary to

ensure that Wþ x; kð Þ is indeed a solution of (41).

From Eqs. (41,50) we have

�iakWþ ¼ �iak W0ðx; kÞ þ
Z1

x

KW0 y; kð Þdy

2
4

3
5

ð52Þ

and

o

ox
�q

r � o

ox

2
64

3
75Wþ¼

o

ox
�q

r � o

ox

2
64

3
75 W0ðx;kÞþ

Z1

x

KW0 y;kð Þdy

2
4

3
5 ð53Þ

using the Leibniz integral rule for differentiation under

the integral sign which is defined as

d

dx

Za2ðxÞ

a1ðxÞ

f x; yð Þdy ¼ f x; a2ð Þ da2
dx

� f x; a1ð Þ da1
dx

þ
Za2ðxÞ

a1ðxÞ

o

ox
f x; yð Þdy ð54Þ

Equations (52, 53) gives

�iak W0 þ
Z1

x

KW0dy

2
4

3
5 ¼ �iakW0 þ QW0 þ bIK x; xð ÞW0

� bI
Z1

x

KxW0dyþ Q

Z1

x

KW0dy

ð55Þ

where

Q ¼ 0 �q
r 0

� �
; bI ¼ �1 0

0 1

� �
ð56Þ

Using integration by parts for
R1
x

KW0dy we have

�iak
Z1

x

KW0dy ¼ K x; xð ÞW0
bI þ

Z1

x

KyW0
bIdy ð57Þ

Then Eq. (55) become

bIKW0 � KW0
bI þ QW0 �

Z1

x

bIKxW0 þ KyW0
bI � QKW0dy ¼ 0

ð58Þ

Equation (58) is satisfied if Kðx; yÞ is a solution of

the following system of equations

bIKðx; xÞ � Kðx; xÞbI þ QðxÞ ¼ 0 ð59Þ

bIKx þ Ky
bI � QðxÞK ¼ 0 ð60Þ

From Eq. (59) we obtain the equations for qðxÞ and
rðxÞ as

q xð Þ ¼ �2k12ðx; xÞ ð61Þ

r xð Þ ¼ �2k21ðx; xÞ ð62Þ

From Eq. (47) we have

w1� w1�
w2� w2�

� �
¼ w1þ w1þ

w2þ w2þ

� �
a b
b �a

� �
ð63Þ

Then

w1�=a w1�=a
w2�=a w2�=a

� �
¼ w1þ w1þ

w2þ w2þ

� �
1 b=a

b=a �1

� �

ð64Þ

Assume that

W� ¼ w1�=a w1�=a
w2�=a w2�=a

� �
; T kð Þ ¼ 1 b=a

b=a �1

� �

ð65Þ

Then Eq. (47) may be rewritten as

W� ¼ WþT kð Þ ð66Þ

Substituting from Eq. (50) into Eq. (66) gives

W� ¼ W0 þ
Z1

x

KW0dy

0
@

1
AT ð67Þ

To get an integral equation for K, we multiply

Eq. (67) by 1
2pW0 z; kð Þ for z[ x, then we have
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1

2p
W� x; kð ÞW0 z; kð Þ ¼ 1

2p
W0 x; kð ÞT kð ÞW0 z; kð Þ

þ 1

2p

Z1

x

K x; yð ÞW0 y; kð Þdy

2
4

3
5TðkÞW0 z; kð Þ

ð68Þ

Integrate with respect to k a long appropriate

contour in the complex k-plane from�1 toþ1. This

contour is indented into the upper half-plane for terms

involving eiakz and into the lower half-plane for e�iakz,

we call these contours Cþ and C�, respectively. One
can arrive to the matrix Marchenko equation

K x; zð Þ þ F xþ zð Þ þ
Z1

x

K x; yð ÞF yþ zð Þdy ¼ 0

ð69Þ

where

F Xð Þ ¼ 0 �f ðXÞ
f ðXÞ 0

� �
ð70Þ

f Xð Þ ¼ 1

2p

Z1

�1

qðkÞeiajXdj� i
XN
n¼1

cn tð ÞeiaknX ð71Þ

f Xð Þ ¼ 1

2p

Z1

�1

qðkÞe�iajXdjþ i
XN
n¼1

cm tð Þe�iakmX

ð72Þ

q kð Þ ¼ bðkÞ
aðkÞ ; q kð Þ ¼ bðkÞ

aðkÞ ð73Þ

where q kð Þ and q kð Þ are defined as reflection coeffi-

cients, while cn tð Þ and cm tð Þ are defined as the

normalizing coefficients given by

cn tð Þ ¼ b

da=dk
; cm tð Þ ¼ b

da=dk
ð74Þ

The solution of the matrix Marchenko Eq. (69)

givesKðx; zÞ fromwhich and by using Eqs. (61, 62) we

can recover the potentials qðxÞ and rðxÞ.when
A� dðkÞ, B� 0 and C� 0 as xj j ! 1 and u ! 0,

the time evolution of scattering data can be evaluated

as follow (see e.g. [20, 21])

a k; tð Þ ¼ a k; 0ð Þ; a k; tð Þ ¼ a k; 0ð Þ
b k; tð Þ ¼ b k; 0ð Þe�2d kð Þt; b k; tð Þ ¼ b k; 0ð Þe2d kð Þt

cn tð Þ ¼ cn 0ð Þe�2d kð Þt; cm tð Þ ¼ cm 0ð Þe2d kð Þt

ð75Þ

Then from Remark (1), one can obtain the time

evolution of the scattering data for Eq. (3) as follows

a k; tð Þ ¼ a k; 0ð Þ; a k; tð Þ ¼ a k; 0ð Þ
b k; tð Þ ¼ b k; 0ð Þe i

2kt; b k; tð Þ ¼ b k; 0ð Þe�i
2kt

ð76Þ

cn tð Þ ¼ cn 0ð Þe i
2kn

t; n ¼ 1; 2; . . .;N ð77Þ

cm tð Þ ¼ cm 0ð Þe
�i

2km
t
;m ¼ 1; 2; . . .;N ð78Þ

4 Travelling wave solutions for LGH Eq. (3)

In this section, we consider the reflectionless potential

q kð Þ ¼ q kð Þ ¼ 0 and N ¼ N ¼ 1. Substitute by these

considerations in Eqs. (70–78) we have

f Xð Þ ¼ �ic1 0ð Þe
i

2k1
tþiak1X ð79Þ

f Xð Þ ¼ ic1 0ð Þe
�i

2k1
t�iak1X ð80Þ

Substituting Eqs. (79, 80) with the help of Eq. (70)

into Eq. (69), we obtain the following system of

equations

k11 x; zð Þ � ic1 0ð Þe
i

2k1
tþiak1z

Z1

x

k12 x; yð Þeiak1ydy ¼ 0

ð81Þ

k12 x; zð Þ � ic1 0ð Þe
�i

2k1
t�iak1x�iak1z

� ic1 0ð Þe
�i

2k1
t�iak1z

Z1

x

k11 x; yð Þe�iak1ydy ¼ 0

ð82Þ
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k21 x; zð Þ � ic1 0ð Þe
i

2k1
tþiak1xþiak1z

� ic1 0ð Þe
i

2k1
tþiak1z

Z1

x

k22 x; yð Þeiak1ydy ¼ 0

ð83Þ

k22 x; zð Þ � ic1 0ð Þe
�i

2k1
t�iak1z

Z1

x

k21 x; yð Þe�iak1ydy ¼ 0

ð84Þ

Starting from Eqs. (81) and (82), assume that

L x; tð Þ ¼ ic1 0ð Þe
i

2k1
t
Z1

x

k12 x; yð Þeiak1ydy ð85Þ

Then Eq. (81) become

k11 x; zð Þ ¼ L x; tð Þeiak1z ð86Þ

Inserting Eq. (86) in Eq. (82), we have

k12 x; zð Þ ¼ ic1 0ð Þe
�i

2k1
t�iak1x�iak1z

þ ic1 0ð Þe
�i

2k1
t�iak1z

L x; tð Þ
Z1

x

eiaðk1�k1Þydy ¼ 0

ð87Þ

Assume that k1 � k1 is pure imaginary, then

Eq. (87) become

k12 x; zð Þ ¼ ic1 0ð Þe
�i

2k1
t�iak1x�iak1z

� c1 0ð Þe
�i

2k1
t�iak1zþiaðk1�k1Þx

L x; tð Þ
a k1 � k1
� � ð88Þ

Inserting Eq. (88) into Eq. (85), we obtain

L x; tð Þ ¼
�iac1 0ð Þc1 0ð Þ k1 � k1

� �
e

�i k1�k1ð Þ
2k1k1

	 

tþiaðk1�2k1Þx

a2 k1 � k1
� �2 � c1 0ð Þc1 0ð Þe

�i k1�k1ð Þ
2k1k1

	 

tþ2ai k1�k1ð Þx

ð89Þ

Inserting Eq. (89) into Eq. (88), we obtain

k12 x; xð Þ ¼
ia2 k1 � k1

� �2
c1 0ð Þ

a2 k1 � k1
� �2

e
i

2k1
tþ2aik1x � c1 0ð Þc1 0ð Þe

i
2k1

tþ2aik1x

ð90Þ

Then from Eq. (61)

q x; tð Þ ¼
�2ia2 k1 � k1

� �2
c1 0ð Þ

a2 k1 � k1
� �2

e
i

2k1
tþ2aik1x � c1 0ð Þc1 0ð Þe

i
2k1

tþ2aik1x

ð91Þ

In similar way, by solving Eqs. (83, 84) and using

Eq. (62) we obtain the potential rðx; tÞ as

r x; tð Þ ¼
�2ia2 k1 � k1

� �2
c1 0ð Þ

a2 k1 � k1
� �2

e
�i
2k1

t�2aik1x � c1 0ð Þc1 0ð Þe
�i

2k1
t�2aik1x

ð92Þ

Case (1)

Let k1 ¼ ib; k1 ¼ �ib, then according to the sym-

metry q ¼ �r we have from Eq. (91) and Eq. (92) that

c1 0ð Þ ¼ �c1 0ð Þ, let c1 0ð Þ ¼ 2ib, then at these sym-

metries, and since a ¼ m2, the potentials qðx; tÞ in

Eq. (91) and rðx; tÞ in Eq. (92) can be written as

q x; tð Þ ¼ �4m4b

m4e
�1
2btþ2m2bx þ e

1
2bt�2m2bx

ð93Þ

And

r x; tð Þ ¼ 4m4b

m4e
�1
2btþ2m2bx þ e

1
2bt�2m2bx

ð94Þ

Since qðx; tÞ ¼ �
ffiffi
6

p
n

2m ux then

u x; tð Þ ¼ 8m5bffiffiffi
6

p
n

Z
1

m4e
�1
2btþ2m2bx þ e

1
2bt�2m2bx

dx

¼ 2
ffiffiffi
6

p
m

3n
tan�1 m2e

4m2b2x�t
2b

� �
ð95Þ

Use the transformation (4) we obtain the solution

u1 X; Tð Þ for the LGH Eq. (3) as

u1 X; Tð Þ ¼ 2
ffiffiffi
6

p
m

3n
tan�1 m2e

4m2b2�1ð ÞXþ 4m2b2þ1ð ÞT
4b

� �

ð96Þ

where m and n are real parameters.

Case (2)

Let k1 and k1 as defined in case (1) and assume that

c1 0ð Þ ¼ �c1 0ð Þ ¼ 2b, then the potentials qðx; tÞ in

Eq. (91) and rðx; tÞ in Eq. (92) can be written as

q x; tð Þ ¼ 4im4b

m4e
�1
2btþ2m2bx � e

1
2bt�2m2bx

ð97Þ

and
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r x; tð Þ ¼ �4im4b

m4e
�1
2btþ2m2bx � e

1
2bt�2m2bx

ð98Þ

Since qðx; tÞ ¼ �
ffiffi
6

p
n

2m ux then after integration with

respect to x

u x; tð Þ ¼ �8im5bffiffiffi
6

p
n

Z
1

m4e
�1
2btþ2m2bx � e

1
2bt�2m2bx

dx

¼ 2
ffiffiffi
6

p
im

3n
tanh�1 m2e

4m2b2x�t
2b

� �

ð99Þ

Fig. 1 Soliton structure of

the solution (96) for the

values

b ¼ 0:4;m ¼ 1; n ¼ 1

Fig. 2 Soliton structure of

the solution (96) for the

values

b ¼ 0:7;m ¼ 0:5; n ¼ 0:5

Fig. 3 Soliton structure of

the solution (100) for the

values

b ¼ 0:4;m ¼ 1; n ¼ 1
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Use the transformation (4) we obtain another

solution, u2 X; Tð Þ, for the LGH Eq. (3) as

u2 X; Tð Þ ¼ 2
ffiffiffi
6

p
im

3n
tanh�1 m2e

4m2b2�1ð ÞXþ 4m2b2þ1ð ÞT
4b

� �

ð100Þ

In Figs. 1 and 2 different solutions extracted from

Eq. (96) are graphically represented with different

values of b;m and n

In Figs. 3 and 4 different solutions extracted from

Eq. (100) are graphically represented with different

values of b;m and n

As we mentioned earlier that there exist some

attempts for obtaining travelling wave solutions for

LGH Eq. (3) in the literature.

5 Conclusion

In this article, we have investigated the Landau-

Ginzburg-Higgs (LGH) equation which explain the

superconductivity and drift cyclotron waves in radi-

ally inhomogeneous plasma for coherent ion-cy-

clotron waves by the aid of the inverse scattering

transformation (IST) method. The integrability has

been proved by deriving the Lax pair under a simple

modification of Ablowitz-Kaup-Newell-Segur

(AKNS) formalism. Different types of travelling wave

solutions have been established and graphically rep-

resented in 2d and 3d profiles.
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17. Suyalatu, D., et al.: Bäcklund transformation and multi-

soliton solutions for the discrete Korteweg–de Vries equa-

tion. Appl. Math. Lett. 125, 107747 (2022)

18. Ali, Mohamed R.: Solution of KdV and boussinesq using

Darboux transformation. Commun. Math. Model Appl. 3,
16–27 (2018)

19. Chen, Y, and Xue-Wei Y.: Inverse scattering and soliton

solutions of high-order matrix nonlinear Schrödinger

equation. Nonlinear Dyn. 1–11 (2022)

20. Song, C.Q., Zhao, H.Q.: Dynamics of various waves in

nonlinear Schrödinger equation with stimulated Raman

scattering and quintic nonlinearity. Nonlinear Dyn. 99(4),
2971–2985 (2020)

21. Depollier, C., Fellah, Z.E.A., Fellah, M.: Propagation of

transient acoustic waves in layered porous media: fractional

equations for the scattering operators. Nonlinear Dyn. 38(1),
181–190 (2004)

22. Ali, M.R., et al.: Mathematical examination for the energy

flow in an inhomogeneous Heisenberg ferromagnetic chain.

Optik 271, 170138 (2022)

23. Ali Akbar, M., et al.: Abundant exact traveling wave solu-

tions of generalized bretherton equation via improved (G0/
G)-expansion method. Commun. Theor. Phys. 57, 173

(2012)

24. Du, X., Zhang, X.: Influence of ocean currents on the sta-

bility of underwater glider self-mooring motion with a

cable. Nonlinear Dyn. 99(3), 2291–2317 (2020)

25. Ding, Y., et al.: Abundant complex wave solutions for the

nonautonomous Fokas-Lenells equation in presence of

perturbation terms. Optik 181, 503–513 (2019)

26. Wang, J.: The extended Rayleigh-Ritz method for an anal-

ysis of nonlinear vibrations. Mech. Adv. Mater. Struct.

29(22), 3281–3284 (2022)

27. Wu, J.: A new approach to investigate the nonlinear

dynamics in a (3? 1)-dimensional nonlinear evolution

equation via Wronskian condition with a free function.

Nonlinear Dyn. 103(2), 1795–1804 (2021)

28. Tang, X.Y., Cui, C.J., Liang, Z.F., Ding, W.: Novel soliton

molecules and wave interactions for a (3? 1)-dimensional

nonlinear evolution equation. Nonlinear Dyn. 105(3),
2549–2557 (2021)

29. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierar-

chy: two integrable equations with time-dependent coeffi-

cients. Nonlinear Dyn. 100(4), 3711–3716 (2020)

30. Najafi, R., Bahrami, F., Hashemi, M.S.: Classical and

nonclassical Lie symmetry analysis to a class of nonlinear

time-fractional differential equations. Nonlinear Dyn.

87(3), 1785–1796 (2017)

31. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé anal-
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