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Abstract In the paper Ameli and Samani (Nonlin-
ear Dyn https://doi.org/10.1007/s11071-022-07703-0,
2022), the authors formulate low-dimensional evolu-
tions of the macroscopic order parameters in the gen-
eralizedKuramotomodel, inwhich the quenched disor-
der of the heterogeneous natural frequencies and cou-
pling strength are correlated via a weighted absolute
value function. The authors state that the collective
dynamics, as well as the global bifurcation of various
attractors, can be delineated in the framework of the
low-dimensional manifold. We argue that such low-
dimensional descriptions for the frequency-weighted
coupling are not correct in general. This contradiction
is explained from several aspects, including the Ott-
Antonsen reduction and the forward (backward) critical
points corresponding to the onset (vanishing) of syn-
chrony. Remarkably, we uncover that the singularity of
the frequency-weighted coupling forbids the analyti-
cal continuation, but can vastly simplify the coherent
behaviors of the system. Importantly, we justify that
our analysis can be extended to a wide class of systems
involving the frequency-weighted coupling scheme.
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1 Introduction

Synchronization of large ensembles of interacting
oscillators is an emergent phenomenon that occurs in
a wide range of systems ranging from physics, chem-
istry, biology to human society. Uncovering the intrin-
sic mechanism underlying such collective behaviors
has been an important area of research in the fields
of network science and nonlinear dynamics [2–4].

The Kuramoto model has become a paradigmatic
tool for modeling and characterizing synchronization
transitions and other related collective dynamics [5].
The model consists of a population of globally coupled
phase oscillators with distributed natural frequencies
and sinusoidal phase difference coupling. In this setup,
the synchronization transition is regarded as a nonequi-
librium phase transition described by the continuous
bifurcation of the order parameter. Due to its simplic-
ity and mathematical tractability, the Kuramoto model
has attracted increasing interest during the past years
[6–9].

Beyond the homogeneous coupling described by the
Kuramoto model, there is a great interest in exploring
the synchronized dynamics by incorporating the inho-
mogeneity into the coupling. A popular example is the
so-called frequency-weighted coupling, in which the
quenched disorder of the natural frequencies and the
coupling strength are correlated via a weighted abso-
lute value function. Such a frequency-weighted cou-
plingwas introduced tomimic frequency-degree corre-
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lations in a networked system triggering the explosive
synchronization [10–18]. In contrast to the classical
Kuramotomodel, the frequency-weighted coupling has
been shown to exhibit a number of fascinating rhythmic
dynamics toward synchronization [19–24].

In thepaper [1], the authors investigate the frequency-
weighted Kuramoto model of a population of globally
coupled phase oscillators. By using the Ott-Antonsen
ansatz, they state that the low-dimensional evolutions
of order parameters can be obtained. As a result, all
the collective behaviors, as well as the global bifur-
cation of the attractors, can be depicted in such a
low-dimensional manifold. Here, we argue that such
low-dimensional descriptions of themacroscopic order
parameters aremisleading. In fact, the low-dimensional
evolutions of the order parameters in the frequency-
weighted coupling can never be achieved. Below, we
will focus on several aspects of our argument, thereby
providing significant insights for the better understand-
ing of the frequency-weighted coupling scheme pre-
sented in the coupled phase oscillator systems.

2 Dynamical model

As noted, we consider a generalized Kuramoto model
consisting of a population of phase oscillators, which
is governed by the following differential equations:

θ̇i = ωi + Ki
∑N

j=1 Ai j

N∑

j=1

Ai j

sin(θ j − θi ), i = 1, . . . , N . (1)

Here θi (t) is the instantaneous phase of i-th oscillator.
{ωi } are the natural frequencies chosen randomly from
a prescribed distribution g(ω), which is assumed to be
symmetric, i.e., the mean is set to zero and g(−ω) =
g(ω). N is the size of the system.{

Ai j
}
represents a network topology that encodes

the connectivity patterns underlying the system. For
example, if we restrict to an undirected and unweighted
graph, Ai j = A ji = 1, the two oscillators θi and θ j

are connected. Ai j = A ji = 0, otherwise. The factor
∑N

j=1 Ai j denotes the degree of the i-th oscillator that
is needed to ensure the convergence of the sum.

Equation (1) differs from the conventionalKuramoto
model, in that the homogeneous coupling strength
between the phase oscillators has been replaced by
the heterogeneous couplings Ki . A concrete example

is the so-called conformists-contrarians model used in
the social and neural networks. In that case, Ki are
endowed with the random variables with mixed signs.
Here, we set Ki > 0 (attracting) and KN−i = Ki

(symmetric). Aside from this constraint, we are free
to choose Ki . To this end, we focus on a particular
case, in which the heterogeneous natural frequencies
and the coupling are chosen deterministically rather
than randomly. We set Ki = K |ωi |, with K > 0 being
the global attracting coupling strength. Remarkably,
the frequency-weighted coupling establishes a posi-
tive correlation between natural frequencies and the
coupling. In this setting, the randomness is intrinsic to
the oscillators themselves rather than to the coupling
between them.

Before proceeding with the analysis, we introduce
the order parameter defined by

Z(t) = R(t)eiΘ(t) = 1

N

N∑

j=1

eiθ j (t). (2)

The complex-valued vector Z(t) corresponds to the
centroid of the configuration

{
eiθ j

}
. The amplitude

R(t) ∈ [0, 1] measures the coherence of the system,
and Θ(t) ∈ [0, 2π) gives the average phase of the
population. Without loss of generality, the network is
assumed to be fully connected. In the following, we
will report our main results to correct the discussions
in [1].

3 Ott–Antonsen reduction

As the first step, we study the system in the thermody-
namic limit (N → ∞). Since the dynamics of Eq. (1) is
deterministic, it is equivalent to the continuity equation
for the probability density ρ(θ, ω, t), which yields

∂ρ

∂t
+ ∂(ρv)

∂θ
= 0. (3)

Here ρ(θ, ω, t)dθ accounts for the fraction of oscilla-
tors lying in the interval [θ, θ + dθ ] for a fixed time
t and a given natural frequency ω, which satisfies the
normalization condition
∫ 2π

0
ρ(θ, ω, t)dθ = 1. (4)

The velocity field v(θ, ω, t) is given by

v(θ, ω, t) = ω + K |ω|
2i

(Z(t)e−iθ − Z̄(t)eiθ ), (5)
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where the bar denotes the complex conjugate, and the
order parameter Z(t) in the continuous limit becomes

Z(t) =
∫ +∞

−∞

∫ 2π

0
eiθρ(θ, ω, t)g(ω)dθdω. (6)

Notice that the density ρ(θ, ω, t) is 2π -periodic
function with respect to θ , it allows for the Fourier
expansion of the form

ρ(θ, ω, t) = 1

2π

+∞∑

n=−∞
αn(ω, t)e−inθ , (7)

with αn(ω, t) being the n-th Fourier coefficient. The
normalization conditionEq. (4) implies thatα0(ω, t) =
1, and the real value of ρ(θ, ω, t) further requires that
α−n = ᾱn .

SubstitutingEqs. (7) into (3) and balancing each har-
monic term einθ , we obtain a set of differential equa-
tions for the Fourier coefficients yielding

α̇n = inωαn + nK |ω|
2

(Zαn−1 − Z̄αn+1), (8)

which is closed by the order parameter

Z(t) =
∫ +∞

−∞
α1(ω, t)g(ω)dω = ĝα1(ω, t). (9)

Here and in the following, ĝ denotes the integral oper-
ator.

We emphasize that Eq. (8) is totally equivalent to Eq.
(3), because {αn} are the coordinates ofρ(θ, ω, t) in the
Fourier representation. In other words, the difficulty for
solving Eq. (8) is exactly the same as that of solving Eq.
(3). Nevertheless, the Ott-Antonsen ansatz points out
that Eq. (8) possesses an invariant manifold described
by

αn(ω, t) = αn(ω, t), |n| > 1. (10)

To see this, by inserting the ansatz Eqs. (10) into (8),
we get

α̇ = iωα + K |ω|
2

(Z − Z̄α2), (11)

with

Z(t) = ĝα(ω, t). (12)

Clearly, this equation holds for all the Fourier coeffi-
cients αn(ω, t) except for n = 0, which is of course
an invariant solution of the system. On the other hand,
we can see that the original infinitely many coordi-
nates {αn(ω, t)} degenerate to a coordinate α(ω, t). In

this sense, the Ott-Antonsen ansatz is precisely a low-
dimensional manifold described by Eq. (11) of the sys-
tem.

Up to now, we have finished the first step of the Ott-
Antonsen reduction, which is significantly different
from the discussion of [1]. In [1], the authors start with
the perturbation of the incoherent state ρ0(θ, ω, t) =
1
2π to introduce the Ott-Antonsen ansatz (see Eq. (7)
therein), and this starting point is logically confusing.
In fact, we remark that the Ott-Antonsen ansatz is an
exact dimensional reduction technique that does not
involve any approximations or weak perturbations.

We note that Eq. (11) is a low-dimensional descrip-
tion compared with Eqs. (8) or (3). However, Eq. (11)
itself is still infinitely dimensional, since the natural fre-
quencies are drawn from a nonidentical distribution.
In order to get a real low-dimensional description of
the system, one needs to turn to the second step of
the Ott-Antonsen reduction, i.e., the evolutions of the
macroscopic order parameters. With this aim, for the
case of a rational distribution g(ω) containing several
poles on the complex ω-plane, the order parameter can
be expressed as a sum consisting of several quantities.
Eachquantity corresponds to an associated pole of g(ω)

that is calculated through the analytical continuation.
Based on this strategy, one may obtain a few evolutions
of the macroscopic quantities by replacing ω with the
associated poles. This program was done in [1], where
the authors chose a bimodal Lorentzian distribution to
obtain the low-dimensional equations describing the
two order parameters (see Eqs.(11) and (12) therein).
However, we must point out that such a strategy is not
correct for the frequency-weighted coupling. The rea-
sons are as follows.

On the one hand, in order to calculate the order
parameter Z(t) in Eq. (12), the authors in [1] have
used the analytical continuation. However, the precon-
dition is that α(ω, t) itself must be an analytical func-
tion for ω ∈ R. Unfortunately, such a condition can
never be satisfied in the frequency-weighted coupling.
Tomake sense of it, we observe that the stationary solu-
tion α0(ω) determined by α̇(ω, t) = 0 in Eq. (11) is
solved as

α0(ω) =
⎧
⎨

⎩

iω+√
K 2R2ω2−ω2

K R|ω| , K R > 1,

i ω−sgn(ω)
√

ω2−K 2R2ω2

K R|ω| , K R < 1,
(13)

where sgn(ω) denotes the sign function of ω. The first
part of Eq. (13) corresponds to the phase-locked oscil-
lators, while the second part corresponds to the drift-
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ing populations. From Eq. (13), it becomes apparent
that the stationary solution α0(ω, t) is not an analytical
function of ω, since it evolves the absolute value of ω.
Therefore, the analytical continuation is forbidden.

On the other hand, even if the analytical continua-
tion is permissible, we now show that such an assump-
tion leads to the false conclusions. We take a unimodal
Lorentzian distribution as an example, i.e., g(ω) =

γ

π(ω2+γ 2)
, which corresponds to ω0 = 0 of the bimodal

Lorentzian distribution used in [1]. Following the idea
of [1], the order parameter Z(t) becomes

Z(t) =
∫ +∞

−∞
γ

π

1

ω2 + γ 2 α(ω, t)dω = α(iγ, t). (14)

Replacingωwith iγ in Eq. (11), the macroscopic order
parameter evolves according to

Ṙ = −γ R + K

2
|iγ | R(1 − R2), (15)

and

Θ̇ = 0. (16)

Obviously, R = 0 is a steady solution of Eq.(15), which
remains stable for K < Kc = 2, and becomes unstable
for K > 2. Beyond the critical point Kc = 2, the order
parameter behaves as

R =
√

1 − 2

K
, K ≥ 2. (17)

Based on this analysis, the system undergoes a contin-
uous phase transition to synchronization at Kc = 2,
which is similar to the case of that observed in the clas-
sical Kuramoto model. However, it has been shown
that [25,26], for the frequency-weighted coupling with
a unimodal Lorentzian distribution g(ω), the system
experiences an explosive synchronization. The forward
critical coupling corresponding to the instability of the
incoherent state is K f = 4, and the backward critical
coupling for the vanishing of the synchronized state is
Kb = 2. Correspondingly, the system admits a bistabil-
ity in the region K ∈ [Kb, K f ]. Based on these reasons,
the analytical continuation adopted in [1] is certainly
not correct, and the associated discussions of the low-
dimensional behaviors of the order parameters in [1]
are thus inappropriate.

4 Linear stability analysis

Although the low-dimensional behaviors of the order
parameters are not allowed, the critical point K f corre-
sponding to the instability of the incoherent state can be

obtained through the Ott-Antonsen reduction. In doing
so, let α(ω, t) = 0 + εη(ω, t), with ε being the per-
turbed magnitude (0 < ε � 1) and η(ω, t) being
the perturbed vector. Accordingly, the order parame-
ter under perturbation becomes Z(t) = εĝη(ω, t). By
inserting these perturbations into Eq. (11) up to the
linear order of ε, we arrive at the linearized dynamics
around the incoherent state yielding

dη

dt
= iωη + K |ω|

2
ĝη. (18)

Following the standard line of the analysis of linear
operator, we set dη

dt = λη, then the eigenvector η is
solved as

η(ω) = K

2

|ω| ĝη
λ − iω

. (19)

Applying the operator ĝ to both sides of Eq. (19), the
eigenvalue equation is then given by

1 = K

2

∫ +∞

−∞
|ω| g(ω)

λ − iω
dω. (20)

Consequently, the forward critical point K f can be
obtained by imposing the condition Re(λ) → 0+,
which is

K f = 2

πg(Ωc) |Ωc| . (21)

The critical frequency Ωc should be solved in terms of
the balance equation

0 = P.V .

∫ +∞

−∞
|ω| g(ω)

ω − Ωc
dω, (22)

where P.V. denotes the principal value integral.
Next, we take an example to illustrate our theory.

In the case of a bimodal Lorentzian distribution, e.g.,
g(ω) = γ

2π [ 1
(ω−ω0)2+γ 2 + 1

(ω+ω0)2+γ 2 ], straightforward
calculations yield Ωc = ±

√
ω2
0 + γ 2, and we have

K f = 4
√
1 + (ω0

γ
)2

. (23)

Equation (23) sets out a boundary curve for the bifur-
cation of the incoherent state. Compared with [1], we
remark that the formula for obtaining K f turns out to
be more generic. It is clear that all the analyses above
are independent of specific distributions of g(ω). How-
ever, we stress that any information about the bifurca-
tion of the incoherent state is still unclear, which could
be further revealed by means of the center manifold
expansion.
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5 Coherent states

As above, it is difficult to obtain the low-dimensional
evolutions of the order parameters. Nevertheless, the
Ott-Antonsen reduction Eq. (11) is enough to capture
all the stationary behaviors of the order parameters.
Using Eq. (13), the steady order parameter is

Z = [ĝα0(ω)]K R>1 + [ĝα0(ω)]K R<1. (24)

Straightforward calculations indicate that the second
term of Eq. (24) vanishes that is due to the symmetry
of the system, and the order parameter is simplified as

R =
√

1 − 1

K 2R2 , K R > 1. (25)

Hence, the explicit expression of the order parameter
is

R± =
√
2

2

√

1 ±
√

1 − 4

K 2 . (26)

Finally, we make several comments on Eq. (26).
First, the backward critical point Kb = 2, below which
the synchronized states ease to exist. Second, with the
aid of matrix analysis theory, we can prove rigorously
that the solution R+ is linearly stable, and the solution
R− is unstable [27]. Third, the solutionEq. (26) is a uni-
versal form that is independent of the specific forms of
the frequency distribution provided that g(ω) is an even
function. Fourth, a number of fascinating dynamical
phenomena arise from the differenceΔK = K f −Kb,
whichwere discussed in great detail in [27]. Also, these
results above can never be obtained in the framework of
the low-dimensional descriptions of the order parame-
ters reported in [1].

6 Conclusion

In summary, we reconsidered the frequency-weighted
Kuramoto model of a population of globally coupled
phase oscillators, in which the coupling is an abso-
lute value function with respect to the natural frequen-
cies of oscillators. We argued that the low-dimensional
descriptions of the macroscopic order parameters can
never be achieved, and the associated collective behav-
iors, as well as the global bifurcation of the attractors,
based on the discussions of [1] are, therefore, inappro-
priate.We focusedon several aspects, including theOtt-
Antonsen reduction, the linear stability analysis, and

the coherent states to demonstrate our argument. More
importantly, we revealed that the singularity induced
by the frequency-weighted coupling forbids the analyt-
ical continuation, but can vastly simplify the coherent
behaviors of the system.
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