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Abstract In this paper, based on the combination of
Hirota’s bilinearmethod and longwave limit technique,
we investigate rational and semi-rational solutions to
the third-type Davey–Stewartson (DS III) equation and
its nonlocal version. Rational solutions to the DS III
equation demonstrate to be kinks, lumps and line rogue
waves, while semi-rational solutions display hybrids of
solitons, lumps and line roguewaves.As to the nonlocal
DS III equation,wederive (semi-)rational solutions and
breather solutions. Semi-rational solutions show lumps
on the periodic line backgrounds, hybrids of breathers
and lumps, line rogue waves and line breathers on the
periodic line background.

Keywords Davey–Stewartson III equation · Rogue
wave · Rational solution · Lump solution

1 Introduction

Rogue waves are widely concerned in nonlinear sci-
ences and they are found in many fields, such as ultra-
broadband supercontinuum generation, optical fibers,
ocean technology and so on. Rogue waves are also
adapted in many fields of science including Bose–
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Einstein condensate [1,2], nonlocal media [3], super-
fluids [4], plasma [5,6] and optical systems [7,8].
Rogue waves appear in the ocean without traces, attain
a huge amplitude and then suddenly merge into the
background [9–11]. In mathematics, rogue waves are
firstly reported in the nonlinear Schrödinger equation
(NLS) byPeregrine [12], and thus called Peregrine soli-
tons. Three typical features are concerned as the defi-
nition of (1 + 1)-dimensional first-order rogue waves.
Firstly, they are rational or quasi-rational in expres-
sions. Secondly, they are spatial and temporal local-
ized. Thirdly, they share a maximum amplitude usu-
ally more than three times of the background. Higher-
order rogue waves are also concerned in many inte-
grable systems, such as Hirota equation [13], Sasa–
Satsuma equation [14,15], three wave interaction sys-
tem [16] and so on. Many methods are used to build
higher-order rogue wave solutions including Darboux
transformation method and Hirota’s bilinear method
[17,18]. In addition to roguewave solutions,many inte-
grable equations admit lump solutions [19,20]. Lump
patterns of the Kadomtsev–Petviashvili (KP) equation
are analytically studied [21,22].

In the pioneer works of Bender and Boettcher, stud-
ies onnon-Hermitian physical systemshave beenon the
rise [23]. They prove that as long as a non-Hermitian
Hamiltonian satisfies the PT symmetry condition, it
can possess an entirely real spectra. In general, if
the complex potential satisfies the condition V (x) =
V ∗(−x), one can define the non-Hermitian PT sym-
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metric Hamiltonian H = p̂2/2+ V (x), where V (x) is
a complex potential, p̂ is the momentum operator and
asterisk denotes complex conjugate [24–29]. A lot of
non-Hermitian Hamiltonian systems have been inves-
tigated in the past three decades [30–34]. Studies in
optics and photonics provide the test bed for the exper-
imental observations of phenomena associated with
the PT symmetry [35–37]. Many works reveal that
a complex-valued potential which only shares a parity
symmetry may also be applied in optics, photonics and
many other related areas [30–37]. To understand a PT
symmetry system better, it is worthwhile to find out its
associated integrable model. Ablowitz andMusslimani
proposed a nonlocal NLS equation with a PT sym-
metric potential [38]. Stimulated by this work, many
(1+1)-dimensional nonlocal systems are investigated.
Recently, the (2+1)-dimension nonlocal NLS was pro-
posed [39].

Hirota’s bilinear method has shown its effectiveness
in constructing explicit solutions of integrable equa-
tions [40]. Based on Hirota’s bilinear method, the long
wave limit approach [19] was introduced by Ablowitz
and Satsuma to construct rational solutions of the KP
equation and two-dimensional NLS equation. They
proposed the algorithm and the general form of rational
solutions starting from soliton solutions. This method
has been successfully applied to (2+1)-dimensional
nonlocal NLS and Fokas system [41,42]. Moreover,
the long wave limit method combined with the KP
hierarchy reduction has been developed. Many inter-
esting patterns of rational and semi-rational solutions
are found, such as W-shaped rogue waves, kink-type
roguewaves, lumps, roguewaves on periodic linewave
backgrounds and so on.

In this paper, we investigate the third-type Davey–
Stewartson (DS III) equation

iqt − qxx + qyy − 2γ q

[(∫ x

−∞
|q|2ydx ′ + u1(y, t)

)

−
(∫ y

−∞
|q|2xdy′ + u2(x, t)

)]
= 0, γ = ±1, (1)

where q(x, y, t) is a complex function and u1(y, t),
u2(x, t) are real. By the transformation

V =
∫ x

−∞
(|q|2)ydx ′ + u1(y, t), (2)

U =
∫ y

−∞
(|q|2)xdy′ + u2(x, t), (3)

the DS III Equation (1) is transformed into the form

iqt − qx + qyy − 2γ q(V −U ) = 0,

Vx = (|q|2)y,
Uy = (|q|2)x ,

(4)

whereU and V are two real functions. Schulman [43],
Santani and Fokas [44,45] derived the DS III equation
via symmetry method. Afterward, Boiti [46] found this
equation again by the direct linearization method [47].
Recently, much attention has been paid to the DS III
equation inmany aspects. General dark solitons, mixed
solutions of dark solitons and breathers, semi-rational
solutions consisting of rogue waves, breathers and soli-
tons for the DS III equation were generated by employ-
ing the bilinear method [48]. The residual symmetry
and exact solutions were considered by using function
expansion method in [49]. By means of the multilinear
variable separation approach, the variable separation
solution for the DS III equation was obtained in [50].

In addition to the local DS III equation, based on
the fully and partially parity-time (PT ) symmetry, two
kinds of nonlocal DS III equation are proposed. The
first one [51] is nonlocal both in x and y direction

iqt − qx + qyy − 2γ q(V −U ) = 0,

Vx =
(
qq∗(−x,−y, t)

)
y
,

Uy =
(
qq∗(−x,−y, t)

)
x
,

(5)

and the second one [52] is reverse time with

iqt − qx + qyy − 2γ q(V −U ) = 0,

Vx =
(
qq(x, y,−t)

)
y
,

Uy =
(
qq(x, y,−t)

)
x
.

(6)

For the fully PT symmetric nonlocal DS III Equation
(5) and the reverse-time nonlocal DS III Equation (6),
Gram-type determinant soliton solutions were derived
via the KP hierarchy reduction method and Hirota’s
bilinear approach [51,52].

Recently, (semi-)rational solutions of many inte-
grable systems were investigated, such as Boussinesq–
Burgers system [53], Mel’nikov system [54],
Kadomtsev–Petviashvili-based system [55],
(2+1)-dimensional NLS system [56], Hirota–Maccari
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system [57] and so on. As to the DS III (4), (semi-
)rational have been derived from KP hierarchy reduc-
tion approach. To the best of our knowledge, (semi-
)rational solutions for the DS III have not been reported
by taking the long wave limit method. Besides, (semi-
)rational solutions for the nonlocal DS III Equation (5)
have never been obtained. These motivate us to con-
sider study rational and semi-rational solutions to local
and nonlocal DS III equation based on the combina-
tion of Hirota’s bilinearmethod and the longwave limit
technique. We aim to derive various types of solutions
such as kink-shaped rogue wave, lumps, line rogue
waves, breathers, line breathers, solitons to the local
and nonlocal DS III equation. Furthermore, we will
depict these obtained solutions both in (x, y) and (x, t)-
plane and explore their dynamics.

The paper is organized as follows. In Sect. 2, sev-
eral kinds of rational and semi-rational solutions to
the DS III equations are derived using the combina-
tion of Hirota’s bilinear method and the long wave
limit approach. These solutions contain solitons, line
breathers, lumps and line rogue waves and hybrid solu-
tions. Furthermore, dynamics of the derived solutions
are analyzed with plots. In Sect. 3, solitons and semi-
rational solutions to the nonlocal DS III equation are
deduced. These solutions demonstrate to be breathers,
lumps and line rogue waves, respectively. The mixed
solutions composed of breathers, lumps and line rogue
waves on the background of line breathers are also
derived. Finally, the conclusion and discussion are
given.

2 Solutions of the DS III equation

In this section, we focus on solutions of the DS III
equation via Hirota’s bilinear method and long wave
limit technique. The DS III system (4) is transformed
into the bilinear form{

(iDt − D2
x + D2

y)g · f = 0,

(γ Dx Dy − 2) f · f = −2|g|2, (7)

through the dependent variable transformation

q = g

f
, U = −γ (ln f )xx , V = −γ (ln f )yy, (8)

where γ = ±1, f is real and g is complex with
respect to variables x, y, t . Hirota’s bilinear operator

D is defined as [40]

Dm
x Dk

t a · b =
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂t

− ∂

∂t ′

)k

a(x, t)b(x ′, t ′)
∣∣∣
x ′=x,t ′=t

.

In the following, we first present soliton solutions of
the DS III Equation (4) by Hirota’s bilinear method
and then generate rational and semi-rational solutions
by using the long wave limit technique.

2.1 Soliton solutions to the DS III equation

Although the Gram-type solution to the DS III equa-
tion was derived by the KP-Toda hierarchy reduction
method inRef. [48], we give general N -soliton solution
by making the perturbation expansion from the bilin-
ear form. We obtain the N -soliton solution to the DS
III Equation (4) with

f =
∑

μ=0,1

exp

⎛
⎝ (N )∑

j<k

μ jμk A jk +
N∑
j<k

μ jη j

⎞
⎠ , (9)

g =
∑

μ=0,1

exp

⎛
⎝ (N )∑

j<k

μ jμk A jk +
N∑
j<k

μ j (η j + i� j )

⎞
⎠ ,

(10)

where

η j = Pj x + Q j y + � j t + η0j ,

� j = −
δ j

√
−γ 2P2

j Q
2
j + 4γ Pj Q j (P2

j − Q2
j )

γ Pj Q j
,

cos(� j ) = −γ Pj Q j + 2

2
,

sin(� j ) = δ j

√
−γ 2P2

j Q
2
j + 4γ Pj Q j

2
,

δ j = ±1,

eA jk = −2 cos(� j − �k) + γ (Pj − Pk)(Q j − Qk) − 2

2 cos(� j + �k) + γ (Pj + Pk)(Q j + Qk) − 2
.

(11)

Here, j, k, N are arbitrary positive integers, Pj , Q j are
arbitrary real parameters, and η0j is a complex constant.
The notation

∑
μ=0,1 indicates summation over all pos-

sible combinations ofμ1 = 0, 1, μ2 = 0, 1, · · ·, μN =
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0, 1, and
∑(N )

j<k summation is over all possible combi-
nations of the N elements with the suitable parametric
condition j < k.

2.2 Rational solutions of the DS III equation

In Ref. [48], rational solutions were constructed by
applying differential operators to the parameters of
Gram determinant solutions. Here, to construct rational
solutions of the DS III Equation (4) from the obtained
N -soliton solutions (9), (10), we take long wave limits
on f and g. To this end, we set parameter constrains

Q j = λ j Pj , η0j = iπ (1 ≤ j ≤ N ),

with λ j ∈ R and take the limits Pj → 0. Under the
circumstance, f and g tend to polynomials that lead to
rational solutions of the DS III equation.

Theorem 1 The DS III Equation (4) admits the Nth-
order rational solutions

q = gN
fN

, U = −γ (ln fN )xx , V = −γ (ln fN )yy,

(12)

where

fN =
N∏
j=1

θ j + 1

2

(N )∑
j,k

a jk

N∏
l �= j,k

θl + · · ·

+ 1

M !2M
(N )∑

j,k,··· ,m,n

M︷ ︸︸ ︷
a jkasl · · · amn

N∏
p �= j,k,···,m,n

θp + · · ·,

gN =
N∏
j=1

(θ j + b j ) + 1

2

(N )∑
j,k

a jk

N∏
l �= j,k

(θl + bl) + · · ·

+ 1

M !2M
(N )∑

j,k,··· ,m,n

M︷ ︸︸ ︷
a jkasl · · · amn

N∏
p �= j,k,··· ,m,n

(θp + bp) + · · · ,

(13)

and

θ j = x + λ j y + 2δ j (−λ2j + 1)√
γ λ j

t,

b j = −iδ j
√

γ λ j ,

a jk = −λ jλk

2δ j
√

λ j
√

λk + (λ j + λk)
, δ j = ±1.

(14)

Here
∑(N )

j,k,··· ,m,n stands for the summation over all the
possible combinations of j, k, ...,m, n that are taken
from 1, 2, ..., N and all different. The first four sets of
functions f and g in (13) are expressed as

f1 = θ1,

f2 = θ1θ2 + a12,

f3 = θ1θ2θ3 + a12θ3 + a13θ2 + a23θ1,

f4 = θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4

+ a14θ2θ3 + a23θ1θ4 + a24θ1θ3

+ a34θ1θ2 + a12a34 + a13a24 + a14a23,

g1 = θ1 + b1,

g2 = (θ1 + b1)(θ2 + b2) + a12,

g3 = (θ1 + b1)(θ2 + b2)(θ3 + b3)

+ a12(θ3 + b3) + a13(θ2 + b2) + a23(θ1 + b1),

g4 = (θ1 + b1)(θ2 + b2)(θ3 + b3)(θ4 + b4)

+ a12(θ3 + b3)(θ4 + b4) + a13(θ2 + b2)(θ4

+ b4) + a14(θ2 + b2)(θ3 + b3)

+ a23(θ1 + b1)(θ4

+ b4) + a24(θ1 + b1)(θ3 + b3)

+ a34(θ1 + b1)(θ2 + b2)

+ a12a34 + a13a24 + a14a23.
(15)

Similar results have been given in Ref. [19] and one
can refer to it therein for the detailed proof.

Remark 1 We can obtain lump solutions of the DS III
equation with parameters

N = 2n, λn+ j = λ j ,

sin(�n+ j ) = − sin(� j ), j = 1, 2, · · ·, n. (16)

In the following, based on the expressions of f and g in
the above theorem, we construct explicit rational solu-
tions of the DS III equation. Without loss of generality,
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we put γ = 1 in the following discussion. The explicit
expressions of solutions with some different N values
are given in Appendix.

2.2.1 N = 1 case

Firstly, we consider the simple case N = 1. The ratio-
nal solution is expressed as

q =
x + λ1y + 2(−λ21+1)t√

λ1
− i

√
λ1

x + λ1y + 2(−λ21+1)t√
λ1

, (17)

U = − 1(
x + λ1y + 2(−λ21+1)t√

λ1

)2 , (18)

V = − λ21(
x + λ1y − 2(−λ21+1)t√

λ1

)2 . (19)

We find that these rational solutions are singular along
the line x + λ1y = 0 at t = 0. Furthermore, for t �= 0,
we take λ1 = −α1. In this case, q has two critical lines,

L1 : x = α1y + α2
1 − �

2α
3
2
1

, (20)

L2 : x = α1y + α2
1 + �

2α
3
2
1

, (21)

and the maximum and minimum amplitude of |q| are
given by

|q|max = |q|L1

=
∣∣∣∣∣
(−iα2

1 + 4α3
1 t − 4α1t + i�)(−iα2

1 − 4α3
1 t + 4α1t + i�)

(4α3
1 t + iα2

1 − 4α1t + i�)(−4α3
1 t + iα2

1 + 4α1t + i�)

∣∣∣∣∣ ,
(22)

|q|min = |q|L2 = 1

|q|max
. (23)

Besides, the distance d between two lines L1 and L2 is

d = �

α
3
2
1

√
1 + α2

1

, (24)

with � =
√
16α6

1 t
2 − 32α4

1 t
2 + α4

1 + 16α2
1 t

2. When
α1 = 2, the corresponding profiles of |q|max, |q|min and
d along t are shown in Fig. 1. As seen in the above anal-
ysis, |q|max → |q|min and d → ∞ as t → ∞, which

means the solution approaches a constantwhen the time
goes to infinity. Thus, it is proper to call the kink-shaped
line wave a rogue wave. Although this wave blows up
when t = 0, we still regard it to be a rogue wave. This
kink-shaped rogue wave has been discovered firstly in
[58]. It is a rare phenomenon that does not exist even
in many usual (2+1)-dimensional systems such as local
DSI and KPI. It might be a special phenomenon in the
nonlocal DS III equation.

With the corresponding profile as kink-shaped line
rogue, see Fig. 2. It is also of great significance to make
a comparison between the kink-shaped line roguewave
and the W-shaped line rogue wave. Firstly, though that
the kink-shaped line rogue wave arises from a con-
stant background, the height of the two sides of the
main amplitude is different while the W-shaped line
rogue wave only has one asymptotic plane. Secondly,
the W-shaped line rogue wave means it possesses one
maximum amplitude and two minimal ones. However,
the kinked-shaped soliton only has two critical lines,
a maximum amplitude and a minimal one. Finally, the
kink-shaped line rogue wave blows up at finite time
when t = 0 while the amplitude of the W-shaped line
rogue wave always keeps finite.

2.2.2 N = 2 case

To demonstrate the typical dynamics of these ratio-
nal solutions, we consider the first-order lump solution
associated with N = 2. We set parametric conditions

N = 2, Q1 = λ1P1,

Q2 = λ2P2, λ2 = λ1 = λ �= 0, (25)

and take the limits Pj → 0, ( j = 1, 2). In this case,
we have sin�1 = − sin�2,�1 = −�2 and

θ1 = x + λy + 2(−λ2 + 1)√
λ

t,

θ2 = x + λy − 2(−λ2 + 1)√
λ

t, (26)

b1 = −i
√

λ, b2 = i
√

λ, a12 = −λ

4
. (27)

The explicit first-order lump solution is expressed by

q = g2
f2
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Fig. 1 a |q|max (blue line)
and |q|min (red line) along t .
b L . (Color figure online)

Fig. 2 The time evolution of the kink-shaped line rogue q given by (17) in the (x, y)-plane

=
(x + λy)2 −

(
2(−λ2+1)t√

λ
+ i

√
λ
)2 − 1

4λ

(x + λy)2 −
(
2(−λ2+1)t√

λ

)2 − 1
4λ

, (28)

U = −(ln f2)xx

=
2(x + λy)2 − 2

(
2(−λ2+1)t√

λ

)2 + λ
2(

(x + λy)2 −
(
2(−λ2+1)t√

λ

)2 − 1
4λ

)2 , (29)

V = −(ln f2)yy

=
2λ2(x + λy)2 − 2λ2

(
(−λ2+1)t√

λ

)2 + λ3

2(
(x + λy)2 −

(
2(−λ2+1)t√

λ

)2 − 1
4λ

)2 . (30)

One can verify that the rational solution (28) is non-
singular when λ < 0. In particular, we take λ = −2.
At y = 0, the corresponding profile of |q| and its den-
sity plot are depicted in (x, t)-plane (see Fig. 3) that
demonstrates to be a fundamental lump.

With the same parameters as those for Fig. 3, the
rational solution (28) demonstrates to be a line rogue
wave in (x, y)-plane. The profile of the line rogue wave
is displayed in Fig. 4. When t → ±∞, the line rogue
waveq uniformlydegenerates to a constant background
in (x, y)-plane. The amplitude of the line rogue wave
varies, and attains the maximum value along the line
x + λy = 0 at t = 0.

2.2.3 N = 4 case

Furthermore, we consider higher-order rational solu-
tions. We choose parameters

N = 4, Q j = λ j Pj , λ j �= 0, ( j = 1, 2, 3),
(31)

and take the limit of Pj → 0, ( j = 1, 2). The higher-
order rational solution of the DS III equation is given
by
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Fig. 3 One-lump solution q
of the DS III equation
defined by (28) in the
(x, t)-plane with
N = 2, λ = −2

Fig. 4 The line rogue wave solution q of the DS III equation given by (28) in the (x, y)-plane with parameters N = 2, λ = −2

q = g4
f4

, U = −(ln f4)xx , V = −(ln f4)yy, (32)

where f4 and g4 are presented in (15) with

θ1 = x + λ1y + 2(−λ21 + 1)√
λ1

t,

θ2 = x + λ2y + 2(−λ22 + 1)√
λ2

t,
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Fig. 5 Higher-order lump solution q of the DS III equation defined by (32) in the (x, t)-plane with N = 4, λ1 = λ3 = − 2
3 , λ2 =

λ4 = −2

θ3 = x + λ3y − 2(−λ23 + 1)√
λ3

t,

θ4 = x + λ4y − 2(−λ24 + 1)√
λ4

t,

a12 = λ1λ2

2
√

λ1
√

λ2 − (λ1 + λ2)
,

a13 = −λ1λ3

2
√

λ1
√

λ3 + (λ1 + λ3)
,

a14 = −λ1λ4

2
√

λ1
√

λ4 + (λ1 + λ4)
,

a23 = −λ2λ3

2
√

λ2
√

λ3 + (λ2 + λ3)
,

a24 = −λ2λ4

2
√

λ2
√

λ4 + (λ2 + λ4)
,

a34 = λ3λ4

2
√

λ3
√

λ4 − (λ3 + λ4)
,

b1 = −i
√

λ1, b2 = −i
√

λ2,

b3 = i
√

λ3, b4 = i
√

λ4.

Under the constrain λ1 = λ3 and λ2 = λ4 the ratio-
nal solution (32) describes the interaction between
two lumps in (x, t)-plane. In particular, when λ1 =
− 2

3 , λ2 = −2, the evolution of q with different y val-
ues is displayed in Fig. 5. It displays the interaction
between two fundamental lumps. Apparently, the lump
with higher amplitude travels faster than the lower one.
The higher lump catches the lower one and they inoscu-
late as a whole. The superposition amplitude of these
two lumps is lower than each original one. After the
collision, the two lumps separate from each other and
move on.

With the same parameters as in Fig. 5, the corre-
sponding solution q describes the second-order line
rogue wave in (x, y)-plane. The profiles of the line
rogue wave at different t values are shown in Fig. 6.
One can find that the line rogue wave appears from
the plane background and disappears into the constant
background. When t = 0, the profile displays the elas-
tic collision of two solitons. As t grows, the line wave
attains higher amplitudes and finally disappears into a
constant background as t → ∞.

2.3 Semi-rational solutions of the DS III equation

In this part, we consider several types of the semi-
rational solutions to the DS III equation. To this end,
we take long wave limits in a part of exponential func-
tions f, g in (9), (10) and other exponential functions
keep no change. In this case, we find the hybrid of ratio-
nal and exponential function solutions,which describes
interactions between the lump, soliton and line rogue
wave.

2.3.1 N = 3 case

Firstly, we construct semi-rational solutions based on
the third-order soliton. We choose parameters

N = 3, Q1 = λ1P1, Q2 = λ2P2, η01 = η02 = iπ,

(33)
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Fig. 6 Higher-order rational solution q of the DS III equation defined by (32) in the (x, y)-plane with N = 4, λ1 = λ3 = − 2
3 , λ2 =

λ4 = −2

and take the limit of Pj → 0, ( j = 1, 2). The semi-
rational solution of the DS III equation is given by

q = g

f
, U = −(ln f )xx , V = −(ln f )yy, (34)

where f and g are presented as

f = (θ1θ2 + a12)

+
(
θ1θ2 + a12

+ a13θ2 + a23θ1 + a13a23
)
eη3 , (35)

g =
(
(θ1 + b1)(θ2 + b2) + a12

)

+
(
(θ1 + b1)(θ2 + b2) + a12 + a13(θ2 + b2)

+ a23(θ1 + b1) + a13a23
)
eη3+i�3 , (36)

where

a13 = −P3Q3λ√
λ

√
−P2

3 Q
2
3 + 4P3Q3 + (λP3 + Q3)

,

a23 = P3Q3λ√
λ

√
−P2

3 Q
2
3 + 4P3Q3 − (λP3 + Q3)

,

and a12, b1, b2, θ1, θ2,�3, η3 are given by (11) and
(14). Furthermore, we take P3 = 1, Q3 = 2, λ =
− 1

2 , η
0
3 = −2π . With these parameters, we get the

semi-rational solution composed of a dark soliton and
a lump and the plot is shown in (x, t)-plane (see Fig.
7). From the plot, we find that the lump travels from
one side of the dark soliton to the other side and they
immerse into each other when y = 3. One can find that
the amplitude of the lump becomes lower during the
interaction.

We take the same parameters as Fig. 7 and consider
dynamics of the semi-rational |q| in (x, y)-plane. We
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find that a line rogue wave is generated on the dark-
soliton background (see Fig. 8). The line wave grows
from the dark-soliton background and finally decays
into the same background. We note that the amplitudes
of the line wave in both sides of the dark soliton are
different.

2.3.2 N = 4 case

To derive higher-order semi-rational solutions, we set

N = 4, Q1 = λ1P1, Q2 = λ2P2,

η01 = η02 = iπ, η03 = η04. (37)

Taking the limits Pj → 0, ( j = 1, 2) leads to the
higher-order semi-rational solution of the DS III equa-
tion

q = g

f
, U = −(ln f )xx , V = −(ln f )yy, (38)

where f and g are presented as

f = (θ1θ2 + a12)+(
θ1θ2 + a12 + a13θ2 + a23θ1 + a13a23

)
eη3

+
(
θ1θ2 + a12 + a14θ2 + a24θ1 + a14a24

)
eη4

+
(
θ1θ2 + a12 + a13θ2 + a23θ1

+ a14θ2 + a24θ1 + a13a23 + a13a24

+ a14a23 + a14a24
)
eη3+η4eA34 , (39)

g =
(
(θ1 + b1)(θ2 + b2) + a12

)

+
(
(θ1 + b1)(θ2 + b2) + a12

+ a13(θ2 + b2) + a23(θ1 + b1) + a13a23
)
eη3+i�3

+
(
(θ1 + b1)(θ2 + b2) + a12 + a14(θ2 + b2)

+ a24(θ1 + b1) + a14a24
)
eη4+i�4

+
(
(θ1 + b1)(θ2 + b2) + a12 + a13(θ2 + b2)

+ a23(θ1 + b1) + a14(θ2 + b2) + a24(θ1 + b1)

+ a13a23 + a13a24 + a14a23

+ a14a24
)
eη3+i�3+η4+i�4eA34 , (40)

where a jk = δ j Pk Qkλ√
λ

√
−P2

k Q
2
k+4Pk Qk+(λPk+Qk )

, and θ j , a12,

b j ,� j , η j , A34 are givenby (11) and (14).Weput P3 =
−P4 = 1, Q3 = −Q4 = 2, λ = − 1

2 , η
0
3 = η04 = −π

2 .
The solution describes the evolution of one lump on
the background of a dark two-soliton in (x, t)-plane,
(see Fig. 9). When y = 0, the soliton and lump collide
with each other and the amplitude of the lump becomes
lower. The lump and soliton recover their origin ampli-
tudes after the collision.

The interactions between the line rogue wave and
dark two-soliton in (x, y)-plane are displayed in Fig. 10
with the same parameters in Fig. 9. The line roguewave
appears from the two parallel solitons background. It is
interesting to find that the amplitude of the line rogue
wave grows first to the maximum value. Then, the line
rogue wave decays and finally disappears without a
trace.

3 Solutions of the nonlocal DS III equation

In this part, we consider solutions of the nonlocal DS
III Equation (5) and their dynamic behaviors. By the
variable transformation

q = g̃

f̃
, U = −γ (ln f̃ )xx , V = −γ (ln f̃ )yy,

(41)

the nonlocal DS III Equation (5) is transformed into the
bilinear equation
{

(iDt − D2
x + D2

y)g̃ · f̃ = 0,

(γ Dx Dy − 2) f̃ · f̃ = −2g̃g̃∗(−x,−y, t),
(42)

where γ = ±1, f̃ is real and g̃ is complex with respect
to x, y, t . It is required that the function g̃ satisfies the
condition

[g̃(−x,−y, t)]∗ = g̃(x, y, t).

Similar to the local case, in the following, we investi-
gate soliton solutions, rational and semi-rational solu-
tions of the nonlocal DS III Equation (5) by taking the
long wave limit technique. The explicit expressions of
solutions for the nonlocal DS III Equation (5) with dif-
ferent N values are given in Appendix.
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Fig. 7 Rational solutions q of the DS III equation given by (34) in the (x, t)-plane with parameters N = 3, P3 = 1, Q3 = 2, λ =
− 1

2 , η03 = −2π

Fig. 8 Rational solutions q of the DS III equation given by (34) in the (x, y)-plane with parameters N = 3, P3 = 1, Q3 = 2, λ =
− 1

2 , η03 = −2π
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Fig. 9 Semi-rational solutions q of the DS III equation defined by (38) in the (x, t)-plane with parameters N = 4, P3 = 1, P4 =
−1, Q3 = 2, Q4 = −2, λ = − 1

2 , η03 = η04 = − π
2

Fig. 10 Semi-rational solutions q of the DS III equation defined by (38) in the (x, y)-plane with parameters N = 4, P3 = 1, P4 =
−1, Q3 = 2, Q4 = −2, λ = − 1

2 , η03 = η04 = − π
2

3.1 Soliton, breather solutions of the nonlocal DS III
equation

Using the Hirota’s bilinear method, we can obtain the
Nth-order soliton solution of the nonlocal DS III equa-
tion, and f̃ and g̃ admit the expression

f̃ =
∑

μ=0,1

exp
( (N )∑

j<k

μ jμk Ã jk +
N∑
j<k

μ j η̃ j

)
, (43)

g̃ =
∑

μ=0,1

exp
( (N )∑

j<k

μ jμk Ã jk +
N∑
j<k

μ j (η̃ j + i�̃ j )
)
,

(44)
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where

�̃ j = −
δ j

√
−γ 2P2

j Q
2
j − 4γ Pj Q j (P

2
j − Q2

j )

γ Pj Q j
,

η̃ j = iPj x + iQ j y + �̃ j t + η0j ,

cos(�̃ j ) = γ Pj Q j + 2

2
,

sin(�̃ j ) = δ j

√
−γ 2P2

j Q
2
j − 4γ Pj Q j

2
,

eÃ jk = −2 cos(�̃ j − �̃k) − γ (Pj − Pk)(Q j − Qk) − 2

2 cos(�̃ j + �̃k) − γ (Pj + Pk)(Q j + Qk) − 2
,

γ = ±1.
(45)

Here j, k, N are arbitrary positive integers, Pj , Q j are
arbitrary real parameters, and η0j is a complex constant.
In the following, we suppose γ = 1 without loss of
generality. In order to guarantee that �̃ j is real, the
parameters constraint −P2

j Q
2
j − 4Pj Q j > 0 must be

hold. So we suppose −4 < Pj Q j < 0.
Since η̃ j is complex, we can build breather solu-

tions from soliton solutions under proper constraints
on parameters.We choose parameters in the Nth-order
soliton solution (43), (44) as

N = 2n, Pn+ j = −Pj , Qn+ j = −Q j ,

η0n+ j = η0j , (46)

to generate Nth-order breather solutions. With N = 2
and parameters

N = 2, P2 = −P1 = P, Q2 = −Q1 = Q,

η02 = η01 = η0, (47)

we get first-order breather solution

q = g

f
, U = −(ln f )xx , V = −(ln f )yy, (48)

where

f = √
M cosh
 + cos(Px + Qy), (49)

g = √
M

(
cos2 φ cosh
 + sin2 φ sinh


+ i cosh sin(cosh
 − sinh
)
)

+ cos(Px + Qy)(cosφ + i sin φ), (50)

and

M = 1 − PQ

PQ + 4
, eη0 = √

Meη
0
, (51)

eiφ = PQ + 1

2
+ i

√
−P2Q2 − 4PQ

2
, (52)


 = −(�̃t + η0), �̃ = −
√

−P2Q2 − 4PQ(P2 − Q2)

PQ
.

(53)

In particular, we take P = 2
3 , Q = −1, η0 = 0 and

obtain a typical first-order breather solution in (x, t)-
plane. The breather and its density are shown in Fig.
11. The period of the breather |q| is 2π

P along the x
direction on (x, t)-plane.

Ifwefix t , we get one line breather solution in (x, y)-
plane. As shown in Fig. 12, the periodic line waves
appear fromaflat background andfinally disappear into
the background. The line rogue wave solution admits a
set of parallel propagation with varying heights.

3.2 Rational solutions of the nonlocal DS III equation

In this subsection, we use a long wave limits method on
exponential form solutions f̃ and g̃ to generate rational
solutions of the nonlocal DS III equation. By setting

Q j = λ j Pj , η0j = iπ, (1 ≤ j ≤ N ),

and taking the limit Pj → 0, we transform f̃ and g̃
into rational functions.

Theorem 2 The nonlocal DS III Equation (5) admits
Nth-order rational solutions

q = g̃N

f̃N
, U = −γ (ln f̃N )xx ,

V = −γ (ln f̃N )yy, (54)

123



7648 S.-N. Wang, G.-F. Yu

Fig. 11 First-order breather
solution q of the nonlocal
DS III equation defined by
(48) in the (x, t)-plane with
parameters N = 2, P1 =
−P2 = 2

3 , Q1 = Q2 = −1

Fig. 12 Line breather solutions q of the nonlocal DS III equation defined by (48) in the (x, y)-plane with parameters N = 2, P1 =
−P2 = 2

3 , Q1 = Q2 = −1
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where

f̃N =
N∏
j=1

θ̃ j + 1

2

(N )∑
j,k

ã jk

N∏
l �= j,k

θ̃l + · · · + 1

M !2M

(N )∑
j,k···,m,n

M︷ ︸︸ ︷
ã jk ãsl · · · ãmn

N∏
p �= j,k,···,m,n

θ̃p + · · ·,

g̃N =
N∏
j=1

(θ̃ j + b̃ j )

+ 1

2

(N )∑
j,k

ã jk

N∏
l �= j,k

(θ̃l + b̃l) + · · · + 1

M !2M

(N )∑
j,k···,m,n

M︷ ︸︸ ︷
ã jk ãsl · · · ãmn

N∏
p �= j,k,···,m,n

(θ̃p + b̃p) + · · ·,

(55)

with

θ̃ j =ix + iλ j y

+ δ j (−λ2 + 1)
√−4λ j

λ j
t,

b̃ j = −δ jλ j

i
√−λ j

,

ã jk = λ jλk

−2δ j
√−λ j

√−λk + (λ j + λk)
, δ j = ±1.

(56)

Remark 2 Here, the constraint−4λ j > 0must be hold
to make

√−4λ j real. In order to guarantee solutions
to be nonsingular, we take the parametric conditions
λ j < 0 and defineλ j = −α j , α j > 0. In the following,
we focus on nonsingular rational solutions under these
constraints.

Remark 3 When we apply the long wave limit tech-
nique to generate lump solutions from even order N ,
we obtain the same solution of the nonlocal DS III
Equation (5) as that of the local DS III Equation (4) by
choosing appropriate δ j such that

θ̃ j = i(x + λ j y) − 2i(1 − λ2j )√
λ j

t,

θ j = x + λ j y + 2(1 − λ2j )√
λ j

t,

b̃ j = −ib j , ã jk = −a jk .

For N = 1, we can derive the kink-shaped rogue wave
solution (17)–(19) for the nonlocal DS III.

3.3 Semi-rational solutions of the nonlocal DS III
equation

In this section, to clearly understand the dynamic
behaviors of the nonlocal DS III equation, we consider
several types of semi-rational solutions. Similarly, we
take a longwave limit only in parts of exponential func-
tions in f̃ and g̃ in (43), (44), and the other parts still
keep the exponential form. In this case, we can gener-
ate lumps, breathers, solitons and the hybrid solutions.
We find that the semi-rational solutions of the nonlocal
DS III equation are different from those of the local
DS III equation in the exponential parts. In particular,
we will construct solutions on the periodic line wave
background based on the imaginary exponential parts
in the expression.

3.3.1 N = 3 case

To construct semi-rational solutions from third-order
soliton, we set parameters as the following, namely

N = 3, Q1 = λ1P1, Q2 = λ2P2,

λ1 = λ2 = λ �= 0, η01 = η02 = iπ, �3 = 0, (57)

and take the limit of Pj → 0, ( j = 1, 2). The semi-
rational solutionof the nonlocalDS III equation is given
by

q = g̃

f̃
, U = −(ln f̃ )xx , V = −(ln f̃ )yy, (58)

where f̃ and g̃ are presented as

f̃ = (θ̃1θ̃2 + ã12)

+ (θ̃1θ̃2 + ã12 + ã13θ̃2 + ã23θ̃1 + ã13ã23)e
η3 , (59)

g̃ =
(
(θ̃1 + b̃1)(θ̃2 + b̃2) + ã12

)

+
(
(θ̃1 + b̃1)(θ̃2 + b̃2) + ã12 + ã13(θ̃2 + b̃2)

+ ã23(θ̃1 + b̃1) + ã13ã23
)
eη3+i�̃3 . (60)
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where a13 = P3Q3λ

−√−λ

√
−P2

3 Q
2
3−4P3Q3+(λP3+Q3)

, a23 =
P3Q3λ√−λ

√
−P2

3 Q
2
3−4P3Q3+(λP3+Q3)

, and a12, b j , φ j , η3 are

given in (45) and (56). Further, taking the parameters
P3 = −Q3 = 1

2 , λ = − 1
2 , η

0
3 = −π

2 , the corre-
sponding semi-rational solution composed of a lump
and periodic line waves are generated. In the (x, t)-
plane, a lump on the background of the periodic line
waves with period 2π

P3
is depicted in Fig. 13. Besides,

the amplitude of the lump is larger than the fundamental
lump, that is, it’s value is more than 3. In this case, the
interaction between periodic and the lump can generate
higher peaks.

With the corresponding semi-rational solution is a
line rogue wave on the background of the periodic
line wave in the (x, y)-plane, see Fig. 14. The line
rogue wave grows from the periodic line background
and decays into the periodic line background. Around
t = 0, the interaction between the line wave and the
periodic line background generates a much higher line
rogue wave, which can attain the maximum amplitude
8 (i.e., 8 times the background amplitude). Finally, the
line wave disappears into the background consisted of
the periodic line wave at t → ±∞.

3.3.2 N = 4 case

Higher-order semi-rational solutions consisting of one
breather and one lump can also be obtained in the same
way, taking

N = 4, Q1 = λ1P1, Q2 = λ2P2, η01 = η02 = iπ,

η03 = η04, (61)

and take the limit of Pj → 0( j = 1, 2), we obtain the
higer-order semi-rational solutions of the nonlocal DS
III

q = g̃

f̃
, U = −(ln f̃ )xx , V = −(ln f̃ )yy, (62)

where f̃ and g̃ are presented as

f̃ = (θ̃1θ̃2 + ã12) + (θ̃1θ̃2

+ ã12 + ã13θ̃2 + ã23θ̃1

+ ã13ã23)e
η3 + (θ̃1θ̃2 + ã12 + ã14θ̃2

+ ã24θ̃1 + ã14ã24)e
η4

+
(
θ̃1θ̃2 + ã12 + ã13θ̃2 + ã23θ̃1 + ã14θ̃2

+ ã24θ̃1 + ã13ã23

+ ã13ã24 + ã14ã23 + ã14ã24
)
eη3+η4eÃ34 , (63)

g̃ =
(
(θ̃1 + b̃1)(θ̃2 + b̃2) + ã12

)

+
(
(θ̃1 + b1)(θ̃2 + b̃2)

+ ã12 + ã13(θ̃2 + b̃2) + ã23(θ̃1

+ b̃1) + ã13ã23
)
eη3+i�̃3

+
(
(θ̃1 + b̃1)(θ̃2 + b̃2) + ã12

+ ã14(θ̃2 + b̃2) + ã24(θ̃1 + b̃1) + ã14ã24
)
eη4+i�4

+
(
(θ̃1 + b̃1)(θ̃2 + b̃2)

+ ã12 + ã13(θ̃2 + b̃2)

+ ã23(θ̃1 + b̃1) + ã14(θ̃2 + b̃2) + ã24(θ̃1 + b̃1)

+ ã13ã23 + ã13ã24 + ã14ã23

+ ã14ã24
)
eη3+i�̃3+η4+i�̃4eÃ34 , (64)

where a jk = δ j Pk Qkλ√
λ

√
−P2

k Q
2
k−4Pk Qk+(λPk+Qk )

, and a12,

b j , φ j , η j , eA34 are givenby (45) and (56). In particular,
taking the parameters P3 = −P4 = 2

3 , Q3 = −Q4 =
−1, λ = − 1

2 , the corresponding semi-rational solu-
tion of the nonlocal DS III equation is hybrid solution
of breather and lump in the (x, t)-plane. Further, we
take η03 = η04 = η, and find that the distance between
breather and lump alters with |η|. As can be seen in Fig.
15, when |η| → 0, the distance between the breather
and the lump turn to zero.

With the same parameters, the corresponding semi-
rational solution composed of the line rogue wave and
the line breather in the (x, y)-plane. As can be seen
in Fig. 16, the line rogue wave arises from the back-
ground of the line breather and decay into the line
breather background. The amplitude of the line rogue
wave reaches the maximum value 3 (i.e., 3 times the
background amplitude) around t = 0.When t → ±∞,
the background transform from the line breather into
the flat background.

123



Rational and semi-rational solutions to the Davey–Stewartson III equation 7651

Fig. 13 Semi-rational
solutions q of the nonlocal
DS III equation given by
(58) in the (x, t)-plane with
parameters
N = 3, P3 = −Q3 =
1
2 , λ1 = − 1

2 , η03 = − π
2

Fig. 14 Semi-rational solutions q of the nonlocal DS III equation given by (58) in the (x, y)-plane with parameters N = 3, P3 =
−Q3 = 1

2 , λ1 = − 1
2 , η03 = − π

2

4 Summary

In this paper, by the Hirota’s bilinear method, we have
derived N -soliton solutions for the DS III Equation (4)
and the nonlocal DS III Equation (5), respectively. By
taking long wave limit in the N -soliton solutions of
the DS III equation, we can obtain the corresponding
rational solutions, including kink-shaped rogue wave

solutions, lump solutions and the line rogue wave solu-
tions. Besides, taking a long wave limit in part of the
parameters in N -soliton solutions of the DS III, the
semi-rational solutions composed of lumps, line rogue
waves and solitons are generated. Similarly, by tak-
ing long wave limit in soliton solutions of the nonlocal
DS III equation, (semi-)rational solutions are given.
For the semi-rational solutions, lumps on the periodic
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Fig. 15 Semi-rational solutions q of the nonlocal DS III equation defined by (62) in the (x, t)-plane with parameters N = 4, y =
0, P3 = −P4 = 2

3 , Q3 = −Q4 = −1, λ = − 1
2

Fig. 16 Semi-rational solutions q of the nonlocal DS III equation defined by (62) in the (x, y)-plane with parameters N = 4, P3 =
−P4 = 2

3 , Q3 = −Q4 = −1, λ = − 1
2 , η03 = η04 = − π

2

line wave background, hybrids of the breathers and the
lumps, line rogue waves on the periodic line/breather
background are generated and demonstrated.

Furthermore, we compare the key results of the DS
III equationwith the nonlocal version in detail, themain
results can be summarized in following items:

–Breather solutions. The nonlocal DS III equation
has breathers in (x, t)-plane (see Fig. 11), which are
periodic in x direction. Moreover, the nonlocal DS III
equation also admits line breathers in (x, y)-plane (see
Fig. 12), which are periodic in both x and y direction.
However, we do not find breather solutions for the local
DS III equation.

–Nonsingular rational solutions. The fundamental
rational solutions of the DS III equation and the non-

local DS III equation have the same types, including
lumps in the (x, t)-plane (see Figs. 3 and 5), and line
rogue wave in the (x, y)-plane (see Figs. 4 and 6).

–Semi-rational solutions.The simplest semi-rational
solutions of the DS III equation are hybrids of the
lumps and the solitons in (x, t)-plane (see Figs. 7 and
9), hybrids of the line rogue waves and the solitons
in (x, y)-plane (see Figs. 8 and 10). However, for the
nonlocal DS III equation, the semi-rational solutions
display two types in (x, t)-plane: lumps in the peri-
odic line wave background (see Fig. 13), hybrids of
the breathers and the lumps (see Fig. 15). Besides, in
(x, y)-plane, the solutions demonstrate the line rogue
waves in the periodic line background (see Fig. 14) and
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the line rogue waves in the breather background (see
Fig. 16).

The aforementioned results provide useful models
to enrich the diversity of dynamic structures produced
by the local and nonlocal DS III equation, including
kink-shaped rogue waves, breathers, lumps, line rogue
waves, W-shaped line rogue waves and their hybrids.
We expect other systems with PT symmetric to be
considered and explored more.
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Appendix

Rational solution for theDS IIIwith N = 4 is expressed
in the following

q =
(
108x4 − 576x3y + (−1056it

+ 2144t2 + 1056y2 + 648)x2

+ 768y(it − 53

12
t2 − y2 − 39

16
)x + 192y4

+ (384it + 1664t2 + 864)y2 + 1920it3 + 3600t4

+ 1440it + 5928t2 + 2457
)/(

108x4 − 576x3y

+ (2144t2 + 1056y2 + 936)x2

+ (−3392t2y − 768y3 − 2448y)x + 192y4

+ (1664t2 + 1248)y2 + 3600t4 + 4744t2 + 1521
)
.

Semi-rational solution for theDS IIIwith N = 3 admits
the explicit form

q =
(
(136ix2 + (−136iy + 96i)x + 34iy2

− 48iy − 64 − 19i + 612it2 + (−408

+ 192i)t)ex+2y+3t−2π + 408it + 612t2 + 136x2

− 136xy + 34y2 − 51
)/(

(136x2 + (−136y + 96)x

+ 612t2 + 34y2 + 192t − 48y + 49)ex+2y+3t−2π

+ 612t2 + 136x2 − 136xy + 34y2 + 17
)
.

Semi-rational solution for DS III with N = 4 is
written as

q =
(
(2312ix2 + (−2312iy − 1632i)x + 578iy2

+ 816iy − 1088 − 323i + 10404it2

+ (−6936 + 3264i)t)e−x−2y+3t− 1
2 x

+ (2312ix2 + (−2312iy + 1632i)x

+ 578iy2 − 816iy − 1088 − 323i + 10404it2

+ (−6936 + 3264i)t)ex+2y+3t− 1
2π + (−4624x2

+ 4624xy − 1156y2 − 314 − 4352i

− 20808t2 + (−13056 − 13872i)t)e6t−π

+ 6936it + 10404t2 + 2312x2

− 2312xy + 578y2 − 867
)/(

(2312x2

+ (−2312y − 1632)x + 10404t2

+ 578y2 + 3264t + 816y

+ 833)e−x−2y+3t− 1
2π

+ (2312x2 + (−2312y + 1632)x

+ 10404t2 + 578y2 + 3264t

− 816y + 833)ex+2y+3t− 1
2π

+ (20808t2 + 4624x2 − 4624xy

+ 1156y2 + 13056t + 2626)e6t−π + 10404t2

+ 2312x2 − 2312xy + 578y2 + 289
)
.

Semi-rational solution for the nonlocal DS III with
N = 3 has the expression

q =
(
((24ix2 + (−24iy − 48)x + 108it2

+ 6iy2 − 69i − 240t + 24y)
√
15

+ 168x2 + (336i − 168y)x + 144it − 168iy

+ 756t2 + 42y2 + 29)e
1
2 ix− 1

2 iy− 1
2π + 576it

+ 864t2 + 192x2 − 192xy + 48y2

− 72
)/(

(−192
√
15t + 192x2

+ (384i − 192y)x − 192iy + 864t2 + 48y2 − 8)

e
1
2 ix− 1

2 iy− 1
2π + 864t2 + 192x2 − 192xy + 48y2 + 24

)
.
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Semi-rational solution for the nonlocal DS III with
N = 4 owns the form

q =
(
((−1620it2 − 36ix2 + 435i + 1800t − 480x)

√
5

− 360it + 960ix − 3240t2 − 720x2

− 210)e− 2
3 ix− 9

9

√
5t+η + ((435i − 360ix2

− 1620it2 + 1800t + 480x)
√
5 − 360it

− 960ix − 3240t2 − 720x2 − 210)e
2
3 ix− 5

9

√
5t+η

+ ((−2592it2 − 576ix2 − 520i + 1440t)
√
5 + 6192it

+ 648t2 + 144x2 − 1814)e− 10
9

√
5t+2η − 3240it

− 4860t2 − 1080x2 + 405
)/(

(1440ix

+ 1080
√
5t − 4860t2 − 1080x2 + 45)e− 2

3 ix− 5
9

√
5t+η

+ (−1440ix − 4860t2 + 1080
√
5t − 1080x2

+ 45)e
2
3 ix− 5

9

√
5t+η + (−5832t2 + 2592

√
5t − 1296x2

− 1602)e− 10
9

√
5t+2η − 4860t2 − 1080x2 − 135

)
.
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