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Abstract This work is concerned with the analysis of
vibro-impact responses observed in large-scale nonlin-
ear geared systems. Emphasis is laid on the interactions
between the high-frequency internal excitation gener-
ated by the meshing process, i.e. the static transmis-
sion error and time-varying mesh stiffness, and low-
frequency external excitations. To this end, a three-
dimensional finite element model of a pump equipped
with a reverse spur gear pair (gear ratio 1 : 1) is built.
The model takes into account the flexibility of the
kinematic chain, the bearings and the housing and the
gear backlash nonlinearity. A reduced-order model is
solved with the Harmonic Balance Method coupled to
an arc-length continuation algorithm which allows one
to compute the periodic solutions of the system. The
onset and disappearance of vibro-impact responses is
studied through the computation of grazing bifurca-
tions. Results show that the coupling between the exter-
nal excitation and the time-varying mesh stiffness term
greatly modifies the characteristics of the responses in
terms of number and periodicity of impacts and contact
loss duration.
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1 Introduction

Gears are key components of numerous mechanical
systems used to adapt and transmit speed and torques.
They can be found in automotive transmissions, wind
turbines [1], geared turbofan engines [2] and pumps
[3,4], to name a few. It is well known that geared
systems are prone to vibration and noise issues. The
meshing process, associated with the contact between
gear teeth, generates an internal excitation character-
ized by a transmission error and time-varying mesh
stiffness. The transmission error is defined as the dif-
ference between the actual position of the output gear
and the position it would occupy if the gear pair were
perfectly conjugate [5]. Under standard operating con-
ditions, gear teeth are in permanent contact. However,
a gap, or gear backlash, is necessary to allow for assem-
bly and operation. Some specific operating conditions
may therefore lead to contact loss and repeated impacts
between gear teeth [6]. In both cases, the resulting
dynamic mesh load is transmitted through the shafts
to the housing. The vibratory state of the latter gen-
erates a high frequency, multi-harmonic noise, known
as whining noise [7] in case of permanent contact, or
rattle [8]/hammering noise [9] when impacts occur.

Most nonlinear gear dynamics studies in the litera-
ture resort to using lumped parameter, torsional models
of the gear pair without considering the flexibility of
other components [10–13], although some consider the
shafts with a lumped torsional stiffness [14,15] and the
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bearings [16,17]. Such models are limited to a single,
up to a dozen of degrees of freedom (DoF) and are quite
restrictive in their assumptions. More recently, a few
studies used FE models with beam elements to model
the shafts [18,19]. Both types of models suffer from
a limited predictability as the effects of the housing
on the driveline dynamic behaviour are neglected [20].
Furthermore, these models cannot be used to retrieve
the displacement field of the housing which is essential
to compute the vibro-impact-induced noise.

The most common numerical methods used in non-
linear gear dynamics studies are time integration tech-
niques such as Runge–Kutta (RK) schemes [11,21,22]
and the Harmonic Balance [15,18,23–26]. RK-based
integrators are found in numerous studies as they pro-
vide the means to investigate both periodic and non-
periodic responses. However, gear dynamics are char-
acterized by stiff equations due to the contact between
gear teeth and high-frequency excitations generated
by the meshing process. Small time steps are thus
required to ensure sufficient accuracy. Besides, taking
into account the whole system usually involves consid-
ering other sources of excitation. These other sources
are generally low-frequency excitations, so that time
integration has to be carried out over long time inter-
vals. All these reasons, coupled to the need to com-
pute the transient response, lead to hefty computational
efforts when employing direct time integration meth-
ods.

The HBM, on the other hand, relies on solving
the equations of motion in the frequency domain by
approximating the solutionswith Fourier series. In con-
trast to time integrationmethods, the transient response
does not need to be computed and problems associated
with considering both low- and high-frequency exci-
tations are avoided. The accuracy of the solution and
computational effort directly depends on the truncation
order of the Fourier series. However, the HBM frame-
work offers ways to efficiently reduce the number of
equations in the frequency domain, e.g. either by using
only a subset of harmonics, as is the case with systems
with dry friction where only odd harmonics contribute
to the response [27], or by dynamically adapting the
truncation order [28–30].

All excitations acting on the system are also sel-
dom taken into account [4,31]. Garambois et al. [4]
used a FE model of a kinematic chain with beam ele-
ments and a linear model of the gear mesh, i.e. without
considering the backlash nonlinearity, to study the cou-

pling between the internal excitation and the fluctuat-
ing torques. They showed that such coupling induces a
spectral enrichment as well as an increased RMS value
of the dynamic response resulting in amarked influence
on the perceived radiated noise.

The main contributions of the present work can be
summarized as follows:

– To propose a general numerical strategy to com-
pute the nonlinear dynamic response of a geared
systemwith backlash nonlinearity. The strategy can
be applied to systems of varying complexity, from
single degree of freedom models to large-scale FE
models including, for the first time, a detailed, high
fidelity 3D model of the housing.

– To take into account complex loading scenario,
consisting of the variousmultiharmonic excitations
stemming from different physics (contact between
gear teeth, aerodynamic forces, rotor unbalance,
etc.).

– To carry out an in-depth study of the coupling
between these excitations,more specifically between
the low-frequency aerodynamic and unbalance
forces and the parametric high-frequency gear exci-
tation.

The structure of the paper is as follows: Sect. 2
describes the FEmodel and reduced-order model of the
studied system. In Sect. 3, the numerical methods used
to solve the equations of motion are introduced. The
results are discussed in Sects. 4, and 5 draws the main
conclusions and suggests directions for future research.

2 Model description

2.1 Mathematical model

The systemunder investigation in this study is an indus-
trial pump consisting of two counter-rotating shafts
coupled by a spur gear pair without tooth profile mod-
ifications whose gear ratio is 1 : 1 with 76 teeth. The
input and output shafts thus have the same rotational
speedΩ . The design characteristics of the gear pair are
reported in Table 1. Since their first mode is far above
the frequency range of interest, each gear blank is con-
sidered as a rigid disk with lumped mass and inertia.
Each gear thus possesses six degrees of freedom (three
translations and three rotations) located at its centre, as
depicted in Fig. 1. More details on the contact mod-
elling are given in Sect. 2.3.
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Table 1 Characteristics of the gear pair

Name Gear 1 Gear 2 Unit

Module m 1 mm

Number of teeth Z 76 76 -

Helix angle β 0 deg

Normal pressure angle α 20 deg

Base radius rb 46.984 46.984 mm

Profile shift coefficient x 0 0 -

Addendum coefficient ha 1 1 -

Dedendum coefficient hd 1.25 1.25 -

Face width b f 20 mm

Fig. 1 Local frame of the gear pair

Each shaft is supported by two ball bearings mod-
elled by linear axial and radial stiffness elements. 3D
quadratic tetrahedral elements are used to generate
the FE mesh of the shafts and the housing. They are
described, respectively, by around 400,000 and 2.4mil-
lion degrees of freedom. Figure 2a depicts a schematic

representation of the system, and Fig. 2b shows the
geometry and mesh of the housing.

Several excitations are considered in the analysis.
The external aerodynamic loading stemming from the
pumping process is a narrowband random process
approximated as a multi-harmonic periodic excitation.
Due to the pump geometry, only even harmonics are
significant. Both forces and torques are applied on
twelve centreline nodes (six on each shaft) that are
rigidly linked to the FE mesh of the shafts, as depicted
in Fig. 2a.

f aeroex =
∞∑

k=1

f̃
aero
ex,2ke

i2kΩt (1)

In the following, two harmonic components are con-
sidered, corresponding to up to harmonic H4 of the
shafts rotation Ω . Figure 3 shows an example of the
applied aerodynamic forcing, computed in the time
domain with an in-house CFD software. Its amplitude
is equal to approximately 15% of the applied torque
T = 2.5N·m.One can also see that the forcing exhibits
a phase shift equal to π/2 between the input and output
shafts and are of opposite signs.

An additional excitation funb in the form of a mass
unbalance:

funb,x = −munbΩ
2 sinΩt, (2)

funb,y = −munbΩ
2 cosΩt, (3)

(a) (b)

Fig. 2 Schematic representation of the system (a) and view of the FE model of the housing (b)
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Fig. 3 Example of aerodynamic forcing. The blue solid line and
red solid line correspond to the forcing on the input and output
shafts, respectively

is uniformly distributed along the shafts with a phase
shift equal to π/2 between the input and output shafts.
The values considered is the following are munb =
30 · 10−6 kg·m for the input shaft and munb = 20 ·
10−6 kg·m for the output shaft.

Considering the shaft geometry and operating speed,
rotation and gyroscopic effects are neglected. The
equation of motion of the system can therefore be writ-
ten in the following form:

Mü + Ku + fnl(u) = fex , (4)

where M and K are, respectively, the mass and stiff-
ness matrices and u is the vector of displacements of
each DoF. fex is the vector of external periodic forcing,
and fnl is the vector of nonlinear forces (cf. Sect. 2.3).
Note that obvious time dependence is omitted in the
notations for the sake of clarity.

2.2 Reduced-order model

The above-described FE model consists of about 3
million DoF. A direct calculation of the system’s
response with classical numerical strategies would lead
to intractable computations. As a first step, the FE
model is thus approximated by building a represen-
tative reduced-order model.

In thiswork,we rely on a componentmode synthesis
(CMS) technique [32–34]. CMSmethods rely on defin-

ing a number of substructures with ni internal DoF qi
and nc contact DoF qc at the interface between sub-
structures. The internal DoF are then reduced using a
set of nCM component modes. Since only internal DoF
are reduced, CMS-based reduction methods are partic-
ularly well suited when the contact interfaces comprise
a small number of DoF. In our case, the contact inter-
face only consists of the twelve DoF used to model
the gear pair (see Fig. 1) which lead to a significantly
smaller model. The Craig–Bampton (CB) [35] method
is employed hereafter, which consists in computing
a reduction basis spanned by fixed-interface modes
and static constraint modes. First, the mass and stiff-
ness matrices are partitioned into internal and contact
DoF:

K =
[

Ki i Kic

Kci Kcc

]
and M =

[
Mi i Mic

Mci Mcc

]
. (5)

Fixed-interfacemodes are computed by solving the fol-
lowing eigenvalue problem:

(
Ki i − ω2Mi i

)
φφφ = 0. (6)

Static constraint modes are computed by applying a
unit displacement on each contact DoF, sequentially:

Ψ = −K−1
i i Kic (7)

The reductionmatrixT is then formedby concatenating
the fixed-interface and static constraint modes:

T =
[
ΦΦΦ ΨΨΨ

0 I

]
(8)

A Galerkin projection then yields nr = nc + nCM

equations of motion in the reduced subspace written
in matrix form:

TT MT︸ ︷︷ ︸
Mr

q̈ + TT KT︸ ︷︷ ︸
Kr

q + TT fnl︸ ︷︷ ︸
f rnl

(Tq) = TT fex︸ ︷︷ ︸
f rex

(9)

where Mr , Kr are the mass and stiffness matrices of
the reduced-order model. f rnl and f rex are the vectors of
nonlinear forces and external forces, respectively.
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2.3 Contact modelling

The contact between gear teeth acts in the normal direc-
tion of the tooth profile. The displacement along the line
of action describes the relative deformation and contact
gap between gear teeth. This relative deformation can
be retrieved from the generalized coordinates q of the
reduced-order model by using a projection vector G of
size nr defined in the local frame of the gear pair (see.
Fig. 1):

ΔΔΔ = GT q. (10)

Only the restrictionofG to the gearDoFqc = (u1, u2,
u3, θ1, θ2, θ3, u4, u5, u6, θ4, θ5, θ6) has nonzero ele-
ments, i.e.:

G|qc = (
0, 1, tan β, rb,1 tan α tan β, −rb,1 tan β,

rb,1, 0, −1, − tan β,

rb,2 tan α tan β, −rb,2 tan β, rb,2
)T

, (11)

where α and β are the pressure and helix angles and
rb,1 and rb,2 are the base radii of the pinion and the
gear, respectively.

Depending on the relative displacement on the line
of action, the following behaviours can be observed:

– a linear behaviour, corresponding to permanent
contact between gear teeth, when the vibration
amplitude is smaller than the static deflection,

– single-sided impacts when oscillations are larger
than the static deflection, yet small enough not to
cross the gear backlash,

– double-sided impacts when the amplitude of the
dynamic response is sufficient to cross the gear
backlash and lead to impacts on the reverse flank
of the adjacent tooth.

The transmitted torque induces a static deflection
qs(θ) corresponding to the static transmission error
(STE), which depends on the angular position of the
gear pair. When the gear pair rotates, the STE gener-
ates a displacement excitation which is periodic under
stationary operating conditions. The nonlinear contact
force fnl acting between gear teeth can be linearized
around the static equilibrium, i.e.qs(t), to define a time-
varyingmesh stiffness km(t). Contact loss can therefore

Fig. 4 Nonlinear force model

occur at a threshold g(t) (see Fig. 4):

g(t) = b + qs(t) − Fs
km(t)

, (12)

where b is the constant half backlash and Fs is the
transmitted load.

The nonlinear mesh force acting along the line of
action is expressed as:

f LoAnl (q, t) = km(t)
(

GT q − g
)
H

(
GT q − g

)

+km(t)
(

GT q + g
)
H

(
−GT q − g

)
,

(13)

where H is the Heaviside step function. The general-
ized nonlinear force vector is thus written as:

f rnl (q, t) = G f LoAnl (q, t) (14)

The STE and mesh stiffness are computed with an in-
house code based on the Reissner–Mindlin thick plate
theory [36]. Due to the symmetry of the gears, an angu-
lar sector corresponding to one tooth (onemesh period)
is discretized and the contact equations are solved in
static conditions for each angular position.

Under stationary operating conditions, the signals
are periodic and can be expressed as truncated Fourier
series:

qs(t) =
Hqs∑

k=0

qc,ks cos(kΩt) + qs,ks sin(kΩt) (15)

km(t) =
Hkm∑

k=0

kc,km cos(kΩt) + ks,km sin(kΩt) (16)
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In the following, three harmonics are used both for
theSTEandmesh stiffness. Figure 5 shows theSTEand
mesh stiffness over two mesh period computed with an
input torque T = 2.5 N·m. For more realistic results,
tooth profile and helix errors corresponding to a quality
class 6 (ISO 1328-1:2013) are taken into account in the
computation.
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Fig. 5 Static transmission error (a) and time-varying mesh stiff-
ness (b) reconstructed with three harmonics at an input torque
T = 2.5 N·m

2.4 Damping modelling

There exist numerous sources of energy dissipation and
damping mechanisms in geared system, which makes

themquite difficult tomodel accurately. Equivalent vis-
cous damping terms acting at the gear mesh are com-
monly used in single degree of freedom gear models
[11,37]. In order to generalize this idea, a constant
modal damping is defined with the modal basis of the
underlying reduced linear system where the gears are
coupled with the average mesh stiffness km , i.e.:

([
Kr + kmGGT

]
− ω2

r, jMr

)
φφφcontact
r = 0. (17)

It is thus possible to write the modal damping matrix
Cm
r in the reduced modal subspace:

Cm
r = diag

(
2ξ jωr, j

)
, (18)

whereωr, j is the eigenfrequency of the j-thmode of the
reduced-order model and ξ j = 5% in the following.
The damping matrix in the reduced subspace finally
reads:

Cr = MT
r flrCmod

r flT
r Mr , (19)

where matrix flr is formed with the mass-normalized
eigenvectors of Eq. (17). Note that more sophisticated
dampingmodels, i.e. impact damping [38,39], can eas-
ily be implemented since the physical gear DoFs are
retained in the reduced-order model.

3 Computational strategy

3.1 Harmonic balance method

The general idea behind the HBM consists in approxi-
mating a periodic solution q of Eq. (4) with truncated
Fourier series:

q = Re

( ∞∑

k=0

q̃ke
ikΩt

)
≈ Re

(
H∑

k=0

q̃ke
ikΩt

)
, (20)

where q̃ contains the coefficients of the one-sided
Fourier transform. Substituting Eq. (20) into Eq. (4)
and applying a Galerkin procedure yields a residual
which consists of a set of n(H +1) nonlinear algebraic
equations:

R(q̃,Ω) = Z(Ω)q̃ + f̃nl(q̃) − f̃ex = 0, (21)
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where Z(Ω) is the dynamic stiffness matrix duplicated
on each considered harmonic:

Z(Ω) = Ω2∇2 ⊗ M + Ω∇ ⊗ C + IH+1 ⊗ K. (22)

where⊗ is the Kronecker product and∇ the frequency
domain differential operator:

∇ = diag(0, i, 2i, . . . , Hi). (23)

It is worth noting that the present study only investi-
gates period-one solutions. Subharmonic responses can
be computed by modifying the Fourier base used in the
HBM formulation [24,40].

The Fourier coefficients of the nonlinear forces
are evaluated using Eq. (14) and the alternating fre-
quency/time (AFT) scheme [41] whose principle is
summarized in Fig. 6.

Eq. (21) can be solved using a Newton–Raphson-
based iterative solver to yield the solution at a given
frequency. In order to compute the response in a given
frequency range, the frequency Ω is treated as an
unknown and the response curve is parameterized by
its curvilinear abscissa to avoid difficulties with ver-
tical tangents at turning points. An arc-length contin-
uation procedure is also implemented. The arc-length
continuation is a predictor/corrector scheme (seeFig. 7)
which relies onfinding an approximate solution Q̃(p) =
(q̃ Ω)T(p) based on the previously computed solution

point Q̃(k) and iteratively performing corrections on the
predicted solution until convergence is reached. A thor-
ough description of the numerical methods employed
in this work can be found in [15,26].

Fig. 6 Illustration of the AFT procedure

Fig. 7 Illustration of the arc-length continuation

3.2 Condensation on the nonlinear degrees of freedom

Thenonlinear force stemming from the contact between
gear teeth and backlash nonlinearity only act on a small
set of DoF, i.e. the twelve DoF representing the gear
pair. It is possible to exploit this sparsity to only retain
the nonlinear DoF as unknowns of the problem and
greatly reduce the computational time [42]. The equa-
tions of motion are first partitioned into nonlinear (sub-
script ’nl’) and linear (subscript ’ln’) DoF:

[
Zln,ln Zln,nl

Znl,ln Znl,nl

] (
q̃ln
q̃nl

)
+

(
0

F̃nl

)
=

(
F̃ex,ln

F̃ex,nl

)
, (24)

which yields:

Zr q̃nl + F̃nl = F̃r , (25)

where Zr is the Schur complement of the linear part of
the dynamic stiffness matrix and F̃r is the condensed
external forcing vector:

Zr = Znl,nl − Znl,lnZ−1
ln,lnZln,nl,

F̃r = F̃ex,nl − Znl,lnZ−1
ln,lnF̃ex,ln.

(26)

The Jacobian matrix can be expressed by direct differ-
entiation of Eq. (26) with respect to the unknowns:
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∂ΩZr = ∂ΩZnl,nl

−
(
∂ΩZnl,lnZ−1

ln,lnZln,nl

+ Znl,ln∂ΩZ−1
ln,lnZln,nl

+Znl,lnZ−1
ln,ln∂ΩZln,nl

)
, (27)

∂Ω F̃r = ∂Ω F̃ex,nl

−
(
∂ΩZnl,lnZ−1

ln,lnF̃ex,ln

+ Znl,ln∂ΩZ−1
ln,lnF̃ex,ln

+ Znl,lnZ−1
ln,ln∂Ω F̃ex,ln

)
. (28)

The above expressions involve the inverse of the lin-
ear part of the dynamic stiffness matrix Z−1

ln,ln. This
can lead to heavy computational effort as the number
of linear degrees of freedom increases, even with the
preliminary CMS reduction described in Sect. 2.2. To
keep the computational time to a minimum, the inverse
Z−1
ln,ln is not computed explicitly. Instead, the terms

∂ΩZnl,lnZ−1
ln,ln, Znl,ln∂ΩZ−1

ln,ln and Znl,lnZ−1
ln,ln are eval-

uated by solving three linear systems [43]:

ZT
ln,lnZnl,lnZ−T

ln,ln = ZT
nl,ln,

ZT
ln,lnZnl,ln∂ΩZ−T

ln,ln = − ∂ΩZT
ln,lnZnl,lnZ−T

ln,ln, (29)

ZT
ln,ln∂ΩZnl,lnZ−T

ln,ln = ∂ΩZT
nl,ln.

3.3 Detection of grazing bifurcations

The non-smoothness of the nonlinear contact force can
give rise to discontinuity-induced bifurcations [44]. Of
particular importance in this paper are grazing bifurca-
tions, characterized by impacts with zero normal veloc-
ity, which mark the onset and disappearance of vibro-
impacting orbits. It is usual in bifurcation analysis to
define test functions whose zeros indicate bifurcation
points. In this work, grazing bifurcations are detected
by monitoring the changes of sign of φGR defined as:

φGR = 1 − 2H
(
1 −

〈
H

(
GT q − g(t)

) 〉)
, (30)

where 〈•〉 denotes the mean value over one fundamen-
tal period. Before a grazing bifurcation, the gear teeth
are in permanent contact and, assumingH(0) = 0,φGR

equals 1. As soon as the teeth lose contact, the value
of φGR switches to −1 until contact is re-established

over the whole rotation period. Thus, a grazing bifurca-
tion corresponding to the onset (resp. disappearance) of
vibro-impacting orbits is detected when φGR switches
from 1 to −1 (resp. from −1 to 1). The accuracy of the
detection depends directly on the number of harmonics
retained in the HBM approximation and on the number
of harmonics used to describe the mesh stiffness and
static transmission error.

4 Results and discussion

4.1 Preliminary analysis

The accuracy of the reduced-order model is dependent
on dimension of the reduced subspace, i.e. the num-
ber of fixed-interface modes used to approximate the
dynamics of the linear part of the system. This num-
ber ought to be large enough to describe the vibra-
tion behaviour resulting from all excitations. The fre-
quency range inwhich the reduced-ordermodel is valid
is dictated by the maximum frequency of the inter-
nal excitation, since its acts at a significantly higher
frequency than the external excitation and all fixed-
interface modes are considered up to truncation order
nCM .

In the following, the validity of the reduced-order
model is evaluated using the concept of mesh energy
ρ [20] defined for each mode of the underlying linear
system by Eq. (31):

ρ j = φφφT
j

[
kmGGT

]
φφφ j

φφφT
j

[
K + kmGGT

]
φφφ j

, (31)

with:

– φφφ j the eigenvector of the j-th mode,
– G the projection vector defined by Eq. (11),
– [K] the stiffness matrix of the system without cou-
pling between gear teeth.

Modes with a high mesh energy can be excited by the
high-frequency internal excitation. It is therefore nec-
essary to ensure those modes are correctly described
by the reduced-order model. In the following, we con-
sider 3 harmonics of the internal mesh excitation, cor-
responding to harmonics HZ , H2Z and H3Z of the shaft
rotation. Figure 8 shows the Campbell diagram of the
underlying linear system, i.e. with the gears coupled
by the average mesh stiffness km . Excitation orders are
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Fig. 8 Campbell diagram of the underlying linear system. Exci-
tation orders corresponding to the internal excitation are plotted
in solid black lines. The colour of the horizontal lines corre-
sponds to the mesh energy of the corresponding mode. (Color
figure online)

shown in solid black lines, and the modes are plotted
as horizontal lines with energy-dependent colours. For
readability reasons, only modes with a mesh energy
greater than 3% are plotted. One can see that several
modes have a significant mesh energy. The mode with
most mesh energy (ρ = 32%) lies at 4 kHz. The high-
est frequency of a mode with mesh energy is 5 kHz. By
keeping nCM = 250 component modes in the reduc-
tion, Fig. 9 shows that the reduced-order model is valid
until more than Ω = 9 kHz.

The response being approximated by Fourier series,
the accuracy directly depends on the number of retained
harmonics.As such, harmonics present in the excitation
must be included. The TVMS is amulti-harmonic para-
metric excitation which is expected to induce a cou-
pling between the external excitation, leading to addi-
tional harmonics in the response. In our case, the fre-
quency of the external excitation is significantly lower
(up to harmonic H4 of the shaft rotation) than that of the
internal excitation (harmonics kZ , k ∈ N of the shaft
rotation). Sidebands around each considered mesh har-
monic should therefore be retained in the Fourier series
for an accurate description of the response.

With large-scale systems, each additional harmonic
can lead to a significant increase in the computational
time. Thus, a convergence study with all excitation
sources is first carried out to determine the smallest
set of harmonic to consider for the analysis. Figure 10
shows the evolution of the standard deviation (SD) of
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Fig. 9 Relative error on the frequency of the modes of the lin-
earized reduced-order model with respect to those of the full FE
model

the mesh load, computed with Eq. (13), with respect to
the rotational frequency of the shafts for several num-
ber of harmonics. The complete list can be found in
Table 2. One can see that convergence in term of mesh
load is reached with 20 harmonics. Most features of
the forced response curve are well captured once all
harmonics of the internal excitation (HkZ , k ∈ N of the
shaft rotation) are included in the computation. How-
ever, it is clear that the coupling between internal and
external excitations severely affects the primary reso-
nance peak and more harmonics need to be taken into
account for a satisfying accuracy.

Figure 11 depicts the frequency of all detected graz-
ing bifurcations with respect to the number of harmon-
ics. The vertical dashed lines correspond to a±1%error
centred on the most converged computation. It appears
that carrying out the computation with an insufficient
number of harmonics leads to the inaccurate detection
of vibro-impact responses. For instance, the computa-
tion with 5 harmonics cannot detect the grazing bifur-
cations occurring at low frequencies. Furthermore, one
can see that satisfying accuracy is reached with 14 har-
monics, which is smaller than the number of harmonics
required for a good description of the forced response
curve. A set of 20 harmonics is therefore used through-
out the rest of this paper. All computations were per-
formed on a PC equippedwith anAMDRyzen 9 5950X
CPU (16 cores, 32 threads) with a base clock speed
equal to 3.4 GHz and 64 Gb RAM. The total computa-
tion time depends on the continuation step size, number
of harmonics and sampling in the AFT procedure.With
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Fig. 10 Convergence of the standard deviation of the dynamic
mesh loadwith respect to the number of retained harmonics. Dia-
mond markers correspond to grazing bifurcation points. (Color
figure online)

the parameters used in this paper, the average compu-
tation time is 11 s per solution point.

4.2 Coupling between internal and external
excitations

In order to highlight the coupling between internal and
external excitations in the nonlinear regime, we carry
out three analyses with an input torque T = 2.5 N·m
corresponding to a static mesh load Fs = 70 N:

– the first one corresponds to a forced response com-
putation considering only the internal excitation,

– the second one considers only the external exci-
tation (aerodynamic loading and mass unbalance)
and STEwith a constantmesh stiffness (the average
value over one vibration cycle),

– the third one includes all excitations.

Figure 12 depicts the evolution of the dynamic mesh
load with respect to the rotational frequency for all
cases. The regions where the response exhibits vibro-
impacts are delimited by coloured diamond markers
denoting grazing bifurcations. It appears that includ-
ing low-frequency external excitation leads to a higher
amplitude of the dynamic response away from res-
onances, both at low and high frequencies. Further-
more, contrary to the resonances at Ω = 1085 rpm
and Ω = 1580 rpm which are almost unaffected,
the primary resonance peak is modified. Its amplitude
decreases from 93 N when only the internal excitation
is considered to 88 N with all excitations. Besides, its
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Fig. 11 Convergence of grazing bifurcations with respect to the
number of retained harmonics. The vertical dashed lines corre-
spond to a±1%error centred on themost converged computation
with 24 harmonics

shape is also significantly impacted by the coupling
between internal and external excitations, leading to
smaller amplitude-jump instabilities.

Figure 13 shows the frequency at which grazing
bifurcations occur for the considered excitation sce-
nario. One can see that the external excitation leads to
an increase in the frequency range exhibiting vibro-
impacts, as grazing bifurcations occurring at Ω =
1000 rpm and Ω = 1300 rpm appear more spread.
Overall, the span of vibro-impact regions increases by
14% when all excitations are considered.

4.3 Influence of the excitations on the vibro-impact
characteristics

Figure 14 depicts the evolution of the standard devi-
ation of the mesh load with respect to the rotational
speed. One can see three main resonance peaks located
atΩ = 1070 rpm,Ω = 1570 rpm andΩ = 3000 rpm,
corresponding to the excitation of the mode with high-
est mesh energy by the three harmonics of the internal
excitation H3Z , H2Z and HZ , respectively.

Five grazing bifurcations are observed on the forced
response curve. In the following, they are referred
to with their number of appearance with respect to
the rotational speed. For clarity, regions of the forced
response curve exhibiting vibro-impacts are high-
lighted in blue. The first grazing bifurcation around
Ω = 994 rpmmarks the onset of a vibro-impact region
spanning ΔΩ = 260 rpm until the second grazing
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Fig. 12 Evolution of the
standard deviation of the
mesh load with respect to
the rotational speed.
Computation with all
excitations (red), all
excitations except the
TVMS and external
excitations (blue) and
internal excitation only
(purple). Coloured diamond
markers represent grazing
bifurcations. (Color figure
online)
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Fig. 13 Frequency location of grazing bifurcations for all con-
sidered cases. Grazing bifurcations, represented by diamond
markers, associated with both ends of a vibro-impact region are
plotted in the same color

bifurcation at Ω = 1255 rpm. A small interval of
responses with permanent contact conditions can be
observed following this bifurcation until the appear-
ance of a third grazing bifurcation at Ω = 1295 rpm.
The responses exhibit vibro-impacts until a speedΩ =
2202 rpm where the fourth grazing bifurcation occurs,
leading to another small intervalwithout vibro-impacts.
At Ω = 2378 rpm, the forced response curve exhibits
a grazing bifurcation responsible for the appearance
of vibro-impacting responses over the rest of the fre-
quency range of interest.

Time responses can be evaluated from the Fourier
coefficients computedwith theHBM. Figure 15 depicts
the time series of the dynamicmesh load computedwith

Fig. 14 Forced response curve with both internal and external
excitations. Blue diamond markers denote grazing bifurcations,
and blue highlights denote vibro-impacting responses

Eq. (13) and the dynamic transmission error computed
with Eq. (10) at Ω = 2970 rpm, where the most ener-
getic mesh mode is excited by the first harmonic of the
internal excitation HZ . Figure 15a, b shows that the
dynamic mesh load goes to zero, indicating a contact
loss, repeatedly during the rotation period. This induces
impacts on the teeth flanks. Note that the mesh load
is always positive or null. This indicates that impacts
always occur on the active tooth flanks and that the
vibration amplitude is never high enough to cross the
gear backlash. This is confirmed by Fig. 15d which
shows the dynamic transmission error over two funda-
mental periods. The response exhibits a low-frequency
modulation due to the aerodynamic loads (harmonic
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Fig. 15 Time series of the dynamicmesh load (a,b) anddynamic
transmission error (d, e) and harmonic content of the dynamic
mesh load (c) atΩ = 2970 rpm. Close-ups of the dynamic mesh

load (b) and dynamic transmission error (e). Black dashed lines
correspond to the gap limit, i.e. teeth flanks
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H2 of the shaft rotation, also visible in Fig. 15c) with a
peak-to-peak amplitude equal to 4 μm which is much
smaller than the gear backlash b = 40 μm.

Figure 15c shows the harmonic content of the
dynamic mesh load atΩ = 2970 rpm. One can see that
the response is strongly multi-harmonic with harmon-
ics of the mesh frequency (HZ , H2Z and H3Z ), low-
frequency harmonics stemming from the aerodynamic
forcing (H2 and H4). Sidebands generated by interac-
tions between the aerodynamic forcing and the time-
varying mesh stiffness can be observed only around
mesh harmonics HZ and H2Z . Sidebands around har-
monics H3Z and H4Z do not appear for they were not
considered in the computation. Note that the amplitude
of the sidebands is of the same order of magnitude as
the H2 harmonic.

Figure 15e is a close-up of Fig. 15d. The black
dashed line represents the gap limit corresponding to
the teeth flanks with the STE. It appears clearly that
impacts occur once every fundamental period of the
STE, i.e. 76 times per shaft rotation. Note that due
to the low-frequency modulation, the impact velocity
varies periodically. This results in significant variations
of the dynamicmesh load, as evidenced in Fig. 15b. The
smallest impacts generate a mesh load equal to 180 N
while the largest ones generate a mesh load equal to
260 N. This corresponds to a variation of 44% of the
dynamic mesh load occurring twice per shaft rotation.

Figure 16 shows the time series and harmonic con-
tent of the dynamic mesh load computed with Eq. (13)
and the time series of the dynamic transmission error
computed with Eq. (10) atΩ = 6875 rpm. At this rota-
tional speed, the frequency of the internal excitation is
too high to excite the mesh modes. The small dynamic
amplification visible in Fig. 14 is induced by the excita-
tion of a shaft mode by the external excitation. One can
see from Fig. 16a that the gear response is governed by
the second harmonic of the shaft rotation induced by the
aerodynamic forcing, with the amplitude of the mesh
harmonics relatively small. The peak-to-peak ampli-
tude of the mesh load is significantly smaller than the
one at Ω = 2970 rpm (160 N instead of 275 N).

This is confirmed by Fig. 16c which shows the
harmonic content of the dynamic mesh load at Ω =
6875 rpm. Compared to the results at Ω = 2970 rpm,
harmonics H2 and H4 appears much more prominent,
with harmonic H2 of the same order of magnitude as
the mesh harmonics. Furthermore, the amplitude side-

bands around each mesh harmonic are quite noticeably
smaller.

Figure 16e shows that vibro-impacts still occur once
per mesh period with 76 impacts per shaft rotation.
However, Fig. 16a clearly shows intermittent phases of
vibro-impacts induced by the low frequency modula-
tion. Phases of permanent contact lasting several mesh
periods (≈ 22% of the shaft rotation) alternate with
phases of vibro-impacts, lasting approximately 28% of
the shaft rotation, twice per shaft rotation.

The same analysis can be carried out over the whole
forced response curve. Figure 17a, b shows two close-
ups of the time series of the dynamic transmission error
atΩ = 1700 rpm. At this rotational speed, the external
excitation-induced modulation does not lead to alter-
nating phases of permanent contact and phases with
1 impact per period of the internal excitation (1-IPP).
Instead, themodulation induces a change in the number
of impacts per period during the rotation of the shafts.
The dynamic response exhibits 1-IPP during around
20% of the shaft rotation and 2-IPP for the rest of the
rotation. Note that the change in the number of IPP is
governed by the external excitation so that it occurs
twice per shaft rotation in the following sequence:

– 2-IPP (40% of the rotation),
– 1-IPP (10% of the rotation),
– 2-IPP (40% of the rotation),
– 1-IPP (10% of the rotation).

The response at Ω = 2970 rpm exhibits an even
more complex vibro-impacting behaviour. Figure 18
shows close-ups of the time series of the dynamic trans-
mission error at Ω = 1070 rpm, corresponding to the
resonance of the most energetic mesh mode excited by
the third harmonic of the internal excitation H3Z .

One can see that, since the response is governed
by the third harmonic of the internal excitation, the
response exhibits sequentially permanent contact, 1-
IPP, 2-IPP and 3-IPP with continuous, smooth transi-
tions between each type of behaviour in the following
sequence:

– Permanent contact (14.5% of the rotation),
– 1-IPP (4% of the rotation),
– 2-IPP (5.25% of the rotation),
– 3-IPP (17% of the rotation),
– 2-IPP (5.25% of the rotation),
– 1-IPP (4% of the rotation),
– Permanent contact (14.5% of the rotation),
– 1-IPP (4% of the rotation),
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Fig. 16 Time series of the dynamicmesh load (a,b) anddynamic
transmission error (d, e) and harmonic content of the dynamic
mesh load (c) atΩ = 6875 rpm. Close-ups of the dynamic mesh

load (b) and dynamic transmission error (e). Black dashed lines
correspond to the gap limit, i.e. teeth flanks
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Fig. 17 Time series of the dynamic transmission error at Ω = 1700 rpm where the response exhibits one impact per period (a) and
two impacts per period (b). The black dashed line corresponds to the gap limit

– 2-IPP (5.25% of the rotation),
– 3-IPP (17% of the rotation),
– 2-IPP (5.25% of the rotation),
– 1-IPP (4% of the rotation).

5 Concluding remarks

Gears are an essential component of a plethora of
mechanical systems present in almost all industrial
sectors. A thorough understanding of their dynamic
behaviour is thus of crucial importance to achieve effi-
cient designs to meet the ever more stringent demands
of the industry. Such demands often require that all
components be included in the mechanical analyses to
obtain representativemodels. Besides, mechanical sys-
tems are often a significant source of noise that ought
to be reduced as much as possible. Thus, it is of vital
importance to model the flexibility of the housing and
to employ numerical methods able to deal with the con-
siderable increase in the dimension of the system.

In this regard, this paper proposed a computational
strategy to study the periodic solutions of large-scale
geared system. It is based on a spectral technique, the
harmonic balance method, coupled to an arc-length
continuation algorithm. The industrial-scale model
is reduced in two steps. Firstly, the Craig–Bampton
method allows one to a few hundreds of degrees of free-
dom. Secondly, the number of equations in the spectral
domain is reduced to twelve via an exact explicit con-

densation on the gear degrees of freedom.Theproposed
methodology is able to compute the periodic solutions
of high-fidelity models of geared systems composed of
several millions of degrees of freedom. The dynamic
response at the gear can then be used to reconstruct
the response of all degrees of freedom, allowing one
to retrieve the dynamic response of the housing which
can be used to evaluate the radiated sound.

Besides, retaining the gear degrees of freedom as
physical coordinates with the Craig–Bampton reduc-
tion allows one to modify the gear and carry out an
optimization of the gear design parameters to mini-
mize the dynamic response without having to compute
an updated reduced order model.

The main findings of this paper show that the para-
metric mesh stiffness induces a coupling with the low
frequency external excitationgeneratedby thepumping
process of the pump under study. This coupling induces
an enrichment of the harmonic content of the dynamic
transmission error with sidebands around each gear
mesh harmonic.As a result, depending on the rotational
speed and dynamic amplifications due to mesh modes
and/or shaft modes, one can observe either alternating
phases of permanent contact and vibro-impacts or tran-
sitions between responses with 1 impact per period and
2 impacts per period. Future work will focus on com-
puting the radiated noise and evaluating the effect of
these modulations on the acoustic perception.
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Fig. 18 Time series of the dynamic transmission error atΩ = 1070 rpmwhere the response exhibits permanent contact (a), one impact
per period (b), two impacts per period (c) and three impacts per period (d). The black dashed line corresponds to the gap limit
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Appendix

See Table 2.

Table 2 List of harmonics used in the convergence study

Nb of harmonics List of harmonics

5 (0, 1, 2, 4, 76)

6 (0, 1, 2, 4, 76, 152)

7 (0, 1, 2, 4, 76, 152, 228)

8 (0, 1, 2, 4, 76, 152, 228, 304)

10 (0, 1, 2, 4, 74, 76, 78, 152, 228, 304)

12 (0, 1, 2, 4, 74, 76, 78, 150, 152, 154,

228, 304)

14 (0, 1, 2, 4, 74, 75, 76, 77, 78, 150,

152, 228, 304)

18 (0, 1, 2, 4, 72, 73, 74, 75, 76, 77, 78,

79, 80, 150, 152, 154, 228, 304)

20 (0, 1, 2, 4, 72, 73, 74, 75, 76, 77, 78,

79, 80, 148, 150, 152, 154, 156, 228,

304)

24 (0, 1, 2, 4, 72, 73, 74, 75, 76, 77, 78,

79, 80, 148, 150, 152, 154, 156,

224, 226, 228, 230, 232, 304)
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