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Abstract Many vibrating systems, over some ranges
of parameter values, exhibit a single unstable mode.
Adding a small resonant secondary system to the unsta-
ble system is a well-known stabilization strategy. Here
we show that even a nonresonant secondary system,
if equipped with a limit cycle of its own, can stabi-
lize the unstable mode of the primary system. The pri-
mary system is modeled here as a linear spring block
system with negative damping. The secondary system
is a van der Pol oscillator. Smallness of the latter’s
parameters allows use of the method of multiple scales.
The resulting slow amplitude equations decouple from
the phases and a two-dimensional system is obtained.
The secondary system’s amplitude evolves faster than
that of the primary system, which simplifies analysis.
A parameter-dependent transformation casts the sys-
tem in a canonical form with a single free parameter
c1 > 0 in addition to the small perturbation parameter.
The canonical phase portrait involves two key straight
lines. When c1 < 4 these lines intersect and a separa-
trix passes through that intersection. Solutions on one
side of the separatrix show quenching of the primary
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instability with limit cycle oscillation of the secondary
system. Solutions on the other side of the separatrix
show significant oscillations of the primary system at
its natural frequency, with the secondary limit cycle
being quenched. When c1 > 4, stabilization fails for
all initial conditions. In summary, for the case of a neg-
atively damped oscillator interacting with a small non-
resonant secondary limit cycle oscillator, we show sta-
bilization, provide a pair of canonical equations with
one free parameter, and present a complete qualitative
characterization of the dynamics.

Keywords Negative damping · Stabilization · van der
Pol oscillator · Multiple scales · Separatrix

1 Introduction

Stabilization of unstable vibration modes is an impor-
tant engineering problem. Structures exposed to aero-
dynamic loading can experienceflutter instability.High
tension transmission lines exposed to winds can show
what is called a galloping instability. Long, flexible
members ofmachine tools, like boring bars, can display
undesirable oscillations while cutting. Here we con-
sider a single mode of such a weakly unstable structure
as our primary system and model it as a linear spring-
mass oscillator with, for simplicity, negative linear vis-
cous damping. There is no persistent external excita-
tion. Our aim is to counteract the negative damping and
stabilize the mode.
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Our main novelty in this paper is that we do not use
resonance, because that requires precise tuning.We are
interested in a stabilizer that does not require precise
tuning.

To that end, we consider attaching a small secondary
system to the primary system, wherein the secondary
system’s natural frequency is not close to that of the
primary system, i.e., the secondary system is untuned.
Additionally, the secondary system has its own nonlin-
ear active behavior thatwemodel using thewell-known
van der Pol oscillator. In this way, the small and light
secondary system has a tendency to vibrate at one fre-
quency, while the more massive primary system has
a tendency to vibrate at another frequency altogether.
The aim of our investigation is to seek new analytical
criteria, with proper numerical support, for conditions
under which the instability in the primary system is
suppressed. If we succeed, then we will have found a
new kind of vibration stabilizer which is robust under
parameter uncertainty, because precise tuning of the
frequency is not needed. The price paid will be the
active excitation of the secondary system: but this will
not require feedback of the primary system state.

When we try to stabilize vibrations, we can do it
with passive damping which is not tuned at all, and is
effective over a large range of frequencies. However, it
has the disadvantage that, for a large structure, a phys-
ically large damper may be needed. Another option is
active control where wemeasure the state of the system
and feed back something to an actuator, where again, a
physically large actuator may be needed. In contrast, if
we use passive dynamic methods, we may have a tuned
vibration absorber, and it can be extremely effective in
some cases. However, the parameters of the stabilized
system must then remain within a narrow range. For
example, if a boring bar is gripped at different locations,
its effective length and natural frequency may change
too much, and a tuned vibration absorber will then be
less effective. In contrast to the above approaches, in
this paper, we seek something that does not require
precise tuning, is physically small, and still is effec-
tive over a larger range of natural frequencies of the
primary oscillator, i.e., it does not require a resonant
interaction to work. We emphasize that the resonant
case, when it works, works very well. However, when
resonance cannot be maintained due to parameter vari-
ations, a nonresonant stabilizer can be considered. We
note that in the present paper, although we envisage
the use of active means to produce a limit cycle oscilla-

tion in the secondary system, it is less demanding than
using direct feedback on the primary system because
the secondary system size and actuator size are both
expected to be small. Detailed modeling of the phys-
ical mechanisms used to produce the secondary limit
cycle is left to future work. In this paper we work out
the basic academic theory.

In our two-degree-of-freedom system, both modes
have negative damping in the linearized equations. So
there will essentially be a contest between two insta-
bilities. Since the secondary system is small, its effect
will only be felt if the initial conditions for the primary
system are small as well. However, as we will show,
significant regimes of desirable behavior may be pos-
sible for initial conditions of usefully large size.

2 Literature review

The broad context in which we present our work is
as follows. Traditional tuned mass dampers (TMDs)
are well-known passive absorbers in the vibrations
research community. Improvements in TMD have con-
tinued long after its introduction by Frahm in 1911 [1].
The advantage of passive vibration absorbers is that
they do not require any external power source. How-
ever, TMDs have the disadvantage of being effective
only in a narrow frequency range. Researchers con-
tinue to design and improve vibration absorbers effec-
tive over a wider range of frequencies. Ibrahim [2] has
documented the history of passive vibration absorbers.
With an introduction of nonlinearity in TMDs, non-
linear vibration absorbers (NVAs) or nonlinear energy
sinks (NESs) have gained attention as potential candi-
dates to replace TMDs. While they involve challenges
like multivaluedness (or multiple steady state behav-
iors) and instability in some cases, NESs can offer the
advantage of having a broaderworking frequency range
than TMDs. Ding and Chen [3] have reviewed NES
designs and applications.

Since our primary structure is a linear spring-mass
oscillator while our secondary oscillator is nonlinear,
we specifically mention some articles in which an NES
is attached to a linear oscillator. Gatti [4] considered an
NESwith a linear and cubic spring nonlinearity and vis-
cous damping attached to a damped linear spring-mass
system subjected to harmonic forcing. Using frequency
response analysis, tuning conditions were presented to
apply the NES as an absorber or a neutralizer depend-
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ing on the forcing frequency, considering the harden-
ing and softening characteristics of the cubic spring.
Although the attenuation observed for the desired forc-
ing frequency remained similar to that using a linear
attachment, bandwidth improvement was recognized.
Starosvetsky and Gendelman [5] investigated an NES
with nonlinear damping and a pure cubic spring ele-
ment attached to a linear spring-mass system under
periodic forcing. They showed that the introduction
of damping nonlinearity could annihilate undesirable
nonlinear effects, i.e., extending the amplitude of forc-
ing over which the NES is effective. Zhu et al. [6]
studied a two-degree-of-freedom system with nonlin-
ear spring and damper elements in primary and sec-
ondary systems, where the latter is excited. Using fre-
quency response curves, they showed that increasing
the secondary oscillator’s nonlinear spring and damp-
ing coefficients improves attenuation while increas-
ing the primary system’s nonlinear parameters serves
when a nondimensional forcing frequency (defined
therein) is below unity. It is important to note that
these studies related to the enhancement of TMDs and
NESs have focused on vibration mitigation of peri-
odically forced structures. Attempts towards suppres-
sion of self-excited oscillations can be found in [7,8]
and [9]. Verhulst [7] studied quenching of self-excited
oscillations in the van der Pol and Rayleigh oscillators
by coupling another oscillator. As a tuning method-
ology, coupling parameters were chosen such that the
stable periodic solution of the self-excited oscillator
became unstable. For strong interaction, quenching
of relaxation oscillations was attempted, and design
recommendations were given. Lee et al. [8] investi-
gated the efficacy of an NES with essentially non-
linear cubic spring and viscous damping in suppress-
ing limit cycle oscillations of the van der Pol oscilla-
tor for grounded and ungrounded configurations. They
showed that elimination of the limit cycle of the pri-
mary structure is attainable. Habib and Kerschen [9]
studied mitigation of limit cycles in the van der Pol-
Duffing oscillator. The attached nonlinear tuned vibra-
tion absorber (NLTVA) has linear and cubic spring ele-
ments with viscous damping. The optimumvalue of the
frequency ratio of the linear parts of both oscillators
was close to unity, i.e., tuning was needed. Additional
benefits from nonlinearity were noted.

We now focus our literature review to some papers
that specifically included linear viscous negative damp-
ing in the primary oscillator. Such papers include many

that refer to flow-induced vibrations. Passive vibration
absorbers for flow-induced vibrations have been stud-
ied for decades: see the review paper by Wang et al.
[10]. Nasrabadi et al. [11] studied design of an NES
for vibration suppression of a cantilever cylinder under
cross-flow. They achieved significant reduction in the
vibration amplitude of the cylinder. Guo et al. [12] stud-
ied the suppression of limit cycle oscillation of a linear
extensible cable. They showed that an NES can raise
the wind speed needed for initiation of galloping. The
role of attachment location was studied as well. Qin
et al. [13] studied models of a transmission line with
one through three degrees of freedom. The secondary
system was a pendulum, and the roles of length, mass,
and damping were studied. Tuning was found to be
beneficial. Dai et al. [14] studied the use of an NES
to suppress fluid-induced vibrations of a single degree
of freedom (SDOF) system. It was found that damping
plays a strong role, and a stronger nonlinear stiffness
can limit response amplitudesmore effectively. Shirude
et al. [15] also studied an essentially nonlinear vibra-
tion stabilizer for a negatively damped SDOF system.
They used informal harmonic balance-based averag-
ing to obtain both steady state responses and stability
information. The stabilizer was found to be effective
for some range of parameter values, and precise tuning
was not needed. In all the papers referred to in this para-
graph, the response of the secondary system, whether it
is weakly or strongly nonlinear, and tuned or untuned,
was essentially at the natural frequency of the primary
system.

In a rather different approach from those above,
Singla and Chatterjee [16] studied a negatively damped
linear system coupled with a light whirling viscously
damped pendulum driven by a small steady torque. In
the stabilized regime, the pendulum frequency was not
tuned to the primary oscillator. The method of multiple
scales, carried out to second-order, gave an analytical
stability criterion which was then supported by numer-
ics. Post-instability behaviorwas also studied, but is not
relevant to the present work. The whirling pendulum
system differs from other NESs in that it has constant
amplitude and specific untuned frequency. That paper
[16] motivates our present work, where we incorporate
the preferred amplitude approximately and are able to
eliminate the need for awhirling pendulumcomponent.

Finally, we acknowledge papers [17–19] which,
although not identical to our work, share some philo-
sophical similarities. Chatterjee [17] considered lin-
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ear control actuation of a secondary oscillator cou-
pled to a self-excited primary system with nonlin-
ear damping. Given absorber parameters including the
absorber’s natural frequency, optimum feedback gains
were found. It was noted that higher absorber frequen-
cies gave greater robustness. Since the primary system
is nonlinearly self-excited and the feedback parame-
ters are both linear and based on inertial position and
velocity of the absorber mass, the system deviates from
ours. Additionally, the total dynamics in [17] could
not be reduced to a simple one-parameter form as we
will present here. Mondal and Chatterjee [18] applied
resonant nonlinear feedback control to suppress self-
excited oscillations in a single-mode nonlinear model
of a beam. The velocity measurement from the beam
was fed to a second-order filter (which is essentially
a damped harmonic oscillator), and then the filtered
velocity (which is essentially the velocity of that sec-
ondary oscillator) was used to provide feedback con-
trol. Here also, the primary system was self-excited
and nonlinear; and eventually the optimum frequency
of the secondary system was found to be equal to the
natural frequency of the original system, i.e., the opti-
mum systemwas resonant. Third, we come to the work
of Gattulli et al. [19]. This work has somewhat greater
relevance to our work, as will become clearer below.
The work of [19] is discussed in greater detail in Sects.
3 and 6. Finally, at the suggestion of an anonymous
reviewer, we acknowledge that many studies are avail-
able related to the van der Pol oscillator coupled to
either the van der Pol, the Duffing or some other oscil-
lator. For this reason, we have conducted a broader
literature review and categorized many such articles
based on their focus of study. That discussion is given
in Appendix A. We conclude our literature review here
by highlighting themain characteristics of the stabilizer
proposed in the present study as being light, nonreso-
nant and self-excited.

3 Equations of motion

Figure 1 shows a schematic of the system considered in
this paper. We consider a primary oscillator with mass
M , spring stiffness K and viscous damping coefficient
C . A negative value of C represents instability in the
primary structure. The attached van der Pol (sometimes
called “vdP”) oscillator has massm, linear spring stiff-
ness k̄ and nonlinear damping coefficient c̄v , while x

Fig. 1 Schematic of the coupled system

and z denote the absolute and relative displacements of
the primary and secondary systems, respectively. The
equations of motion (EOMs) are

Mẍ + Cẋ + Kx − k̄z − c̄v ż(z
2 − 1) = 0, (1)

m(z̈ + ẍ) + k̄z + c̄v ż(z
2 − 1) = 0, (2)

By either choice of units or a preliminary nondimen-
sionalization, we can set M = 1 and K = 1 to obtain

ẍ + ˜Cẋ + x − k̃z − c̃v ż(z
2 − 1) = 0,

m̃(z̈ + ẍ) + k̃z + c̃v ż(z
2 − 1) = 0,

where ˜C , m̃, c̃v and k̃ are nondimensional parameters
given by

˜C = C√
MK

, m̃ = m

M
, c̃v = c̄v√

MK
, k̃ = k̄

K
.

(3)

Note that the nondimensional time sets the natural fre-
quencyof the primary oscillator to unity.Now,we intro-
duce a small bookkeeping parameter ε and write

˜C = εc, m̃ = √
εm, c̃v = εcv and k̃ = √

ε k, (4)

The parameters c, m, cv and k are understood to be
O(1). We will not refer to the unscaled quantities any
more. The EOMs take the form

ẍ + εcẋ + x − √
ε kz − εcv ż(z

2 − 1) = 0,√
εm(z̈ + ẍ) + √

ε kz + εcv ż(z
2 − 1) = 0.

We define

ωp
2 = k

m
and γ = cv

m
(5)

for convenience, obtaining
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ẍ + εcẋ + x − √
εmωp

2z − εmγ ż(z2 − 1) = 0, (6)

z̈ + ẍ + ωp
2z + √

ε γ ż(z2 − 1) = 0. (7)

We will study Eqs. (6) and (7) using the method of
multiple scales in the next section.

We are now in a position to discuss the work of Gat-
tulli et al. [19], who studied the effect of a tuned mass
damper (TMD) on a single degree of freedom model
of a bluff body undergoing galloping. Their nondimen-
sionalized equations (Eq. (4) in [19]) are

q̈1 + 2ξ q̇1 + 2μγ ξt (q̇1 − q̇2) + q1

+ μγ 2(q1 − q2) = δ
A3

U
q̇31 ,

q̈2 + 2γ ξt (q̇2 − q̇1) + γ 2(q2 − q1) = 0.

Writing z = q2 − q1, we obtain

q̈1 + 2ξ q̇1 − 2μγ ξt ż + q1 − μγ 2z = δ
A3

U
q̇31 ,

q̈1 + z̈ + 2γ ξt ż + γ 2z = 0.

We note that the parameter values mentioned in [19]

are 2ξ = −0.1356 and δ
A3

U
= −0.0033 with δ =

4.7 × 10−4, A3 = −421,U ∼ 60. Because the RHS
in the first equation is small for the reported parameter
values, and it only modifies the damping, we drop it to
obtain

q̈1 + 2ξ q̇1 − 2μγ ξt ż + q1 − μγ 2z = 0,

q̈1 + z̈ + 2γ ξt ż + γ 2z = 0.

Now, to connect with our system, we introduce a van
der Pol term instead of the linear damping term, to
obtain

q̈1 + 2ξ q̇1 − 2μγ ξt (z
2 − 1)ż + q1 − μγ 2z = 0,

q̈1 + z̈ + 2γ ξt (z
2 − 1)ż + γ 2z = 0.

The above equations match our Eqs. (6) and (7) if we
rename the parameters appropriately. In this way, it is
clear that if the van der Pol term is achieved using rel-
atively small components and active control, then the
results of our paper are relevant to practical systems
studied by other researchers in the nonlinear dynamics
community. In fact, the authors of [19] continued with
a study of the above system after including a z2 ż term
in [20], which makes the connection with the van der
Pol oscillator more direct. However, in [20], the two
oscillators were resonant, while in our system they are
not resonant.

We now return to an analysis of our equations.

4 Multiple scales analysis

Themethod of multiple scales is an asymptotic method
which transforms an ordinary differential equation into
a partial differential equation by considering differ-
ent time scales to be independent variables within an
assumed functional form [21,22]. Themethod has been
regularly applied to a wide variety of engineering and
physics problems. The reader may also refer to the
review paper by Cartmell et al. [23] to appreciate fea-
tures of the method in the context of weakly nonlin-
ear mechanical systems. Here we apply multiple scales
analysis up to second-order to obtain good approxi-
mations for the system dynamics. The intermediate
expressions are lengthy but can be handled by the com-
puter algebra package Maple, and the final evolution
equations are simple and easy to interpret.

The reader may note that, although the multiple
scales method presents a seemingly unified approach
to a large variety of problems, there may be impor-
tant differences in the detailed applications to different
classes of problems. In terms of the analytical treat-
ment of resonant versus nonresonant interactions, such
is indeed the case.Whenwe have a resonant system,we
use a detuning parameter. And usually, first-order mul-
tiple scales or first-order averaging will give us a useful
slow flow. However, when we do nonresonant analy-
sis, usually we have to go to second order to obtain a
nontrivial term, and the slow flows obtained are not at
all easy to predict from intuition. The expressions dealt
with are much longer as well, but it is possible to han-
dle them using symbolic algebra packages. For these
reasons, in principle, in detail, and in the magnitude of
calculations involved, the resonant and the nonresonant
analyses are quite different.

4.1 Initial setup

We let μ = √
ε and rewrite Eqs. (6) and (7) as

ẍ + μ2cẋ + x − μmωp
2z − μ2mγ ż(z2 − 1) = 0,

z̈ + ẍ + ωp
2z + μγ ż(z2 − 1) = 0.

We introducemultiple time scales T0 = t, T1 = μt and
T2 = μ2t ; and then expand x = X0+μX1+μ2X2 and
z = Z0 + μZ1 + μ2Z2. Substituting these expansions
into the above equations, we obtain at O(1)

∂2

∂T02
X0(T0, T1, T2) + X0(T0, T1, T2) = 0, (8)
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∂2

∂T02
Z0(T0, T1, T2) + ωp

2Z0(T0, T1, T2)

+ ∂2

∂T02
X0(T0, T1, T2) = 0. (9)

Solving Eq. (8) for X0, we obtain

X0(T0, T1, T2) = R(T1, T2) sin(T0 + φ(T1, T2)). (10)

In the above, R denotes theO(1) amplitude of the pri-
mary oscillator.We substitute the above X0(T0, T1, T2)
into Eq. (9) and obtain

∂2

∂T02
Z0(T0, T1, T2) + ωp

2Z0(T0, T1, T2)

−R(T1, T2) sin(T0 + φ(T1, T2)) = 0. (11)

We solve Eq. (11) for Z0 and obtain

Z0(T0, T1, T2) = Q(T1, T2) sin(ωp T0 + ψ(T1, T2))

− R(T1, T2) sin(T0 + φ(T1, T2))

(1 − ωp
2)

, (12)

where the first termwith new slowly-evolving variables
Q(T1, T2) and ψ(T1, T2) is a complementary solution,
and the second term is the particular integral. From the
latter, ωp �= 1, i.e., m �= k (by Eq. (5)) in the van der
Pol oscillator, is an obvious requirement for the anal-
ysis to proceed. We recall that (x + z) is the absolute
displacement of the secondary oscillator. By Eqs. (10)

and (12), Q denotes theO(1) amplitude of z+ x

1 − ω2
p
.

When the primary system is stabilized, i.e., x is small or
even zero, Q represents the amplitude of the secondary
oscillator. In what follows, we suppress the (T0, T1, T2)
dependence of already-introduced quantities for com-
pact representation.

4.2 Intermediate details

Although the method of multiple scales is well known,
here the presence of two frequenciesmakes some things
somewhat new. For completeness, details are presented
in this subsection and analysis of the slow dynamics
proceeds in the next subsection.

Proceeding as usual, we obtain at O(μ)

∂2X1

∂T02
+ X1 +

(

2
∂R

∂T1

)

cos(T0 + φ)

+
(

−2
∂φ

∂T1
+ mωp

2

1 − ωp
2

)

R sin(T0 + φ)

−mωp
2Q sin(ωpT0 + ψ) = 0, (13)

and

∂2Z1

∂T02
+ ωp

2Z1 + ∂2X1

∂T02
+ ωp

4(1 − ωp
2)2

(

γ (1 − ωp
2)2Q3 + 2γ (R2 − 2(1 − ωp

2)2)Q

+8(1 − ωp
2)2

∂Q

∂T1

)

cos(ωpT0 + ψ)

−2Qωp
∂ψ

∂T1
sin(ωpT0 + ψ) − 1

4(1 − ωp
2)3

(

2γ (1 − ωp
2)2Q2R + γ (R2 − 4(1 − ωp

2)2)R

+8(1 − ωp
2)2ωp

2 ∂R

∂T1

)

cos(T0 + φ)

+ 2Rωp
2

(1 − ωp
2)

∂φ

∂T1
sin(T0 + φ)

+γ (2 − ωp)QR2

4(1 − ωp
2)2

cos(2T0 − ωpT0 + 2φ − ψ)

+ γ R3

4(1 − ωp
2)3

cos(3T0 + 3φ)

+γ (1 + 2ωp)Q2R

4(1 − ωp
2)

cos(T0 + 2ωpT0 + φ + 2ψ)

−1

4
γωpQ

3 cos(3ωpT0 + 3ψ)

−γ (2 + ωp)QR2

4(1 − ωp
2)2

cos(2T0 + ωpT0 + 2φ + ψ)

+γ (1 − 2ωp)Q2R

4(1 − ωp
2)

cos(T0 − 2ωpT0 + φ − 2ψ)

= 0. (14)

To eliminate secular terms in Eq. (13), assuming ωp is
not close to 1/3 for reasons that will be clear below, we
require

2
∂R

∂T1
= 0, (15)

and
(

−2
∂φ

∂T1
+ mωp

2

1 − ωp
2

)

R = 0. (16)

Because R �= 0 in general, by Eqs. (15) and (16), we
conclude

R(T1, T2) = R(T2), (17)

and

∂φ

∂T1
= mωp

2

2(1 − ωp
2)

. (18)
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We incorporate the conclusions (17) and (18) into Eq.
(13), and obtain

∂2X1

∂T02
+ X1 − mωp

2Q sin(ωpT0 + ψ) = 0. (19)

Solving Eq. (19) for X1, we obtain

X1(T0, T1, T2) = mωp
2

1 − ωp
2 Q sin(ωpT0 + ψ), (20)

where we have dropped the complementary solution
because we are not solving an initial value problem and
Eq. (10) contains the complementary solution already.
We substitute the solution for X1, i.e., Eq. (20), into
Eq. (14) and obtain

∂2Z1

∂T02
+ ωp

2Z1 + ωp

4(1 − ωp
2)2

(

γ (1 − ωp
2)2Q3 + 2γ (R2 − 2(1 − ωp

2)2)Q

+8(1 − ωp
2)2

∂Q

∂T1

)

cos(ωpT0 + ψ)

−
(

2
∂ψ

∂T1
+ mωp

3

(1 − ωp
2)

)

ωpQ sin(ωpT0 + ψ)

− 1

4(1 − ωp
2)3

(

2γ (1 − ωp
2)2Q2R

+γ (R2 − 4(1 − ωp
2)2)R + 8(1 − ωp

2)2ωp
2 ∂R

∂T1

)

cos(T0 + φ) + 2Rωp
2

(1 − ωp
2)

∂φ

∂T1
sin(T0 + φ)

+ γ R3

4(1 − ωp
2)3

cos(3T0 + 3φ)

+γ (1 + 2ωp)Q2R

4(1 − ωp
2)

cos(T0 + 2ωpT0 + φ + 2ψ)

−1

4
γωpQ

3 cos(3ωpT0 + 3ψ)

+γ (1 − 2ωp)Q2R

4(1 − ωp
2)

cos(T0 − 2ωpT0 + φ − 2ψ)

−γ (2 + ωp)QR2

4(1 − ωp
2)2

cos(2T0 + ωpT0 + 2φ + ψ)

+γ (2 − ωp)QR2

4(1 − ωp
2)2

cos(2T0 − ωpT0 + 2φ − ψ)

= 0. (21)

To eliminate secular terms in Eq. (21), we require

ωp

4(1 − ωp2)2

(

γ (1 − ωp
2)2Q3

+2γ (R2 − 2(1 − ωp
2)2)Q + 8(1 − ωp

2)2
∂Q

∂T1

)

= 0,

(22)

and
(

2
∂ψ

∂T1
+ mωp

3

(1 − ωp
2)

)

ωpQ = 0. (23)

Because Q �= 0 in general, by Eqs. (22) and (23), we
find

∂Q

∂T1
= −γ

(

(Q2 − 4)(1 − ωp
2)2 + 2R2

)

8(1 − ωp
2)2

Q, (24)

and

∂ψ

∂T1
= − mωp

3

2(1 − ωp
2)

. (25)

We incorporate the conclusions (24) and (25) into Eq.
(21), and obtain

∂2Z1
∂T02

+ ωp
2Z1 − 1

4(1 − ωp2)3

(

2γ (1 − ωp
2)2Q2R

+γ (R2 − 4(1 − ωp
2)2)R + 8(1 − ωp

2)2ωp
2 ∂R

∂T1

)

cos(T0 + φ) + 2Rωp
2

(1 − ωp2)

∂φ

∂T1
sin(T0 + φ)

−γ (2 + ωp)QR2

4(1 − ωp2)2
cos(2T0 + ωpT0 + 2φ + ψ)

+ γ R3

4(1 − ωp2)3
cos(3T0 + 3φ)

+γ (2 − ωp)QR2

4(1 − ωp2)2
cos(2T0 − ωpT0 + 2φ − ψ)

−1

4
γωpQ

3 cos(3ωpT0 + 3ψ)

+γ (1 + 2ωp)Q2R

4(1 − ωp2)
cos(T0 + 2ωpT0 + φ + 2ψ)

+γ (1 − 2ωp)Q2R

4(1 − ωp2)
cos(T0 − 2ωpT0 + φ − 2ψ) = 0.

(26)

We can now solve Eq. (26) for Z1. The expression for
Z1, being of minor interest, is provided in Appendix B.
Proceeding further, we obtain the O(μ2) equations of
the form

L1 = 0 and L2 = 0, (27)
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where L1 and L2 are long expressions also provided in
Appendix B. Eliminating secular terms from the equa-
tion L1 = 0, we obtain

∂R

∂T2
=

⎡

⎣− c

2
−

mγ
(

2(Q2 − 2)(1 − ωp
2)2 + R2

)

8(1 − ωp2)4

⎤

⎦ R,

(28)

and

∂φ

∂T2
= −m2ωp

4(1 + 3ωp
2)

8(1 − ωp
2)3

. (29)

Equation (28) governs the evolution of R. We incorpo-
rate Eqs. (28) and (29) into the equation L1 = 0 and
solve the resulting equation for X2. The expression for
X2 is provided in Appendix B. We substitute the solu-
tion for X2 into the equation L2 = 0 and eliminate
secular terms therein. We obtain

∂Q

∂T2

=
[

mγωp
2
(

(Q2 − 4)(2 − ωp
2)(1 − ωp

2)2 + 2R2(2 + ωp
2)

)

8(1 − ωp
2)4

]

Q,

(30)

and

∂ψ

∂T2
= − 7γ 2

256ωp
Q4 + γ 2

8ωp
(Q2 − 1)

+ γ 2(3ωp
2 − 2)

64ωp(1 − ωp
2)5

R4

− γ 2(21ωp
4 − 14ωp

2 + 1)

16ωp(1 − 9ωp
2)(1 − ωp

2)3
Q2R2

+ γ 2

8ωp(1 − ωp
2)2

R2 + m2ωp
5(ωp

2 + 3)

8(1 − ωp
2)3

.

(31)

The fourth term on the right hand side of Eq. (31) indi-
cates a 1:3 internal resonance, which we have avoided
as our primary interest is in non-resonant interactions.

As stated earlier, therefore, we simply assume ωp �= 1

3
in the present analysis.

4.3 Slow amplitude equations

We note that the evolution Eqs. (24), (28) and (30) for
the amplitudes R and Q are independent of the phases
φ andψ . This is because the system is autonomous and

nonresonant. For stabilization of the block, the ampli-
tudes R and Q are of primary interest. Therefore, we
do not need the φ and ψ evolution Eqs. (18), (25), (29)
and (31) any more.

Further, the evolution of Q given by Eq. (24) dom-
inates while Eq. (30) provides only a tiny correction,
because T2 is a slower time scale than T1. Therefore,
we may drop Eq. (30) while considering the evolution
of Q. We are then left with two first-order equations,
Eqs. (24) and (28). Recalling T1 = μt and T2 = μ2t
with μ = √

ε, we will work with

dQ

dT1
= −

γ
(

(Q2 − 4)(1 − ωp
2)2 + 2R2

)

8(1 − ωp2)2
Q + O(μ),

(32)

and

dR

dT1
= μ

⎡

⎣− c

2
−

mγ
(

2(Q2 − 2)(1 − ωp
2)2 + R2

)

8(1 − ωp2)4

⎤

⎦ R.

(33)

Figure 2 compares two numerical solutions of Eqs.
(6) and (7) with those of Eqs. (32) and (33). Although
the primary system is negatively damped in both cases,
with c < 0, Fig. 2a, b demonstrate suppression and
growth, respectively. The match between the multiple
scales solution (or slow amplitude equations) and full
integration is seen to be very good. We now study the
slow amplitude equations more systematically.

5 Canonical form

We now adopt a parameter-dependent transformation,
including anO(1) stretching of the time T1, to simplify
the slow flow Eqs. (32) and (33) into a unifying form.
Writing (1 − ωp

2)2 = w, we set

Q2 = S and R2 = wP (34)

to obtain

dS

dT
= ∓ (S + 2P − 4) S + O(μ̄), (35)

dP

dT
= ∓μ̄ (2S + P − 4 − c1) P, (36)

where

c1 = −4cw

mγ
, μ̄ = μm

w
, (37)
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Fig. 2 Comparison of
numerical solution of Eqs.
(6) and (7) with that of Eqs.
(32) and (33). ε = 0.01 in
all cases. Subplots a and b
demonstrate decaying and
limit cycle solutions of the
primary oscillator,
respectively

(a) (b)

and the T indicates that we have absorbed the O(1)

factor of
|γ |
4

into T1. The ∓ sign reflects the sign of γ ,

with the negative being taken for γ > 0.
Based on the goals of this paper, we consider γ > 0,

i.e., the negative sign in the ∓ options above. It may
be noted in Eq. (37) that our main interest is in c < 0
(primary system negatively damped) and γ > 0 (sec-
ondary system has a stable untuned limit cycle), and
so we are mainly interested in c1 > 0. However, from
a dynamic systems viewpoint, if the primary system is
changed to positively damped and the secondary sys-
tem’s limit cycle oscillator also has its nonlinear damp-
ing reversed1 then c1 will remain unchanged while the
positive sign will be adopted in the ∓ options above,
leading to the same phase portrait with flow directions
reversed. With these observations, in what follows, we
will take the negative sign in the ∓ options above.

With the above motivation we finally write our main
equations in canonical form, as obtained via the second-
order multiple scales analysis:

dS

dT
= − (S + 2P − 4) S + O(μ̄), (38)

dP

dT
= −μ̄ (2S + P − 4 − c1) P, (39)

with 0 < μ̄ � 1 and c1 > 0. In the above, S and P
correspond to the squares of the secondary and primary
oscillators’ amplitudes, respectively.

Equations (38) and (39) are simpler than Eqs. (32)
and (33). For μ̄ sufficiently small, the single physical
parameter c1 governs the qualitative dynamics of the

1 Upon changing the sign of γ , small solutions for that oscillator
would be stable, large solutions would be unbounded, and there
would be an unstable limit cycle.

system. Interestingly, recalling cv = mγ from Eq. (5),
we see that c1 is superficially independent of the sec-
ondary oscillator’s mass m. Of course, the foregoing
analysis assumes that there is indeed an O(1) mass m.
The effect of m is retained in the frequency ωp which
in turn determines w.

6 Final slow amplitude dynamics

WenowuseEqs. (38) and (39) to examine the dynamics
on the first quadrant of the P-S plane. We first note
that the S dynamics is typically much faster than the
P dynamics. Accordingly, for the overall qualitative
dynamics, we neglect the smallO(μ̄) term in Eq. (38),
because retaining it would change the resulting phase
portrait only slightly, at the cost of more complicated
expressions and less clear insight. Comparisons with
full numerical solutions of the original equations will
support this simplification.

We also note that P and S axes form invariant man-
ifolds: S = 0 yields dynamics purely on the P-axis,
and vice versa.

On examining dynamics on the P-axis, by Eq. (39),
we find an unstable point P = 0 and a stable point
P = 4 + c1. Further, by Eq. (38), it is easy to see that
S = 0 is unstable for P = 0 and stable for P = 4+ c1.
Hence, the fixed points (S = 0, P = 0) and (0, 4+ c1)
are unstable and stable nodes, respectively.

Similarly, on the S-axis, by Eq. (38), we find an
unstable fixed point S = 0 and a stable fixed point
S = 4. By Eq. (39), for S = 4, stability of P = 0
requires c1 < 4. Hence, the fixed point (4, 0) is a stable
node if c1 < 4, and a saddle if c1 > 4. Further, by Eqs.
(38) and (39), the fourth and final fixed point is at the
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intersection of the straight lines

S + 2P − 4 = 0, and 2S + P − 4 − c1 = 0. (40)

For c1 > 4, the above lines do not intersect in the first
quadrant. Therefore, the fourth fixed point exists for
0 < c1 < 4.

From the above,we conclude that the systemdynam-
ics has two qualitatively different regimes: 0 < c1 < 4
and c1 > 4. The canonical form of our equations allows
us to reach this far quite easily.We now study these two
regimes separately.

6.1 Dynamics for 0 < c1 < 4

Recalling Eq. (40), the fourth fixed point named
(S∗, P∗) is at

S∗ = 2

3
(2 + c1), P∗ = 1

3
(4 − c1). (41)

The stability of (S∗, P∗) is governed by the eigenvalues
of a Jacobian matrix of the form

D =
[−S∗ + O(μ̄) −2S∗ + O(μ̄)

−2μ̄P∗ −μ̄ (S∗ − c1)

]

, (42)

whereO(μ̄) terms in the first row have been suppressed
for simplicity. To obtain the eigenvalues of D, we can
solve the characteristic equation

det(D − λI) = 0.

But we can use asymptotic arguments tomake progress
through simpler expressions. The characteristic equa-
tion takes the form

(S∗ + λ)λ + O(μ̄) = 0. (43)

Thus, one eigenvalue is

λ1 = −S∗ + O(μ̄)

and the other one is O(μ̄). Consistent with these, we
also note that tr(D) = −S∗ +O(μ̄). The product of the
eigenvalues is

det(D) = μ̄
(

S∗ − c1
)

S∗ − 4μ̄P∗S∗ + O
(

μ̄2
)

.

Dropping the higher order small term and factoring out
the known eigenvalue of −S∗, we find using Eq. (41)
that the other eigenvalue is

λ2 = −μ̄
(

S∗ − 4P∗ − c1
) = μ̄(4 − c1) > 0

to leading order. Thus, the fixed point given by Eq. (41)
is a saddle.

We next find the corresponding eigenvectors of λ1
and λ2, given by

(D − λI)X = 0, (44)

where X = {x1, x2}T . For λ = λ1, the second row in
Eq. (44) yields

−2μ̄P∗x1 − (μ̄
(

S∗ − c1
) − S∗)x2 = 0,

whence, x2 is O(μ̄). Hence, to O(1), the eigenvector
corresponding to λ1 is {1, 0}T . For λ = λ2, the second
row in Eq. (44) yields

x1 + 2x2 = 0

at leading order, where we have substituted for P∗ and
S∗ from Eq. (41). This means the eigenvector corre-
sponding to λ2 is {2, −1}T . Graphically, the eigenvec-
tor corresponding to λ1 (stable direction) is horizon-
tal, and the eigenvector corresponding to λ2 (unstable
direction) is along a line like EF in Fig. 3a.

Fig. 3 Phase portraits for a
0 < c1 < 4 and b c1 > 4.
μ̄ = 0.05 in both cases.
Trajectories starting from
different initial conditions
are obtained by numerical
integration of Eq. (39) along
with Eq. (38) with the small
O(μ̄) term dropped

(a) (b)
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Figure 3a shows a phase portrait for c1 = 1, which is
representative of the case 0 < c1 < 4. The fixed points
are: (i) O(0, 0), unstable node, (ii) F(4, 0), stable node,
(iii) G(0, 4+c1), stable node, and (iv) J (S∗, P∗), sad-
dle. Nearly-horizontal trajectories depict much faster
evolution of S than P , as expected by the smallness
of μ̄. Near the saddle, trajectories rapidly approach
the unstable eigenvector and then turn to move more
slowly and approximately along the unstable eigenvec-
tor direction, i.e., line EF . Trajectories toward F fol-
low the line EF all the way, while trajectories towards
E veer off to approach G on the vertical axis. The
dashed (red) line is a separatrix that divides the plane
into two regions: trajectories going toG and going to F .
The separatrix was obtained numerically by reversing
the flow from the saddle point with a tiny perturbation
in the stable eigenvector direction, i.e., horizontal direc-
tion. This separatrix depicts the nature and extent of the
vibration stabilization achieved. For initial conditions
below the separatrix, the primary system is stabilized
and the secondary system’s limit cycle is established.
For initial conditions above the separatrix, the primary
system wins the contest, the secondary system’s limit
cycle is quenched, and the nonlinear damping of the
secondary system serves to limit the oscillation ampli-
tudes of the otherwise-linear primary system. As c1
increases towards 4, the point H moves towards F , the
separatrix moves downward, and the basin of attrac-
tion of the stabilized primary system shrinks in size.
Recalling the definition of c1 in Eq. (37), we see that
c1 is smaller if the negative damping level c of the pri-
mary system is smaller, if the strength of the van der
Pol term γ is bigger, and if the untuned frequencyωp of
the secondary system is closer to unity. Note that with
resonance atωp = 1, the present analysis breaks down;
ωp should not be too close to unity for the stabilization
strategy considered in this paper.

6.2 Dynamics for c1 > 4

Figure 3b shows a phase portrait for c1 = 5. The fixed
points are: (i) O(0, 0), unstable node, (ii) F(4, 0), sad-
dle, and (iii) G(0, 4 + c1), stable node. The intersec-
tion point J of the foregoing case has disappeared. The
basin of attraction of stabilized motions of the primary
system has shrunk to zero and then disappeared. Essen-
tially all trajectories go to node G. As discussed above,
the value of c1 can be made smaller by increasing γ or

letting ωp be closer to unity, but the upper limit of the
present stabilization strategy, asymptotically for small
μ, is analytically clear from the canonical equations:
c1 = 4.

We note that responses like in Fig. 3 are typical for
systems with nonresonant double Hopf bifurcations:
see [19,24–26] and also [27]. Therefore, Fig. 3 resem-
bles some plots in these studies, e.g., see Fig. 4 in [19],
Fig. 2 in [24], Fig. 2 in [25] and Fig. 5 in [26]. However,
in contrast to those studies, in the present paper, we
consider a specific parameter regime where one oscil-
lator is much less massive than the other; where the
secondary oscillator is destabilized with feedback to
produce a limit cycle; and where the slow flow carried
up to second-order is found to be such that everything
can be expressed in terms of a single nondimensional
parameter in canonical equations. In this way, our study
makes significant new contributions although in amore
narrow application area.

6.3 Parameter c1 in terms of system parameters

We have observed that the nondimensional parameter
c1 governs the qualitative dynamics of the system. To
reconnect with the original physical variables we note
that, by Eqs. (3), (4), (5) and (37),

c1 = −4
C

c̄v

(

1 − ω2

�2

)2

, (45)

where C < 0 and c̄v > 0 are in Eq. (1), and where �

and ω are the natural frequencies of the primary and
secondary oscillators, respectively. We recall the stabi-
lization criterion c1 < 4, and that lower c1 gives a larger
stabilization regime. Finally, we emphasize thatω �= �

in our analysis. By Eq. (45), the following interpreta-
tions can now be made. Higher values of ω < � lower
the demand on c̄v . For example, with ω ∼ 0.4�, c̄v

is required to be higher than 0.842C ≈ 0.7C . In com-
parison, with ω ∼ 0.85�, c̄v is required to be higher
than merely 0.077C . Conversely, with the same c̄v , rel-
atively larger ω can help to stabilize larger negative
damping C . Always, by selecting high enough c̄v , we
can achieve c1 < 4, i.e.,

−C

c̄v

(

1 − ω2

�2

)2

< 1. (46)
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However, as emphasized repeatedly in this paper, pre-
cise near-resonant tuning (ω ≈ �) is assumed to be
absent. This allows the same stabilization system to
continue working even under a change in operating
parameters that changes �.

We next discuss system responses in terms of the
original variables. In particular, we will demonstrate
that widely different sets of parameter values corre-
sponding to the same c1 and μ̄ follow the same phase
portrait.

6.4 Responses in terms of original variables

Recalling the transformations to variables P and S
adopted in Eq. (34) from the amplitude variables Q
and R introduced within the multiple scales analysis,
we now present numerical solutions of the original Eqs.
(6) and (7) and the slow amplitude Eqs. (32) and (33) in
Figs. 4, 5, 6 and 7. These numerical solutions show an
excellent qualitative match between the O(1) dynam-
ics and the full numerical solutions; and they also show
a small mismatch (as expected) when the leading order
term in the solution goes to zero, because the next
term in the expansion still remains nonzero. For a size-
able range of parameter values, in particular, it will be
seen that the phase portraits obtained from the canoni-
cal equations yield accurate and useful insight into the
dynamics of the original system.

These four Figs. 4, 5, 6 and 7 are arranged as fol-
lows. In each figure, the two subplots on the left corre-
spond to a single set of parameter values corresponding
to particular values of c1 and μ̄, as well as one set of
initial conditions; and the two subplots on the right
correspond to a different set of parameter values cor-
responding to the same values of c1 and μ̄, along with
a different set of initial conditions. The upper subplots
show the numerical solution for x , whose slowly vary-
ing amplitude is to be compared with the variable R;
and the lower subplots show the numerically obtained

values of z + x

1 − ω2
p
, whose slowly varying ampli-

tude is to be compared with Q. In this way, the direct
correspondence between the original oscillatory solu-
tions and the slow amplitude solutions can be easily
seen. The unifying role of the canonical equations is
demonstrated as well. Individual details for the differ-
ent figures, including initial conditions, are provided
below.

Initial conditions in Fig. 4a, b respectively corre-
spond to the points marked 1 and 2 in Fig. 3a. Figure 3a
shows that the trajectory from initial condition 1moves
to the point F(4, 0). The corresponding response inFig.
4a shows that the primary system amplitude decays to
a small value (upper plot), and the secondary system
settles to a limit cycle with amplitude 2 (lower plot).

For the trajectory from initial condition 2 in Fig.
3a, S initially grows up to about 0.77 and then decays.
The corresponding response in Fig. 4b initially grows
to about

√
0.77 = 0.88 and then decays (recall that

Q = √
S, Eq. (34)). In this solution the limit cycle

of the secondary oscillator is quenched. The upper plot
confirms the predicted steady nonzero oscillation of the
primary system.

Next, see Fig. 5. Initial conditions in Fig. 5a, b corre-
spond to the points marked 3 and 4 respectively in Fig.
3a. In Fig. 3a, for the trajectory from initial condition
3, P decays and S shows rapid initial growth followed
by a slower increase. Figure 5a, on the left, shows the
corresponding responses in the original variables. The
upper subplot shows the decaying response of the pri-
mary system. In the lower subplot we see the fast initial
growth in the secondary system’s response followed by
a slow approach to amplitude 2.

The trajectory from initial condition 4, in Fig. 3a,
goes to G(0, 5) with a rapid decay in S. Correspond-
ingly in Fig. 5b, the upper subplot shows a steady oscil-
lation while the lower subplot shows a rapid decay
in amplitude. The secondary system’s limit cycle is
quenched for this initial condition, although the param-
eters are the same.

Similarly, consider Figs. 6 and 7. In these figures,
ε = 0.002, c1 = 5, and μ̄ = 0.05. The initial condi-
tions for Figs. 6a, b and 7a, b correspond to the points 1,
2, 3 and 4 respectively in Fig. 3b. In the upper subplots
of these two figures, we observe that the primary sys-
tem stabilizes to a limit cycle because all trajectories in
Fig. 3b finally merge toG(0, 9). The limit cycle ampli-
tude is 3(1 − ωp

2) in these figures. The decay in the
secondary oscillator’s response is consistent with the
corresponding trajectories in Fig. 3b. In particular, the
relatively lower frequency (ωp) of oscillations in the
decaying portions of the lower subplots may be noted:
after the decay is complete, the remaining oscillations
are at the frequency of the primary oscillator, which is
itself seen in the upper subplots.

For the trajectory from initial condition 1, the slow
decay of S in Fig. 3b correlates with the secondary
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Fig. 4 Numerical solutions
of Eqs. (6) and (7) and Eqs.
(32) and (33). For upper
(respectively, lower)
subplots, the dashed
magenta line shows
solutions for R
(respectively, Q). For left
and right subplots, initial
conditions match points 1
and 2 respectively in Fig.
3a. ε = 0.002, c1 = 1 and
μ̄ = 0.05 in all cases

(a) (b)

Fig. 5 Numerical solutions
of Eqs. (6), (7), (32) and
(33). For upper
(respectively, lower)
subplots, the dashed
magenta line shows
solutions for R
(respectively, Q). For left
and right subplots, initial
conditions match points 3
and 4 respectively in Fig.
3a. ε = 0.002, c1 = 1 and
μ̄ = 0.05 in all cases

(a) (b)

Fig. 6 Numerical solutions
of Eqs. (6), (7), (32) and
(33). For upper
(respectively, lower)
subplots, the dashed
magenta line shows
solutions for R
(respectively, Q). For left
and right subplots, initial
conditions match points 1
and 2 respectively in Fig.
3b. ε = 0.002, c1 = 5 and
μ̄ = 0.05 in all cases

(b)(a)
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Fig. 7 Numerical solutions
of Eqs. (6), (7), (32) and
(33). For upper
(respectively, lower)
subplots, the dashed
magenta line shows
solutions for R
(respectively, Q). For left
and right subplots, initial
conditions match points 3
and 4 respectively in Fig.
3b. ε = 0.002, c1 = 5 and
μ̄ = 0.05 in all cases

(a) (b)

oscillator’s response in the lower plot of Fig. 6a. For the
trajectory from initial condition 2, we notice that S ini-
tially grows upto about 1.46 and then decays. The lower
plot in Fig. 6b confirms this increase-decrease evolu-
tion of the secondary oscillator’s response. Further, for
trajectories from initial conditions 3 and 4 in Fig. 3b,
we notice the rapid initial decay of S. The lower sub-
plots in the corresponding Figs. 7a, b show rapid initial
decay in the secondary oscillator’s response. As men-
tioned above, the remaining oscillations in the lower
subplots, most clearly seen in Fig. 7b, are due toO(μ)

terms in the multiple scales expansion that have not
been incorporated in the plots: see the expression for
Z1 in Appendix B.

In this way, through Figs. 4, 5, 6 and 7, it is seen
that the slow dynamics captured by the second-order
multiple scales analysis does a good job of capturing
the qualitative behavior of quenching of the primary
oscillator’s unstable vibrations. Moreover, the phase
portraits obtained from our canonical equations (38)
and (39) give a simple and clear picture of the separa-
trix that lies between persistence and quenching of the
primary unstable mode.

We end this paper by recalling that the solutions for
x and z have been assumed to be O(1) with respect to
0 < ε � 1. Numerical solutions show that if initial
conditions for x (the unstable primary mode) are taken
large enough, then solutions to the original Eqs. (6)
and (7) can be unbounded. Recalling that γ = cv/m in
Eqs. (6) and (7), and using the parameters of Fig. 7a,
we present two large-x solutions in Fig. 8. Such failure
of a nonlinear stabilizer at large amplitudes of the pri-
mary unstable oscillator is not surprising: see, e.g., [16].

For such large-amplitude regimes the solution approach
adopted in this paper, namely multiple scales based on
treating x asO(1), is inappropriate. If such a regime is
considered interesting, analysis using a different strat-
egy may be undertaken in future work. For this paper,
we simply note that extremely large amplitudes render
our approximations invalid.

7 Conclusions

In this paper, we have studied the interaction between
a weakly unstable and linear primary oscillator with an
attached, small, secondary oscillator with its own non-
resonant limit cycle. The practicalmotivation for study-
ing such an untuned or nonresonant secondary oscilla-
tor is that precise tuning of physical parameters is no
longer needed, and the stabilizer may remain effective
even if system parameters drift to some extent.

The system studied is autonomous: there is no exter-
nal forcing, and the goal is simply to render the pri-
marymode of vibration stable. Sincewe have explicitly
assumed there is no resonance,whenweuse themethod
of multiple scales and introduce amplitude and phase
variables, a significant simplification occurs. The slow
amplitude equations of the primary and secondary sys-
tem decouple, and the phases of these two oscillators
have no effect on the qualitative behavior of the sys-
tem. The resulting two-dimensional phase portrait can
be further simplified by a parameter-dependent change
of variables which yields what we think is the simplest
possible form for the slow flow, with one small pertur-
bation parameter and only one O(1) system parame-
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Fig. 8 Responses for large
initial conditions for x .
Parameters are the same as
in Fig. 7a. Left: initial
x-amplitude 150. Right:
initial x-amplitude 100

ter, c1 > 0. In particular, stabilization is possible for
c1 < 4. In the phase plane, the transformed coordinates
lie in the first quadrant only. For c1 < 4, a single sepa-
ratrix divides the first quadrant into two regions. Solu-
tions in one regiondisplay a quenchingof the secondary
oscillator’s limit cycle alongwith a steady oscillation of
the primary system. Solutions in the second region dis-
play a quenching of the unstable primary mode, along
with a steady oscillation of the secondary system. As
c1 approaches 4, the second region shrinks in size and
vanishes in the limit.

Future work may explore practical implementations
of such a stabilizing device, as well as the possibil-
ity of stabilizing more than one unstable mode with a
single additional oscillator. Note that if precise tuning
of frequencies is needed, it is in general not possible
to stabilize two modes of different frequencies using a
single added stabilizing oscillator. In this way, we hope
that our present analytical study of nonresonant modal
interactions may lead to both new research as well as
applications.
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Appendix A Broader literature review

We have conducted a broader literature search and
found 40 papers, of which 39 of them were published
between1980and2022.These papers eachhave the van
der Pol oscillator coupled to either the van der Pol oscil-
lator or someother oscillator. These papers are included
in this article as references [20,24,25,28–64]. These
references can be grouped in various ways depending
on which aspect of their contribution we wish to focus
on. Each such grouping serves to emphasize how our
work is different.

Many of these papers involve two coupled oscilla-
tors that are resonant, i.e., the natural frequencies are
close. From our 40 references, it turns out that refer-
ences [20,28–46] are in this first category. Since our
two oscillators have frequencies that are not close, we
do not fall in this category of resonant coupled oscilla-
tors.

Another way to classify the papers is to identify
those (27 out of 40) where the two oscillators’ inertia
terms are of equal or nearly equal magnitude, and their
coupled dynamics, which may be weakly or strongly
nonlinear, are then examined. References [24,25,28–
42,46–55] fall in this category.Wedonot fall in this cat-
egory because our motivation is an untuned vibration
stabilizer where the added system is necessarily small
compared to the primary system, and it still affects the
dynamics.

Another way to group some papers is to note those
wherein two oscillators, by mathematical design, are
capable of having perfectly synchronized solutions. In
abstract first-order form, if we have

ẋ = f (x) + g(x, y) and ẏ = f (y) + g(y, x),
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then x = y is a possible solution satisfying

ẋ = f (x) + g(x, x).

Whether that phase-locked solution is stable or not then
becomes important. If it is stable, the basin of attraction
is important, and so on. Out of the 40, 9 papers fall
in this category [29,31–33,36,38,39,42,46]. Since our
two oscillators do not have this form, our paper does
not fall into this category.

Then there are coupled van der Pol and Duffing sys-
tems, for which some papers study the dynamics near
1:1 resonance [41,44,49,56,57], phase-lockedmotions
[49,54], or assume comparable inertia [25,41,42,49,
52–54]. As explained above, our paper is very differ-
ent from these papers.

There are also studies of coupled van der Pol and
Duffing systems that involve 1:2 or 1:3 resonances: see
[58–61]. We focus on nonresonant interactions and so
we do not fall in this category.

We note that nonresonant interactions were studied
in [51–53], but there the inertias of the two oscilla-
tors were the same (as noted above), and they reported
decoupled amplitude dynamics of the coupled oscil-
lators, while our results with disparate inertias show
a potentially useful coupled dynamics. Therefore we
differ from those papers.

Finally, for parameter values that are not small and
where analytical progress was limited, numerical or
experimental approaches have been used [47,50,54,
62–64] to observe nonlinear responses like multista-
bility and chaotic solutions. Our paper is not in this
category.

In this way, there is at least one key difference,
and usually more than one key difference, between our
paper and these 40 papers.

Appendix B Expressions from multiple scale
analysis

The solution for Z1 is

Z1(T0, T1, T2) = − 1

4(1 − ωp
2)4

(

(2γωp
4 − 4γωp

2 + 2γ )RQ2 − (4γωp
4 − 8γωp

2

+4γ − γ R2)R
)

cos(T0 + φ) + mωp
4R

(1 − ωp
2)3

sin(T0 + φ) + γ R3

4(9 − ωp
2)(1 − ωp

2)3
cos(3T0 + 3φ)

− γ Q3

32ωp
cos(3ωpT0 + 3ψ)

+ (1 − 2ωp)γ Q2R

4(1 − 3ωp)(1 + ωp)(1 − ωp)2

cos(T0 − 2ωpT0 + φ − 2ψ)

+ (1 + 2ωp)γ Q2R

4(1 + 3ωp)(1 − ωp)(1 + ωp)2

cos(T0 + 2ωpT0 + φ + 2ψ)

+ γ (2 − ωp)QR2

16(1 − ωp)(1 − ωp
2)2

cos(2T0 − ωpT0 + 2φ − ψ)

− γ (2 + ωp)QR2

16(1 + ωp)(1 − ωp
2)2

cos(2T0 + ωpT0 + 2φ + ψ). (B.1)

Recall Eq. (27), the expressions are

L1 = ∂2X2

∂T02
+ X2 −

(

m2ωp
4(1 + 3ωp

2)R

4(1 − ωp
2)3

+2R
∂φ

∂T2

)

sin(T0 + φ)

+
(

cR + mγ
(

2(Q2 − 2)(1 − ωp
2)2 + R2

)

R

4(1 − ωp
2)4

+2
∂R

∂T2

)

cos(T0 + φ)

−mγωp
(

(Q2 − 4)(1 − ωp
2)2 + 2R2

)

Q

4(1 − ωp
2)3

cos(ωpT0 + ψ)

+ m2ωp
6Q

(1 − ωp
2)2

sin(ωpT0 + ψ) + 9mγωpQ3

32
cos(3ωpT0 + 3ψ)

− 9mγ R3

4(9 − ωp
2)(1 − ωp

2)3
cos(3T0 + 3φ)

− mγ (1 + 2ωp)
3Q2R

4(1 + 3ωp)(1 − ωp)(1 + ωp)2

cos(T0 + 2ωpT0 + φ + 2ψ)

− mγ (1 − 2ωp)
3Q2R

4(1 − 3ωp)(1 + ωp)(1 − ωp)2

cos(T0 − 2ωpT0 + φ − 2ψ)

+ mγ (2 + ωp)
3QR2

16(1 + ωp)(1 − ωp
2)2

cos(2T0 + ωpT0 + 2φ + ψ)

− mγ (2 − ωp)
3QR2

16(1 − ωp)(1 − ωp
2)2

cos(2T0 − ωpT0 + 2φ − ψ), (B.2)
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and

L2 = ∂2Z2
∂T02

+ ωp
2Z2 + ∂2X2

∂T02

+ ωp
2

8(1 − ωp2)5

(

mγ (6ωp
6 − 10ωp

4 + 2ωp
2

+2)Q2R + mγ (−12ωp
6 + 20ωp

4 − 4ωp
2

−4 + 7ωp
2R2 + R2)R + (−16ωp

8 + 64ωp
6

−96ωp
4 + 64ωp

2 − 16)
∂R

∂T2

)

cos(T0 + φ)

+ 1

16(9 − ωp2)(1 − 9ωp2)(1 − ωp2)6
(

(−45ωp
10 + 518ωp

8 − 1110ωp
6 + 864ωp

4

−245ωp
2 + 18)γ 2R2Q2 + (−18ωp

14

+264ωp
12 − 1150ωp

10 + 2356ωp
8

−2574ωp
6 + 1504ωp

4 − 418ωp
2 + 36)γ 2Q4

+(18ωp
4 − 92ωp

2 + 10)γ 2R4

+(72ωp
14 − 1016ωp

12 + 4072ωp
10

−7640ωp
8 + 7640ωp

6

−4072ωp
4 + 1016ωp

2 − 72)γ 2Q2

+(−72ωp
8 + 800ωp

6 − 1456ωp
4

+800ωp
2 − 72)γ 2R2

+m2(−36ωp
16 + 292ωp

14 + 472ωp
12

−1784ωp
10 + 1164ωp

8 − 108ωp
6) + γ 2(144ωp

12

−1888ωp
10 + 6256ωp

8 − 9024ωp
6

+6256ωp
4 − 1888ωp

2 + 144) + (−288ωp
16

+4064ωp
14 − 16288ωp

12

+30560ωp
10 − 30560ωp

8 + 16288ωp
6 − 4064ωp

4

+288ωp
2)

∂φ

∂T2

)

R sin(T0 + φ) + ωp

4(1 − ωp2)4
(

(ωp
8 − 3ωp

6 + 3ωp
4 − ωp

2)mγ Q3

+(−2ωp
4 − 2ωp

2)mγ R2Q + (−4ωp
8 + 12ωp

6

−12ωp
4 + 4ωp

2)mγ Q + (8ωp
8 − 32ωp

6

+48ωp
4 − 32ωp

2 + 8)
∂Q

∂T2

)

cos(ωpT0 + ψ)

− 1

128(1 − 9ωp2)(1 − ωp2)5

(

(336ωp
8

−896ωp
6 + 800ωp

4 − 256ωp
2 + 16)γ 2R2Q2

+(63ωp
12 − 322ωp

10 + 665ωp
8 − 700ωp

6

+385ωp
4 − 98ωp

2 + 7)γ 2Q4

+(108ωp
4 − 84ωp

2 + 8)γ 2R4

+(−288ωp
12 + 1472ωp

10 − 3040ωp
8 + 3200ωp

6

−1760ωp
4 + 448ωp

2 − 32)γ 2Q2

+(−288ωp
8 + 896ωp

6 − 960ωp
4

+384ωp
2 − 32)γ 2R2

+m2(−864ωp
14 + 2688ωp

12 − 2880ωp
10

+1152ωp
8 − 96ωp

6)

+γ 2(288ωp
12 − 1472ωp

10 + 3040ωp
8

−3200ωp
6 + 1760ωp

4 − 448ωp
2 + 32)

+(2304ωp
13 − 11776ωp

11 + 24320ωp
9

−25600ωp
7 + 14080ωp

5 − 3584ωp
3

+256ωp)
∂ψ

∂T2

)

Q sin(ωpT0 + ψ)

+mγωp
2(7ωp

4 − 46ωp
2 − 9)R3

8(9 − ωp2)(1 − ωp2)5
cos(3T0 + 3φ)

− 3γ 2R3

16(9 − ωp2)(1 − ωp2)6

(

(ωp
8 − 17ωp

6 + 69ωp
4

−91ωp
2 + 38)Q2 + (−3ωp

2 + 11)R2 + 8ωp
6

−56ωp
4 + 88ωp

2 − 40
)

sin(3T0 + 3φ) − 5mγωp
3Q3

32(1 − ωp2)

cos(3ωpT0 + 3ψ) + γ 2Q3

128(1 − 9ωp2)(1 − ωp2)3
(

(9ωp
8 − 28ωp

6 + 30ωp
4 − 12ωp

2 + 1)Q2

+(540ωp
4 − 152ωp

2 − 4)R2 + 72ωp
8

−224ωp
6 + 240ωp

4 − 96ωp
2 + 8

)

sin(3ωpT0 + 3ψ)

+ 5γ 2R5

16(9 − ωp2)(1 − ωp2)5
sin(5T0 + 5φ)

− 5γ 2Q5

128
sin(5ωpT0 + 5ψ)

−mγωp
2(22ωp

4 + 3ωp
3 − 3ωp

2 + ωp + 1)RQ2

8(1 + 3ωp)(1 − ωp2)3

cos(T0 + 2ωpT0 + φ + 2ψ)

−mγωp
2(22ωp

4 − 3ωp
3 − 3ωp

2 − ωp + 1)RQ2

8(1 − 3ωp)(1 − ωp2)3

cos(T0 − 2ωpT0 + φ − 2ψ)

+mγωp
2(ωp

4 + 7ωp
3 + 14ωp

2 − 2ωp + 4)QR2

16(1 − ωp2)4

cos(2T0 + ωpT0 + 2φ + ψ)

−mγωp
2(ωp

4 − 7ωp
3 + 14ωp

2 + 2ωp + 4)QR2

16(1 − ωp2)4

cos(2T0 − ωpT0 + 2φ − ψ)

+γ 2(4 + ωp)(ωp
3 + 2ωp

2 − 17ωp − 26)QR4

64(9 − ωp2)(1 + ωp)(1 − ωp2)4

sin(4T0 + ωpT0 + 4φ + ψ)

+γ 2(4 − ωp)(ωp
3 − 2ωp

2 − 17ωp + 26)QR4

64(9 − ωp2)(1 − ωp)(1 − ωp2)4

sin(4T0 − ωpT0 + 4φ − ψ)
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+γ 2(1 + 4ωp)(11ωp
2 + 8ωp + 1)Q4R

64ωp(1 + 3ωp)(1 + ωp)(1 − ωp2)

sin(T0 + 4ωpT0 + φ + 4ψ)

−γ 2(1 − 4ωp)(11ωp
2 − 8ωp + 1)Q4R

64ωp(1 − 3ωp)(1 − ωp)(1 − ωp2)

sin(T0 − 4ωpT0 + φ − 4ψ)

+ γ 2RQ2

64ωp(1 − 9ωp2)(1 − ωp2)3
(

(5ωp
2 + 54ωp

7 + 135ωp
6 − 186ωp

5 − 141ωp
4

+146ωp
3 − 14ωp + 1)Q2 + (−36ωp

4 + 78ωp
3

−2ωp
2 − 4ωp)R

2 + 48ωp
7 − 32ωp

2

−224ωp
6 + 112ωp

5 + 256ωp
4 − 176ωp

3 +16ωp
)

sin(T0 − 2ωpT0 + φ − 2ψ)

+ γ 2RQ2

64ωp(1 − 9ωp2)(1 − ωp2)3
(

(−5ωp
2 + 54ωp

7 − 135ωp
6 − 186ωp

5 + 141ωp
4

+146ωp
3 − 14ωp − 1)Q2 + (36ωp

4 + 78ωp
3

+2ωp
2 − 4ωp)R

2 + 48ωp
7 + 224ωp

6

+112ωp
5 − 256ωp

4 − 176ωp
3 + 32ωp

2 + 16ωp

)

sin(T0 + 2ωpT0 + φ + 2ψ)

− γ 2QR2

32(1 − 3ωp)(9 − ωp2)(1 − ωp2)5
(

(3ωp
10 − 18ωp

9 − 48ωp
8 + 283ωp

7

+193ωp
6 − 1277ωp

5 + 7ωp
4 + 1777ωp

3

−416ωp
2 − 765ωp + 261)Q2

+(−6ωp
5 − 22ωp

4 + 116ωp
3 + 84ωp

2

−334ωp + 98)R2 + 12ωp
9 + 44ωp

8 − 256ωp
7

−448ωp
6 + 1592ωp

5 + 440ωp
4 − 2464ωp

3

+288ωp
2 + 1116ωp − 324

)

sin(2T0 − ωpT0 + 2φ − ψ)

+ γ 2QR2

32(1 + 3ωp)(9 − ωp2)(1 − ωp2)5
(

(3ωp
10 + 18ωp

9 − 48ωp
8 − 283ωp

7 + 193ωp
6

+1277ωp
5 + 7ωp

4 − 1777ωp
3 − 416ωp

2 + 765ωp

+261)Q2 + (6ωp
5 − 22ωp

4 − 116ωp
3 + 84ωp

2

+334ωp + 98)R2 − 12ωp
9 + 44ωp

8 + 256ωp
7

−448ωp
6 − 1592ωp

5 + 440ωp
4

+2464ωp
3 + 288ωp

2 − 1116ωp − 324
)

sin(2T0 + ωpT0 + 2φ + ψ)

−γ 2(2 + 3ωp)(6ωp
3 + 49ωp

2 + 24ωp + 1)R2Q3

128ωp(1 + 3ωp)(1 + ωp)(1 − ωp2)2

sin(2T0 + 3ωpT0 + 2φ + 3ψ)

+γ 2(2 − 3ωp)(6ωp
3 − 49ωp

2 + 24ωp − 1)R2Q3

128ωp(1 − 3ωp)(1 − ωp)(1 − ωp2)2

sin(2T0 − 3ωpT0 + 2φ − 3ψ)

−γ 2(3 + 2ωp)(3ωp
4 + 11ωp

3 − 29ωp
2 − 107ωp − 38)R3Q2

32(1 + 3ωp)(9 − ωp2)(1 + ωp)(1 − ωp2)3

sin(3T0 + 2ωpT0

+3φ + 2ψ)

−γ 2(3 − 2ωp)(3ωp
4 − 11ωp

3 − 29ωp
2 + 107ωp − 38)

32(1 − 3ωp)(9 − ωp2)(1 − ωp)(1 − ωp2)3

R3Q2 sin(3T0 − 2ωpT0 + 3φ − 2ψ). (B.3)

The solution for X2 is

X2(T0, T1, T2)

= ((Q2 − 4)(1 − ωp
2)2 + 2R2)mγ Qωp

4(1 − ωp
2)4

cos(ωpT0 + ψ)

− Qm2ωp
6

(1 − ωp
2)3

sin(ωpT0 + ψ)

− 9mγωpQ3

32(1 − 9ωp
2)

cos(3ωpT0 + 3ψ)

− 9mγ R3

32(9 − ωp
2)(1 − ωp

2)3
cos(3T0 + 3φ)

− (1 + 2ωp)
3mγ RQ2

16ωp(1 + 3ωp)(1 − ωp)(1 + ωp)3

cos(T0 + φ + 2ωpT0 + 2ψ)

+ (1 − 2ωp)
3mγ RQ2

16ωp(1 − 3ωp)(1 + ωp)(1 − ωp)3

cos(T0 + φ − 2ωpT0 − 2ψ)

+ (2 + ωp)
3mγ R2Q

16(3 + ωp)(1 − ωp)2(1 + ωp)4

cos(2T0 + 2φ + ωpT0 + ψ)

− (2 − ωp)
3mγ R2Q

16(3 − ωp)(1 + ωp)2(1 − ωp)4

cos(2T0 + 2φ − ωpT0 − ψ) (B.4)
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