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Abstract This paper focuses on the combination

resonances of a dual-rotor system with inter-shaft

bearing. The motion equations of the dual-rotor

system are formulated by the Lagrange equation, in

which the unbalanced excitations of the two rotors and

the clearance of the inter-shaft bearing are taken into

consideration. The HB-AFT method (harmonic bal-

ance-alternating frequency/time domain method) is

employed to obtain all the periodic solutions including

the unstable solutions of the system. The combination

resonance characteristics of the system are analyzed in

detail by using the frequency response curves and

separated frequency responses of the dual-rotor sys-

tem. Besides the two primary resonance peaks, three

more combination resonance regions in the frequency

response curves of the system are found, in which the

jump and bi-stable phenomena are observed. The

primary resonance is mainly dominated by the exci-

tation frequency x1 and x2, the combination reso-

nance of the system is mainly dominated by the

combined frequency component of 2x2 � x1,

4x2 � 3x1, 3x2 � 2x1 and is almost independent of

other frequency components. Furthermore, the effect

of inter-shaft bearing clearance on the combination

resonance regions is obtained, it is indicated that

increasing the inter-shaft bearing clearance will not

only affect the response amplitudes of the combination

resonance and change the ‘‘softening and hardening

characteristic’’ of the frequency response curves, but

also show a certain ‘‘stiffness weakening effect’’ on

the rotor system. The study in this paper is of great

significance to select the parameters of the dual-rotor

system reasonably so as to avoid harmful combination

resonance.
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1 Introduction

Aeroengine with the dual-rotor system has been

widely used in the aviation industry [1], because of

the great advantage in high thrust–weight ratio, high

aerodynamic stability and not prone of surging, etc.

Dual-rotor system [2] is one of the core components of

aeroengine, in which the high-pressure rotor and the
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low-pressure rotor are connected by the inter-shaft

bearing [3], which could reduce the bearing casing of

the high-pressure rotor and shorten the length of

engine, thus reducing the weight and improving the

thrust–weight ratio of the aeroengine. But on the other

hand, the nonlinearities of the inter-shaft bearing are

always one of the main inducements of the nonlinear

dynamic behavior of the dual-rotor system, such as

jump, bi-stable, combination resonance and so on. It is

of great significance to analyze the influence of the

inter-shaft bearing nonlinearities on the dual-rotor

system dynamics for the parameter optimization and

healthy operation of aeroengine [4].

Much work has been carried out to analyze the

dynamic characteristics of dual-rotor systems based on

numerical method simulations, including the Runge–

Kutta method, the Newmark method and the shooting

method. Gupta et al. [5] performed some dynamic

calculation and experiments on a dual-rotor test rig,

the conclusions showed that there is cross-excitation

between the inner and outer rotor. Ferraris et al. [6]

analyzed the mass unbalance responses of a dual-rotor

system, it is indicated that the symmetry of the system

will affect the critical speed. Zhang et al. [7] proposed

a method to sense the unbalance of the rotors for a

dual-rotor system, in which the trial weigh is just

added on the outer rotor. Hu et al. [8] developed a five

degrees of freedom model for a dual-rotor system, the

simulation results indicated that the nonlinearities of

bearings have great effect on the dynamic character-

istics of the system. Wang et al. [9] analyzed the

influence of squeeze film damper (SFD) on a dual-

rotor system, the conclusions showed that the SFD

would induce complex motion of the system under the

conditions of small unbalance and high speed. Chen

et al. [10] studied the combined effect of base motions,

unbalanced excitations and gravity on the dynamic

characteristics of a dual-rotor system; it is found that

the base motions would influence the vibration modes

of the system. Gao et al. [11] presented a force model

for the inter-shaft bearing, in which a local defect and

nonlinearities of the bearing are taken into consider-

ation; the results showed that the defect will increase

the clearance and induce some abnormal resonances.

Gao et al. [12] analyzed the paroxysmal impulse

vibrations of a dual-rotor system based on the inter-

shaft bearing model with an outer raceway defect; the

results obtained by the Runge–Kutta method show that

the intermittently antiphase of the loading and defect

position is the inducement of the paroxysmal impulse

vibrations. Ma et al. [13] analyzed the dynamic

characteristics of a dual-rotor system with coupling

effect of the inter-shaft bearing and rub-impact fault; it

is indicated that increasing the rub-impact stiffness

would induce complex motion of the system. Wang

et al. [14] analyzed the dynamic characteristics of

dual-rotor system with rubbing fault and unbalance-

misalignment coupling faults, the conclusions showed

that the coupling between the two rotors is very strong

due to the inter-shaft bearing. Yu et al. [15] employed

the Newmark method combined with the model order

reduction technique to obtain the responses of a dual-

rotor system with consideration of the inter-shaft rub-

impact, the results showed that the inter-shaft rub-

impact will induce new resonance peaks of the system.

Liu et al. [16] proposed dual-rotor dynamic coupling

model with nonlinear restoring forces of the two

rotors, the results obtained by the shooting method

showed that nonlinear dynamic phenomenon such as

multiple solutions, double period motions and even

chaotic motions emerged. Bavi et al. [17] analyzed the

simultaneous resonance and stability for the unbal-

anced asymmetric thin-walled composite shafts; the

effects of key parameters on the stability of the system

were examined. The above studies revealed many

valuable dynamic properties of dual-rotor system such

as multiple solutions, vibration jump and complex

motion, etc., but the mechanism investigations are

insufficient.

HB-AFT method (harmonic balance-alternating

frequency/time domain method) has been widely

applied to analyze the nonlinear dynamic character-

istics and the mechanism of rotor systems. It has great

advantages in dealing with nonlinear problems such as

piecewise linearity [18, 19], clearance [20], fractional

exponents [21], strong nonlinearity [22, 23] and so on.

Meanwhile, HB-AFT method is a semi-analytical

solution method which can grasp all solutions,

including the unstable solutions for rotor system.

Therefore, although the HB-AFT method could only

obtain the steady-state response of the rotor system, it

is more suitable than numerical method for the study

of nonlinear dynamic behavior mechanism of rotor

system with complex nonlinearities such as clearance,

piecewise linearity, nonlinear faults, etc. In the HB-

AFT method, both the vibration responses and non-

linear terms of the system are expressed by Fourier

series, then the nonlinear differential equations of the
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system are transformed into algebraic equations by the

Harmonic Balance procedure, a Newton–Raphson

iterative procedure is employed to solve these alge-

braic equations, the Jacobian matrix needed in which

is calculated by using the inverse discrete Fourier

transform (IDFT) procedure to construct the relation-

ship between the Fourier coefficients of responses and

nonlinear terms. Kim et al. [24, 25] analyzed the

nonlinear dynamic characteristics for a Jeffcott rotor

with piecewise linearity and clearance, quasi-periodic

response and internal resonant vibration are obtained.

By combining the HB-AFT method with an arc length

continuation procedure, Guskov et al. [26, 27]

obtained all the solution branches (including unsta-

ble solutions) for a Jeffcott rotor system with piece-

wise-linear pedestal. Zhang et al. [28, 29] modified the

HB-AFT method to deal with the rotor system with

bearing nonlinearities and analyzed the varying com-

pliance resonances of a ball bearing-rotor system with

clearance. The results show that period-doubling

bifurcation and chaos are found in the system. By

using the HB-AFT method, Li et al. [30] found there

are two ways toward instability, i.e., the period-

doubling bifurcation and the secondary Hopf bifurca-

tion for an offset-disk rotor system with nonlinear

restoring force of support. Yang et al. [31] employed

the HB-AFT method to obtain the responses of a

bearing-rotor with local defect on the outer raceway of

the bearing; the results showed that the defect would

induce super-harmonic resonances. Hou et al. [32]

extended the application of the HB-AFT method to

nonlinear dynamic analysis of dual-rotor system with

inter-shaft bearing and dual-frequencies excitations,

bi-stable, resonance hysteresis, and quasi-periodic

behaviors are found in the system. In order to improve

the computing efficiency of the Jacobi matrix needed

in the HB-AFT method, Gupta et al. [33–36] showed

that the advanced version of DFT and chaos analysis

may be a helpful tool in the future scope. Rahman et.al

[37] proposed a modified multi-level residue harmonic

balance method, which could handle the nonlinear

vibration problem of beam resting on nonlinear elastic

foundation. The above studies give a comprehensive

analysis of the nonlinear dynamic characteristics for

rotor system, however, most of dynamic model of

which are Jeffcott rotor system, the dynamic charac-

teristics and mechanism investigations for the dual-

rotor system with nonlinearities of the inter-shaft

bearing are insufficient.

The motivation of this paper is to detect the

combination resonances of a dual-rotor system with

inter-shaft bearing clearance and subjected to dual-

frequencies unbalanced excitations. Herein, the HB-

AFT method combined with an arc length continua-

tion procedure is employed to obtain all the periodic

solutions branches including the unstable solutions of

the system, hence one can get a comprehensive

understanding of the nonlinear dynamic characteris-

tics of the system. Wherein, three combination reso-

nance regions in the frequency response curves of the

system are found, in which the jump and bi-stable phe-

nomena are observed. By using the separated fre-

quency responses based on the HB-AFT method, the

contribution of each frequency component to the

combination resonances and the effect of the inter-

shaft bearing clearance is revealed, providing a better

understanding of the combination resonances mecha-

nism of the dual-rotor system. The results obtained in

this paper are of great significance to understand the

combination resonances mechanism of the dual-rotor

system so as to avoid harmful vibration.

2 Mechanical model

The schematic diagram of the dual-rotor system is

shown in Fig. 1a, where the inner rotor is the low-

pressure rotor supported by two rigid supports, while

the outer rotor is the high-pressure rotor supported by a

rigid support and an inter-shaft bearing. The inter-

shaft bearing model is shown in Fig. 1b. Assume that

the rotational shafts are rigid shafts, all the supports

are linearly elastic except the inter-shaft bearing, all

dampings are linear damping. Besides, the torsional

vibration of the rotors is ignored since the torsional

vibration is much smaller than the bending vibration

and will hardly affect the performance of the rotor

system when there is no lateral-torsional coupled

vibration in the system. This model [38] is obtained

from an actual dual-rotor system based on the modal

synthesis method. Although it is a simplified model, it

is able to reflect the vibration characteristics of the

system, including critical speed, resonances and some

nonlinear dynamics.

In the model, m1 and e1 are the mass and the

eccentricity of the inner rotor, m2 and e2 are the mass

and the eccentricity of the outer rotor, k1 and c1 are the

stiffness coefficient and the damping coefficient of the
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left support of the inner rotor, k2 and c2 are the stiffness

coefficient and the damping coefficient of the right

support of the inner rotor, k3 and c3 are the stiffness

coefficient and the damping coefficient of the left

support of the outer rotor, Jd1 and Jp1 are the diameter

and the polar rotational inertias of the inner rotor, Jd2

and Jp2 are the diameter and the polar rotational

inertias of the outer rotor, x1 and x2 are the rotation

speeds of the inner rotor and the outer rotor, and kb and

d are the stiffness and the clearance of the inter-shaft

bearing. Besides, L1 ¼ 1
3
L, L2 ¼ 2

3
L, L3 ¼ L4 ¼ 2

15
L,

L5 ¼ 1
3
L are the length of the rotational shafts. The

motion of the system is described by eight degrees of

freedom, where x1 and y1 are the horizontal and the

vertical displacements of the inner rotor, h1 and w1

represent the rotation angles of the inner rotor with

respect to x-axis and y-axis, x2 and y2 are the

horizontal and the vertical displacements of the outer

rotor, and h2 and w2 refer to the rotating angles of the

outer rotor with respect to x-axis and y-axis. The

motion of the system can be formulated by using the

Lagrange equation.

The kinetic energy [39] of the rotor consists of the

kinetic energy of the rotor translation and the kinetic

energy of the rotor rotation, in which the kinetic

energy of the inner rotor and rotor translation is
1
2
m1 _x2

1 þ _y2
1

� �
, 1

2
m2 _x2

2 þ _y2
2

� �
, respectively, and the

kinetic energy of the inner rotor and rotor rotation is

1
2
Jd1

_h2
1 þ _w2

1

� �
þ 1

2
Jp1x2

1 � Jp1x1
_w1h1 and

1
2
Jd2

_h2
2 þ _w2

2

� �
þ 1

2
Jp2x2

2 þ Jp2x2
_w2h2, respectively.

Thus, the kinetic energy of the inner rotor and the outer

rotor can be obtained as follows

T1 ¼ 1

2
m1 _x2

1 þ _y2
1

� �
þ 1

2
Jd1

_h2
1 þ _w2

1

� �
þ 1

2
Jp1x

2
1

� Jp1x1
_w1h1

ð1aÞ

Fig. 1 Schematic diagram

of a dual-rotor system with

inter-shaft bearing. a for the

dual-rotor system model,

b for the inter-shaft bearing

model
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T2 ¼ 1

2
m2 _x2

2 þ _y2
2

� �
þ 1

2
Jd2

_h2
2 þ _w2

2

� �
þ 1

2
Jp2x

2
2

þ Jp2x2
_w2h2

ð1bÞ

The elastic potential energy of the inner and outer

rotors is denoted as follows

V1 ¼ 1

2
k1 x1 þ L1w1ð Þ2þ y1 � L1h1ð Þ2
� �

ð2aÞ

V2 ¼ 1

2
k2 x1 � L2w1ð Þ2þ y1 þ L2h1ð Þ2
� �

ð2bÞ

V3 ¼ 1

2
k3 x2 þ L3w2ð Þ2þ y2 � L3h2ð Þ2
� �

ð2cÞ

The dissipated energy of the inner and outer rotors

is denoted as follows

D1 ¼ 1

2
c1 _x1 þ L1

_w1

� �2

þ _y1 � L1
_h1

� �2
� �

ð3aÞ

D2 ¼ 1

2
c2 _x1 � L2

_w1

� �2

þ _y1 þ L2
_h1

� �2
� �

ð3bÞ

D3 ¼ 1

2
c3 _x2 þ L3

_w2

� �2

þ _y2 � L3
_h2

� �2
� �

ð3cÞ

The inter-shaft bearing is considered as a linear

spring model with a clearance d; the bearing force can

be denoted as

Fb ¼
kb e� dð Þ for e[ d

0 for e� d

(

ð4Þ

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

b þ y2
b

p
is the radial displacement, xb ¼

x1 � L2 � L5ð Þw1ð Þ � x2 � L4w2ð Þ is the horizontal

displacement, yb ¼ y1 þ L2 � L5ð Þh1ð Þ � y2 þ L4h2ð Þ
is the vertical displacement.

The component forces with respect to x-axis and y-

axis are as follows

Fx

Fy

	 

¼ Fb

e

yb

zb

	 

¼ H e� dð Þkb 1 � d

e

� �
xb

yb

	 

ð5Þ

where H xð Þ ¼ 1; x[ 0

0; x� 0

�
is the Heaviside function.

Finally, according to Eq. (1–5), and by using the

Lagrange equation

d

dt

oLT

o _q

� �
� oLT

oq
þ oDT

o _q
¼ F tð Þ ð6Þ

where

LT ¼ T1 þ T2 � V1 þ V2 þ V3ð Þ ð7aÞ

DT ¼ D1 þ D2 þ D3 ð7bÞ

the equations of motion of the system can be obtained

as follows

m1 €x1 þ c1 þ c2ð Þ _x1 þ L1c1 � L2c2ð Þ _w1 þ k1 þ k2ð Þx1

þ L1k1 � L2k2ð Þw1

¼ m1e1x
2
1 cosx1t � Fx

ð8aÞ

m1 €y1 þ c1 þ c2ð Þ _y1 � L1c1 � L2c2ð Þ _h1 þ k1 þ k2ð Þy1

� L1k1 � L2k2ð Þh1

¼ m1e1x
2
1 sinx1t � Fy

ð8bÞ

Jd1
€h1 þ L2

1c1 þ L2
2c2

� �
_h1 � L1c1 � L2c2ð Þ _y1

þ Jp1x1
_w1 þ L2

1k1 þ L2
2k2

� �
h1 � L1k1 � L2k2ð Þy1

¼ L2 � L5ð ÞFy

ð8cÞ

Jd1
€w1 þ L2

1c1 þ L2
2c2

� �
_w1 þ L1c1 � L2c2ð Þ _x1

� Jp1x1
_h1 þ L2

1k1 þ L2
2k2

� �
w1 þ L1k1 � L2k2ð Þx1

¼ � L2 � L5ð ÞFx

ð8dÞ

m2 €x2 þ c3 _x2 þ L3c3
_w2 þ k3x2 þ L3k3w2

¼ m2e2x
2
2 cosx2t þ Fx ð8eÞ

m2 €y2 þ c3 _y2 � L3c3
_h2 þ k3y2 � L3k3h2

¼ m2e2x
2
2 sinx2t þ Fy ð8fÞ

Jd2
€h2 þ L2

3c3
_h2 � L3c3 _y2 � Jp2x2

_w2 þ L2
3k3h2

� L3k3y2

¼ � L2 � L5ð ÞFy ð8gÞ

Jd2
€w2 þ L2

3c3
_w2 þ L3c3 _x2 þ Jp2x2

_h2 þ L2
3k3w2

þ L3k3x2

¼ L2 � L5ð ÞFx ð8hÞ

Letting q1 ¼ x1

d0
, q2 ¼ y1

d0
, q3 ¼ Lh1

d0
, q4 ¼ Lw1

d0
, q5 ¼ x2

d0
,

q6 ¼ y2

d0
, q7 ¼ Lh2

d0
, q8 ¼ Lw2

d0
, s ¼ x1t, where d0 is the

initial clearance of the inter-shaft bearing, the dimen-

sionless equations of Eq. (8) can be obtained as

follows
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q001 þ a1q
0
1 þ a2q

0
4 þ a3q1 þ a4q4

¼ a5 cosX1s� a6FX ð9aÞ

q002 þ a1q
0
2 � a2q

0
3 þ a3q2 � a4q3 ¼ a5 sinX1s� a6FY

ð9bÞ

q003 þ a8q
0
3 � a9q

0
2 þ a10q

0
4 þ a11q3 � a12q2 ¼ a13FY

ð9cÞ

q004 þ a8q
0
4 þ a9q

0
1 � a10q

0
3 þ a11q4 þ a12q1 ¼ �a13FX

ð9dÞ

q005 þ b1q
0
5 þ b2q

0
8 þ b3q5 þ b4q8

¼ b5 cosX2sþ b6FX ð9eÞ

q006 þ b1q
0
6 � b2q

0
7 þ b3q6 � b4q7

¼ b5 sinX2sþ b6FY ð9fÞ

q007 þ b8q
0
7 � b9q

0
6 � b10q

0
8 þ b11q7 � b12q6

¼ �b13FY ð9gÞ

q008 þ b8q
0
8 þ b9q

0
5 þ b10q

0
7 þ b11q8 þ b12q5 ¼ b13FX

ð9hÞ

in which, X1 ¼ x1

x1
¼ 1, X2 ¼ x2

x1
¼ k where k is the

rotating speed ratio, a1 ¼ c1þc2ð Þ
m1x1

, a2 ¼ L1c1�L2c2

Lm1x1
,

a3 ¼ k1þk2ð Þ
m1x2

1

, a4 ¼ L1k1�L2k2

Lm1x2
1

, a5 ¼ e1

d0
, a6 ¼ 1

m1x2
1
d0

,

a8 ¼ L2
1
c1þL2

2
c2

Jd1x1
, a9 ¼ L L1c1�L2c2ð Þ

Jd1x1
, a10 ¼ Jp1

Jd1
,

a11 ¼ L2
1
k1þ L�L1ð Þ2k2ð Þ

Jd1x2
1

, a12 ¼ L L1k1�L2k2ð Þ
Jd1x2

1

,

a13 ¼ L L2�L5ð Þ
Jd1x2

1

, b1 ¼ c3

m2x1
, b2 ¼ L3c3

Lm2x1
, b3 ¼ k3

m2x2
1

,

b4 ¼ L3k3

Lm2x2
1

, b5 ¼ e2x2
2

d0x2
1

, b6 ¼ 1
m2x2

1
d0

, b7 ¼ g
x2

1
d0

,

b8 ¼ L2
3
c3

Jd2x1
, b9 ¼ LL3c3

Jd2x1
, b10 ¼ Jp2x2

Jd2x1
, b11 ¼ L2

3
k3

Jd2x2
1

,

b12 ¼ LL3k3

Jd2x2
1

, b13 ¼ LL4

Jd2x2
1

, FX and FY representing the

dimensionless bearing forces are as follows

FX

FY

	 

¼ H E � Dð Þkb 1 � D

E

� �
Xb

Yb

	 

ð10Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

b þ Y2
b

p
,

Xb ¼ q1 � L2�L5

L q4

� �
� q5 � L4

L q8

� �
,

Yb ¼ q2 þ L2�L5

L q3

� �
� q6 þ L4

L q7

� �
, D ¼ d

d0
.

The values of parameters of the system[38] are as

follows

m1 ¼20 kg; Jp1 ¼0.18 kg m2; Jd1 ¼0.09 kg m2;

m2 ¼13 kg; Jp2 ¼1 kg m2; Jd2 ¼0.5 kg m2;

k1 ¼5�106 N m�1;k2 ¼5�106 N m�1;

k3 ¼1�107 N m�1;c1 ¼100 N s m�1;

c2 ¼100 N s m�1;c3 ¼100 N s m�1;e1 ¼1�10�6 m,

e2 ¼3�10�6 m, L¼1 m, kb ¼1�107 N m�1;d0 ¼5lm:

ð11Þ

3 Methodology

The HB-AFT proposed in [32] is employed to obtain

the periodic solutions for Eq. (9), in which the AFT

(alternating frequency/time domain) procedure is

employed to get the harmonic expending coefficients

of the harmonic balance residuals in time domain, and

then construct the relations between the coefficients of

the nonlinear forces and that of the supposed solution.

After that, an arc length continuation procedure [40] is

introduced into the HB-AFT method, then all solution

branches of the system are grasped, including the

unstable solutions. In addition, the Floquet theory

[41, 42] is employed to analyze the stabilities of the

solutions. The details of the methodology formulation

are as follow.

3.1 Harmonic balance method

With the consideration of the unbalance excitations of

two different frequencies from the two rotors, the

solution of Eq. (9) and the nonlinear forces of the inter-

shaft bearing can be expressed as Fourier series, i.e.,

qp¼ap00

þ
Xm

i¼�m

Xn

j¼�n

apij cos iX1þ jX2ð Þs�bpij sin iX1þ jX2ð Þs
� �

ð12aÞ

Fl ¼ cl00

þ
Xm

i¼�m

Xn

j¼�n

clij cos iX1 þ jX2ð Þs� dlij sin iX1 þ jX2ð Þs
� �

ð12bÞ

in which F1 ¼ FX , F2 ¼ FY , i ¼ �m; � � � ; m,

j ¼ �n; � � � ; n, excluding iX1 þ jX2 � 0. The coeffi-

cients are unknowns to be determined. Herein, the
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harmonic terms of the two unbalanced excitation

frequencies and their combinations are all considered.

Substituting (12) into Eq. (9), and using the

harmonic balance procedure, one can get.

(i) constant terms

g100 ¼ a3a100 þ a4a400 þ a6c100 ð13aÞ

g200 ¼ a3a200 � a4a300 þ a6c200 ð13bÞ

g300 ¼ a11a300 � a12a200 � a13c200 ð13cÞ

g400 ¼ a11a400 þ a12a100 þ a13c100 ð13dÞ

g500 ¼ b3a500 þ b4a800 � b6c100 ð13eÞ

g600 ¼ b3a600 � b4a700 � b6c200 ð13fÞ

g700 ¼ b11a700 � b12a600 þ b13c200 ð13gÞ

g800 ¼ b11a800 þ b12a500 � b13c100 ð13hÞ

(ii) cosine terms

g1ij ¼ a3 � iX1 þ jX2ð Þ2
� �

a1ij

� iX1 þ jX2ð Þ a1b1ij þ a2b4ij

� �
þ a4a4ij

þ a6c1ij � ca5 ð13iÞ

g2ij ¼ a3 � iX1 þ jX2ð Þ2
� �

a2ij

� iX1 þ jX2ð Þ a1b2ij � a2b3ij

� �
� a4a3ij

þ a6c2ij ð13jÞ

g3ij ¼ a11 � iX1 þ jX2ð Þ2
� �

a3ij

� iX1 þ jX2ð Þ a8b3ij � a9b2ij þ a10b4ij

� �

� a12a2ij � a13c2ij

ð13kÞ

g4ij ¼ a11 � iX1 þ jX2ð Þ2
� �

a4ij

� iX1 þ jX2ð Þ a8b4ij þ a9b1ij � a10b3ij

� �

þ a12a1ij þ a13c1ij

ð13lÞ

g5ij ¼ b3 � iX1 þ jX2ð Þ2
� �

a5ij

� iX1 þ jX2ð Þ b1b5ij þ b2b8ij

� �
þ b4a8ij

� b6c1ij � cb5

ð13mÞ

g6ij ¼ b3 � iX1 þ jX2ð Þ2
� �

a6ij

� iX1 þ jX2ð Þ b1b6ij � b2b7ij

� �
� b4a7ij

� b6c2ij

ð13nÞ

g7ij ¼ b11 � iX1 þ jX2ð Þ2
� �

a7ij

� iX1 þ jX2ð Þ b8b7ij � b9b6ij � b10b8ij

� �

� b12a6ij þ b13c2ij

ð13oÞ

g8ij ¼ b11 � iX1 þ jX2ð Þ2
� �

a8ij

� iX1 þ jX2ð Þ b8b8ij þ b9b5ij þ b10b7ij

� �

þ b12a5ij � b13c1ij

ð13pÞ

(iii) sine terms

g9ij ¼ a3 � iX1 þ jX2ð Þ2
� �

b1ij

þ iX1 þ jX2ð Þ a1a1ij þ a2a4ij

� �
þ a4b4ij

þ a6d1ij ð13qÞ

g10ij ¼ a3 � iX1 þ jX2ð Þ2
� �

b2ij

þ iX1 þ jX2ð Þ a1a2ij � a2a3ij

� �
� a4b3ij

þ a6d2ij þ ca5

ð13rÞ

g11ij ¼ a11 � iX1 þ jX2ð Þ2
� �

b3ij

þ iX1 þ jX2ð Þ a8a3ij � a9a2ij þ a10a4ij

� �

� a12b2ij þ a13d2ij

ð13sÞ

g12ij ¼ a11 � iX1 þ jX2ð Þ2
� �

b4ij

þ iX1 þ jX2ð Þ a8a4ij þ a9a1ij � a10a3ij

� �

þ a12b1ij � a13d1ij

ð13tÞ

g13ij ¼ b3 � iX1 þ jX2ð Þ2
� �

b5ij

þ iX1 þ jX2ð Þ b1a5ij þ b2a8ij

� �
þ b4b8ij

� b6d1ij

ð13uÞ
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g14ij ¼ b3 � iX1 þ jX2ð Þ2
� �

b6ij

þ iX1 þ jX2ð Þ b1a6ij � b2a7ij

� �
� b4b7ij

� b6d2ij þ cb5

ð13vÞ

g15ij ¼ b11 � iX1 þ jX2ð Þ2
� �

b7ij

þ iX1 þ jX2ð Þ b8a7ij � b9a6ij � b10a8ij

� �

� b12b6ij þ b13d2ij

ð13wÞ

g16ij ¼ b11 � iX1 þ jX2ð Þ2
� �

b8ij

þ iX1 þ jX2ð Þ b8a8ij þ b9a5ij þ b10a7ij

� �

þ b12b5ij � b13d1ij

ð13xÞ

Letting the right side of Eq. (13) be equal to zero,

then one can rewrite Eq. (13) as the following matrix

equation, i.e.,

g ¼ AXþ B ¼ 0 ð14Þ

where g is the residual vector and X ¼
a100; a200; a300; a400; a500; a600;½ a700; a800; a1ij; a2ij;

a3ij; a4ij; a5ij; a6ij; a7ij; a8ij; b1ij; b2ij; b3ij; b4ij; b5ij;

b6ij; b7ij; b8ij�T is the matrix of unknowns for the

solution, A is the coefficient matrix, and the rest terms

including the unknowns for the nonlinear inter-shaft

bearing forces are contained in the vector B.

Then the Newton–Raphson iterative procedure is

employed to get the fixed point X for Eq. (14), i.e.,

Xðkþ1Þ ¼ XðkÞ � J�1gðkÞ ð15Þ

where J is the Jacobian matrix, i.e.,

J ¼ og

oX
¼ Aþ oB

oX
ð16Þ

in which, A is a constant matrix corresponding to the

linear part, but the vector B is corresponding to the

nonlinear forces of the inter-shaft bearing, the coef-

ficients for which are unknown. In order to get oB=oA,

one can employ the alter frequency/time domain

technique (AFT) to construct the relations between the

coefficients of the nonlinear forces and that of the

supposed solution.

3.2 The AFT procedure

For a given X, equally divide the time period into N

points, i.e.,

sr ¼
2Kpr
N

ð17Þ

in which, K = 5, and N is the number of sampling

points of a common time period.

Then the responses qp at the rth discrete time can be

obtained as follows

qp rð Þ¼ap00þ
Xm

i¼�m

Xn

j¼�n

:

apijcos
2Kpr iX1þ jX2ð Þ

N
�bpij sin

2Kpr iX1þ jX2ð Þ
N

� �

ð18Þ

where r ¼ 0; 1; � � � ; N � 1.

Substituting Eq. (17) and Eq. (18) into Eq. (10),

the nonlinear forces FY and FZ at the rth discrete time

can be obtained as follows

FX rð Þ
FY rð Þ

	 

¼ H E rð Þ � Dð Þkb 1 � D

E rð Þ

� �
Xb rð Þ
Yb rð Þ

	 


ð19Þ

where

Xb rð Þ ¼ q1 rð Þ � L2�L5

L q4 rð Þ
� �

� q5 rð Þ � L4

L q8 rð Þ
� �

,

Yb rð Þ ¼ q2 rð Þ þ L2�L5

L q3 rð Þ
� �

� q6 rð Þ þ L4

L q7 rð Þ
� �

,

E rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xb rð Þ2þYb rð Þ2

q
.

Using the DFT for Eq. (19), and considering

Eq. (12b), the corresponding coefficients of Fl

(F1 ¼ FX , F2 ¼ FY ) in the frequency domain can be

obtained as follows

cl00 ¼ 1

N

XN�1

r¼0

Fl rð Þ l ¼ 1; 2; 3; 4 ð20aÞ

clij ¼
2

N

XN�1

r¼0

Fl rð Þ cos
2Kp iX1 þ jX2ð Þr

N
l ¼ 1; 2; 3; 4

ð20bÞ

dlij ¼ � 2

N

XN�1

r¼0

Fl rð Þ sin
2Kp iX1 þ jX2ð Þr

N

l ¼ 1; 2; 3; 4

ð20cÞ
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Letting Q ¼ c10; c20; c1ij; c2ij; d1ij; d2ij

� T
, and

according to Eq. (18) to (20), we can calculate oB
oX by

using the following formula

oB

oX
¼ oB

oQ

oQ

oX
ð21Þ

Finally, the Jacobian matrix J can be obtained by

substituting Eq. (21) into Eq. (16). Then substituting

it into Eq. (15), one can update X by using the

Newton–Raphson iterative procedure, i.e.,

Xðkþ1Þ ¼ XðkÞ � J�1gðkÞ. When jjXðkÞ � Xðk�1Þjj is less

than the allowed error, the result converges. Further-

more, the pseudo-arclength continuation method is

employed to get all branches of solutions, and the

Floquet theory is used to analyze the stability of the

solutions obtained through the HB-AFT method.

Finally, the flowchart of the HB-AFT method is

shown in Fig. 2.

4 Results and discussions

4.1 Nonlinear response of the dual-rotor system

IN the following sections, the nonlinear responses of

the dual-rotor system are detected by using the HB-

AFT method. In the calculations, ten frequencies are

supposed, that are x1, x2, 2x2 � x1, 2x1 � x2,

3x2 � 2x1, 3x1 � 2x2, 4x2 � 3x1, 4x1 � 3x2,

x2 � x1, 2x1, the error for every iteration process is

less than 10–12.

Figure 3 shows the frequency response curves of

the system for k ¼ 1:2 and d ¼ d0 ¼ 5 lm. The

response amplitudes of the inner rotor and the outer

rotor are defined by

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ q2
2

q
ð28aÞ

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

5 þ q2
6

q
ð28bÞ

Fig. 2 Flowchart of the HB-

AFT method

123

Combination resonances of a dual-rotor system with inter-shaft bearing 5205



where R1 is the response amplitudes of the inner rotor,

R2 is the response amplitudes of the outer rotor,q1, q2,

q5, q6 are defined in Eq. (12a).

In Fig. 3a and b, the resonance peak at x1 �
681 rad/s is induced by the primary resonance due to

the unbalance excitation of the outer rotor, in this case

x2 � 817 rad/s. while the resonance peak at x1 �
815 rad/s is induced by the primary resonance due to

the unbalance excitation of the inner rotor, and in this

case x1 � 980 rad/s. The relative location of the two

resonance peaks is determined by the speed ratio,

since k ¼ 1:2, so the rotation speed corresponding to

the first resonance peak is about 681 rad/s, and the

other is about 815 rad/s. Besides these two resonance

peaks, there are three more resonance regions nearby,

which are excited by the combination frequencies that

are close to the critical speed of the rotor system, and

marked by B, C and D. In these resonance regions, the

vibration amplitudes of the system are not so large

compared with the primary resonances, but jump

phenomena are observed, which are harmful to the

safe and steady operation of the dual-rotor system. In

addition, region A is also a bi-stable region with

vibration jumps. The maximum jump magnitude of

region A and region D is larger for the inner rotor,

while that of region B and region C is larger for the

outer rotor. Nevertheless, all of these nonlinear

resonances are induced by the clearance of the inter-

shaft bearing.

In addition, in order to give an insight into the

system motions, the x response time history and rotors’

orbits of the inner rotor corresponding to the points

(x1 = 650 rad/s,x1 = 680 rad/s, x1 = 810 rad/s,x1

= 860 rad/s) of Fig. 3 are shown in Figs. 4 and 5,

where x1 = 680 rad/s and x1 = 810 rad/s are corre-

sponding to the resonance area of the system in Fig. 3,

and x1 = 650 rad/s and x1 = 860 rad/s are corre-

sponding to the non-resonance area of the system in

Fig. 3. The solid line denotes the results calculated by

the HB-AFT method, and the dotted line represents the

results of the Runge–Kutta method in all subfigures of

Figs. 4 and 5. It is shown that the motions of the

Fig. 3 Frequency response

curves of the dual-rotor

system. a for inner rotor,

b for outer rotor
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system are periodic motion, and the calculation results

including time history and rotors’ orbits obtained by

the Runge–Kutta method and the HB-AFT method are

basically consistent, which indicates that the accura-

cies of the two methods are almost the same. As for the

calculation efficiency, the average time consuming to

get the steady-state response of the system is about

3.2 s by using the Runge–Kutta method, but the

corresponding time consuming is just about 0.11 s by

using the HB-AFT method, i.e., the calculation

efficiency of the HB-AFT method is about 29 times

that of the Runge–Kutta method. Furthermore, the

Runge–Kutta method can’t find the unstable periodic

solutions of the system as shown in Fig. 3 (red lines),

as a result it can’t reflect the whole picture of the

solution. In addition, using the HB-AFT method could

obtain a further understanding of the combination

resonances of the system by the separated frequency

responses, the details will be discussed next.

Furthermore, since the exact expression of

Eq. (12a) can be obtained through the HB-AFT

method, the responses of the system can be

Fig. 4 x response time history of the inner rotor. a x1 = 650 rad/s, b x1 = 680 rad/s, c x1 = 810 rad/s, d x1 = 860 rad/s

Fig. 5 rotors’ orbits of the inner rotor. a x1 = 650 rad/s, b x1 = 680 rad/s, c x1 = 810 rad/s, d x1 = 860 rad/s
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decomposed separately into different harmonic com-

ponents. The definitions of amplitudes for the sepa-

rated harmonic components are presented as follows

R1ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1ij þ b2
1ij þ a2

2ij þ b2
2ij

q
ð29aÞ

R2ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

5ij þ b2
5ij þ a2

6ij þ b2
6ij

q
ð29bÞ

where R1ij is the separated harmonic components

response amplitudes of the inner rotor, R2ij is the

separated harmonic components response amplitudes

of the outer rotor.

The separated frequency responses of the system for

parameters having the same value as Fig. 3 are shown in

Fig. 6, which are meaningful to know exactly how much

each frequency component contributes to the vibration

responses of the system. It can be observed that apart from

the basic components of x1 and x2, the components of

2x2 � x1 and 2x1 � x2 are notable in the response of

the inner rotor in Fig. 6a, while the components of

2x2 � x1, 3x2 � 2x1 and 4x2 � 3x1 take a promi-

nent role in the response of the outer rotor in Fig. 6b.

The latter three frequency components play a decisive

role in the appearance of the resonance regions B, C

and D in Fig. 3. The resonances are the corresponding

combination resonances. Specifically, region B is

induced by the combination resonance of 2x2 � x1,

while region C and region D are corresponding to the

combination resonances of 3x2 � 2x1 and

4x2 � 3x1, respectively. The reason of the combina-

tion resonance is that the clearance and the fractional

Hertz contact restoring force of the inter-shaft bearing

Fig. 6 Separated frequency

responses of the dual-rotor

system for the same

parameters as Fig. 3. a for

inner rotor, b for outer rotor.

Harbin Institute of

Technology
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are essentially nonlinear, especially the clearance

would change the contact state of the rollers, thus

causing the stiffness change of inter-shaft bearing.

4.2 Effect of inter-shaft bearing clearance

The inter-shaft bearing clearance is one of the main

inducements of the combination resonance of the dual-

rotor system, so it is very important to analyze the

influence of the clearance for revealing the mechanism

of the combination resonance. This section presents

the effect of the inter-shaft bearing clearance on the

nonlinear responses of the dual-rotor system. Firstly,

the frequency response curves of the dual-rotor system

for d ¼ 0, d ¼ 1 lm, d ¼ 3 lm and d ¼ 5 lm are

shown in Fig. 7, in which the amplitudes of the system

are calculated by Eq. (28), and the stability of the

periodic solutions are analyzed by the Floquet theory.

In addition, for all the subfigures of Fig. 7, the solid

lines and the dotted lines represent the stable and

unstable solutions branches, respectively.

As shown in Fig. 7, for d ¼ 0, there are only two

primary resonance peaks on the frequency response

curve, since in this case the dual-rotor system is a

linear system. When the inter-shaft bearing clearance

increases from d ¼ 0 to d ¼ 5 lm, both the resonance

amplitude and the resonant frequency of the primary

resonance peaks change very little. It is observed from

Fig. 7 that as the inter-shaft bearing clearance

increases, the amplitude of the first resonance peak

decreases gradually but the amplitude of the other

resonance peak changes slightly. Furthermore, as the

inter-shaft bearing clearance increases from d ¼ 0 to

d ¼ 5 lm, both the locations of the two resonance

peaks move to the left gradually, which indicates that

increasing the clearance will weaken the stiffness of

the system. This is because changing the clearance

will induce the change of the contact state of the inter-

shaft bearing rollers, including number of rollers in

contact.

In addition, it is shown in Fig. 7 that increasing the

clearance of the inter-shaft bearing will change the

nonlinear dynamic characteristics of the dual-rotor

system significantly, including the number of periodic

solutions both for the primary resonance regions and

the combination resonance regions, and the existence

of the combination resonance regions. For the primary

resonance regions, it can be observed from Fig. 7 that

Fig. 7 Frequency response

curves of the dual-rotor

system for different values

of inter-shaft bearing

clearance. a for inner rotor,

b for outer rotor
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when the clearance is 0 to 4 lm, there is only one

solution branches, however, when d ¼ 5 lm, there are

three solution branches and thus make the bi-

stable phenomena emerge. Furthermore, for the com-

bination resonance regions, when the clearance is 0 to

3 lm, the combination resonance phenomena are not

obvious, but when the clearance increases to 4 and 5

lm, obvious combination resonance phenomena could

be observed in the system. In addition, as the clearance

increasing from 4 lm to 5 lm, it can be clearly

observed that the combination resonance peaks move

a lot to the left, indicating a significant decrease of the

corresponding resonant frequencies.

In order to give an insight into the evolution of the

frequency components in the frequency response of

the outer rotor shown in Fig. 7b, the separated

frequency responses for frequency components of

x1, x2, 2x2 � x1, 2x1 � x2, 3x2 � 2x1 and 4x2 �
3x1 are shown in Fig. 8, in which The effective values

of response amplitude for each frequency component

are also calculated by Eq. (29); the solid lines and the

dotted lines represent the stable and unstable solutions

branches corresponding to each frequency,

respectively.

Subfigures (a) and (b) of Fig. 8 show the effect of

clearance on the separated frequency response of x1

and x2, which are corresponding to the primary

resonance. In Fig. 8a, the main resonance peak is

subject to the unbalance excitation of the inner rotor,

which is excited when the inner rotor passes through

the first critical rotational speed. With the increase of

the inter-shaft bearing clearance, the resonant fre-

quency has a little decrease, and the resonance

amplitude also decreases slightly, since the rigidity

of the system is reduced. Similarly, in Fig. 8b, the

resonance peak subject to the unbalance excitation of

the outer rotor also has a decrease in both the resonant

frequency and the resonance amplitude, which is

excited when the outer rotor passes through the first

critical rotational speed. Furthermore, when d ¼ 5

lm, a bi-stable region emerges.

Subfigures (c) to (f) of Fig. 8 show the effect of

clearance on the separated frequency response of

2x2 � x1, 2x1 � x2, 3x2 � 2x1 and 4x2 � 3x1,

which are corresponding to the combination reso-

nance. As shown in subfigures 8(c) to 8(f), when

d ¼ 0, there is no vibration response, with the increase

of the inter-shaft bearing clearance, the vibration

responses emerge and increase in general, and there

emerge several resonance peaks. In Fig. 8c, the most

prominent resonance peak is in the frequency region

between x1 ¼ 820 rad/s and x1 ¼ 900 rad/s. With

the increase of the inter-shaft bearing clearance, the

resonant frequency decreases, but the resonance

amplitude increases dramatically, and a crossover

structure emerges on the frequency response curve in

the cases of d ¼ 3 lm and d ¼ 5 lm, leading to the

presence of the coexistence of soft characteristic and

hardening characteristic. In Fig. 8d, there are several

resonance peaks, but the vibration amplitudes are

really small in comparison with that in Fig. 8c, e and f.

In Fig. 8e, the most prominent resonance peak is in the

frequency region between x1 ¼ 680 rad/s and

x1 ¼ 820 rad/s. Similarly to Fig. 8c, with the increase

of the inter-shaft bearing clearance, the resonant

frequency has a decrease, while the resonance ampli-

tude has an increase, and a crossover structure is

presented on the frequency response curves for d ¼ 1

lm, d ¼ 3 lm and d ¼ 5 lm.

As shown in Fig. 3, there are three combination

resonance regions in the frequency response curves of

the dual-rotor system, marked as B, C and D,

respectively. It can be seen from the previous analysis

that the inter-shaft bearing clearance would affect the

combination resonance characteristics of the system,

and the influence on that of the high-pressure rotor is

more significant. Next, we will explore the influence

of the clearance on the combination resonance char-

acteristics of region B, C and D. The separated

frequency responses of the outer rotor of each

combination resonance region are shown in Figs. 9,

10, 11, respectively, in which the effective values of

response amplitude for each frequency component are

also calculated by Eq. (29), the solid lines and the

dotted lines represent the stable and unstable solutions

branches corresponding to each frequency,

respectively.

Figure 9 shows the separated frequency responses

of the outer rotor of region D for the same parameters

as Fig. 7 with different clearance of the inter-shaft

bearing.

Subfigure (a) is corresponding to the separated

frequency response of frequency component

2x2 � x1, it is shown that increasing the inter-shaft

bearing clearance will increase the response, and make

the resonance frequency reduction. Subfigure (b) is

corresponding to the separated frequency response of

frequency component 2x1 � x2, which shows that the

123

5210 L. Hou et al.



Fig. 8 Separated frequency

responses of the outer rotor

for the same parameters as

Fig. 7. a for frequency

component of x1, b for

frequency component of x2,

c for frequency component

of 2x2 � x1, d for

frequency component of

2x1 � x2, (e) for frequency

component of 3x2 � 2x1,

(f) for frequency component

of 4x2 � 3x1
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frequency responses of region D contain little response

of this frequency component, and the change of the

clearance has little influence on this situation. Subfig-

ure (c) is corresponding to the separated frequency

response of frequency component 3x2 � 2x1, it is

indicated that this frequency component has some

contribution to the combination resonance response of

region D, and the change of the inter-shaft bearing

clearance has little influence on the response ampli-

tude, but make the resonance frequency reduction

significantly. Subfigure (d) is corresponding to the

separated frequency response of frequency component

4x2 � 3x1, it is shown that the frequency component

has some contribution to the combination resonance

response of region D, and the change of the clearance

will affect the separated frequency response signifi-

cantly, i.e., when the clearance amplitude is 1 lm, a

resonance peak emerges in the separated frequency

response of the frequency component; when the

clearance amplitude increases to 2 lm, both the

amplitude and the frequency of the peak keep

increasing; besides, the increasing the clearance will

make the amplitude and the frequency of the peak

induction.

To sum up, it can be seen from Fig. 9 that the

combination resonance response of region D is mainly

dominated by the combined frequency component of

2x2 � x1 and 4x2 � 3x1, and almost independent of

other frequency components. Furthermore, the inter-

shaft bearing clearance will not only affect the

response amplitudes of the combination resonance in

this region, but also show a certain ‘‘stiffness weak-

ening effect’’ on the rotor system in this region.

Figure 10 shows the separated frequency responses

of the outer rotor of region C for the same parameters

as Fig. 5 with different clearance of the inter-shaft

bearing.

Subfigure (a) is corresponding to the separated

frequency response of frequency component

2x2 � x1; it is shown that the frequency component

has some contribution to the combination resonance

response of this region. Moreover, increasing the inter-

shaft bearing clearance will hardly change the

response amplitude, but make the resonance frequency

reduction. Subfigure (b) is corresponding to the

separated frequency response of frequency component

2x1 � x2, which shows that the frequency responses

of region C contain little response of this frequency

component, and the change of the clearance will

Fig. 8 continued
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Fig. 9 Separated frequency

responses of the outer rotor

of region D for the same

parameters as Fig. 7. a for

frequency component of

2x2 � x1, b for frequency

component of 2x1 � x2, c
for frequency component of

3x2 � 2x1, d for frequency

component of 4x2 � 3x1
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Fig. 10 Separated frequency responses of the outer rotor of

region C for the same parameters as Fig. 7. a for frequency

component of 2x2 � x1, b for frequency component of

2x1 � x2, c for frequency component of 3x2 � 2x1, d for

frequency component of 4x2 � 3x1
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Fig. 11 Separated

frequency responses of the

outer rotor of region B for

the same parameters as

Fig. 7. a for frequency

component of 2x2 � x1, b
for frequency component of

2x1 � x2, c for frequency

component of 3x2 � 2x1, d
for frequency component of

4x2 � 3x1
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hardly influence this situation. Subfigure (c) is corre-

sponding to the separated frequency response of

frequency component 3x2 � 2x1, it is indicated that

this frequency component has some contribution to the

combination resonance response of region C, and the

increasing of the inter-shaft bearing clearance will

make the response amplitude increasing, meanwhile

make the resonance frequency reduction significantly.

Furthermore, a kind of circle structure emerges in the

separated frequency response of the frequency com-

ponent when the clearance is more than zeros, which

makes the separated frequency response curves

behaving both ‘‘stiffness hardening characteristic’’

and ‘‘stiffness softening characteristic’’. Subfigure (d)

is corresponding to the separated frequency response

of frequency component 4x2 � 3x1; it is shown that

there is a resonance peak in the response curve, which

indicates that the frequency component has some

contribution to the combination resonance response of

region C. It is worth noting that the amplitudes of the

resonance peaks are much less than that of Subfig-

ure (c). Furthermore, the response curves behave like a

hardening characteristic when the clearance is 1 lm, 2

lm and 3 lm, however, there emerges a circle

structure, which makes the response curve behaves

both ‘‘stiffness hardening characteristic’’ and ‘‘stiff-

ness softening characteristic’’ when the clearance

increases to 4 lm. When the clearance amplitude is 5

lm, the circular structure is more obvious.

In a word, it can be seen from Fig. 10 that the

combination resonance response of region C is mainly

dominated by the combined frequency component of

3x2 � 2x1. Furthermore, the inter-shaft bearing

clearance will not only affect the response amplitudes

of the combination resonance in this region, but also

show a certain ‘‘stiffness weakening effect’’ on the

rotor system in this region.

Figure 11 shows the separated frequency responses

of the outer rotor of region B for the same parameters

as Fig. 7 with different clearance of the inter-shaft

bearing.

Subfigure (a) is corresponding to the separated

frequency response of frequency component

2x2 � x1, it is shown that the frequency component

has some contribution to the combination resonance

response of this region. Besides, increasing the inter-

shaft bearing clearance will make the response

amplitudes increasing, meanwhile make the resonance

frequency reduction. When the clearance is 1 lm, the

separated frequency response curve behave like a

linear characteristic, but when the clearance increases

to 2 lm, there is a circular structure in the curve, which

makes the curve behave as both ‘‘softening character-

istic’’ and ‘‘hardening characteristic’’. Subfigures (b)

and (d) are corresponded to the separated frequency

response of frequency components 2x1 � x2 and

4x2 � 3x1, respectively, which shows that the fre-

quency responses of region B contain little response of

these frequency components, and the change of the

clearance will hardly influence this situation. Subfig-

ure (c) is corresponding to the separated frequency

response of frequency component 3x2 � 2x1, it is

indicated that this frequency component has some

contribution to the combination resonance response of

region B, and the increasing of the inter-shaft bearing

clearance will hardly influence the response ampli-

tude, but make the resonance frequency reduction

significantly.

In conclusion, it is shown in Fig. 11 that the

combination resonance response of region B is mainly

dominated by the combined frequency component of

2x2 � x1. Furthermore, the inter-shaft bearing clear-

ance will not only affect the response amplitudes of the

combination resonance in this region, but also show a

certain ‘‘stiffness weakening effect’’ on the rotor

system in this region.

In summary, there are two primary resonance

peaks, and three more combination resonance regions

in the frequency response curves of the system are

found, in which the jump and bi-stable phenomena are

observed. Furthermore, clearance of the inter-shaft

bearing is one of the main inducements of the

nonlinear phenomena of rotor system, including bi-

stable, multiple solutions and combination resonance.

5 Conclusions

In this paper, the dynamic model of a dual-rotor-

bearing system has been formulated by the Lagrange

equation, in which the unbalanced excitations of the

two rotors and the nonlinearities of the inter-shaft

bearing are taken into consideration. The modified

HB-AFT method has been employed to obtain all the

periodic solutions including the unstable solutions of

the system. The combination resonance characteristics

of the system have been analyzed in detail. The main

conclusions are as follows:
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(1) There are two primary resonance peaks induced

by the unbalance excitation of the two rotors in

the frequency response curves of the system, bi-

stable and vibration jump phenomena are

observed in the first primary resonance region.

(2) Besides the two resonance peaks, there are three

more combination resonance regions in the

frequency response curves of the system, in

which the jump phenomena are observed, which

are harmful to the safe and steady operation of

the dual-rotor system.

(3) The combination resonance of the system is

mainly dominated by the combined frequency

component of 2x2 � x1,4x2 � 3x1, 3x2 �
2x1 and is almost independent of other fre-

quency components.

(4) Increasing the inter-shaft bearing clearance will

not only affect the response amplitudes of the

combination resonance and change the ‘‘soften-

ing and hardening characteristic’’ of the fre-

quency response curves, but also show a certain

‘‘stiffness weakening effect’’ on the rotor

system.

The study in this paper is of great significance in

selecting the parameters of the dual-rotor system

reasonably so as to avoid harmful combination

resonance.

6 Future scope

The HB-AFT method has great advantages in the

nonlinear dynamic characteristics analysis of rotor

system with complex nonlinearities such as clearance,

piecewise linearity, nonlinear faults, etc. Future works

will be focused on detecting the nonlinear dynamics of

dual-rotor system based on high dimensional model

with complex nonlinearities by employing the mod-

ified HB-AFT method, and extending the application

of the HB-AFT method in the dynamic analysis of

other complex rotating machinery such as aero-

engines and gas turbines.
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